remove redundant function + update
[inav.git] / src / main / navigation / navigation_fixedwing.c
blob26f523c895ce572623b93e6f02bdc97a82e09f5c
1 /*
2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
18 #include <stdbool.h>
19 #include <stdint.h>
20 #include <math.h>
22 #include "platform.h"
24 #include "build/build_config.h"
25 #include "build/debug.h"
27 #include "common/axis.h"
28 #include "common/maths.h"
29 #include "common/filter.h"
31 #include "drivers/time.h"
33 #include "sensors/sensors.h"
34 #include "sensors/acceleration.h"
35 #include "sensors/boardalignment.h"
36 #include "sensors/gyro.h"
37 #include "sensors/pitotmeter.h"
39 #include "flight/pid.h"
40 #include "flight/imu.h"
41 #include "flight/mixer.h"
43 #include "fc/config.h"
44 #include "fc/controlrate_profile.h"
45 #include "fc/rc_controls.h"
46 #include "fc/rc_modes.h"
47 #include "fc/runtime_config.h"
49 #include "navigation/navigation.h"
50 #include "navigation/navigation_private.h"
52 #include "programming/logic_condition.h"
54 #include "rx/rx.h"
56 #include "sensors/battery.h"
58 // Base frequencies for smoothing pitch and roll
59 #define NAV_FW_BASE_PITCH_CUTOFF_FREQUENCY_HZ 2.0f
60 #define NAV_FW_BASE_ROLL_CUTOFF_FREQUENCY_HZ 10.0f
62 // If we are going slower than NAV_FW_MIN_VEL_SPEED_BOOST - boost throttle to fight against the wind
63 #define NAV_FW_THROTTLE_SPEED_BOOST_GAIN 1.5f
64 #define NAV_FW_MIN_VEL_SPEED_BOOST 700.0f // 7 m/s
66 // If this is enabled navigation won't be applied if velocity is below 3 m/s
67 //#define NAV_FW_LIMIT_MIN_FLY_VELOCITY
69 static bool isPitchAdjustmentValid = false;
70 static bool isRollAdjustmentValid = false;
71 static bool isYawAdjustmentValid = false;
72 static float throttleSpeedAdjustment = 0;
73 static bool isAutoThrottleManuallyIncreased = false;
74 static int32_t navHeadingError;
75 static int8_t loiterDirYaw = 1;
76 bool needToCalculateCircularLoiter;
78 // Calculates the cutoff frequency for smoothing out roll/pitch commands
79 // control_smoothness valid range from 0 to 9
80 // resulting cutoff_freq ranging from baseFreq downwards to ~0.11Hz
81 static float getSmoothnessCutoffFreq(float baseFreq)
83 uint16_t smoothness = 10 - navConfig()->fw.control_smoothness;
84 return 0.001f * baseFreq * (float)(smoothness*smoothness*smoothness) + 0.1f;
87 // Calculates the cutoff frequency for smoothing out pitchToThrottleCorrection
88 // pitch_to_throttle_smooth valid range from 0 to 9
89 // resulting cutoff_freq ranging from baseFreq downwards to ~0.01Hz
90 static float getPitchToThrottleSmoothnessCutoffFreq(float baseFreq)
92 uint16_t smoothness = 10 - navConfig()->fw.pitch_to_throttle_smooth;
93 return 0.001f * baseFreq * (float)(smoothness*smoothness*smoothness) + 0.01f;
96 /*-----------------------------------------------------------
97 * Altitude controller
98 *-----------------------------------------------------------*/
99 void setupFixedWingAltitudeController(void)
101 // TODO
104 void resetFixedWingAltitudeController(void)
106 navPidReset(&posControl.pids.fw_alt);
107 posControl.rcAdjustment[PITCH] = 0;
108 isPitchAdjustmentValid = false;
109 throttleSpeedAdjustment = 0;
112 bool adjustFixedWingAltitudeFromRCInput(void)
114 int16_t rcAdjustment = applyDeadbandRescaled(rcCommand[PITCH], rcControlsConfig()->alt_hold_deadband, -500, 500);
116 if (rcAdjustment) {
117 // set velocity proportional to stick movement
118 float rcClimbRate = -rcAdjustment * navConfig()->general.max_manual_climb_rate / (500.0f - rcControlsConfig()->alt_hold_deadband);
119 updateClimbRateToAltitudeController(rcClimbRate, ROC_TO_ALT_NORMAL);
120 return true;
122 else {
123 // Adjusting finished - reset desired position to stay exactly where pilot released the stick
124 if (posControl.flags.isAdjustingAltitude) {
125 updateClimbRateToAltitudeController(0, ROC_TO_ALT_RESET);
127 return false;
131 // Position to velocity controller for Z axis
132 static void updateAltitudeVelocityAndPitchController_FW(timeDelta_t deltaMicros)
134 static pt1Filter_t velzFilterState;
136 // On a fixed wing we might not have a reliable climb rate source (if no BARO available), so we can't apply PID controller to
137 // velocity error. We use PID controller on altitude error and calculate desired pitch angle
139 // Update energies
140 const float demSPE = (posControl.desiredState.pos.z * 0.01f) * GRAVITY_MSS;
141 const float demSKE = 0.0f;
143 const float estSPE = (navGetCurrentActualPositionAndVelocity()->pos.z * 0.01f) * GRAVITY_MSS;
144 const float estSKE = 0.0f;
146 // speedWeight controls balance between potential and kinetic energy used for pitch controller
147 // speedWeight = 1.0 : pitch will only control airspeed and won't control altitude
148 // speedWeight = 0.5 : pitch will be used to control both airspeed and altitude
149 // speedWeight = 0.0 : pitch will only control altitude
150 const float speedWeight = 0.0f; // no speed sensing for now
152 const float demSEB = demSPE * (1.0f - speedWeight) - demSKE * speedWeight;
153 const float estSEB = estSPE * (1.0f - speedWeight) - estSKE * speedWeight;
155 // SEB to pitch angle gain to account for airspeed (with respect to specified reference (tuning) speed
156 const float pitchGainInv = 1.0f / 1.0f;
158 // Here we use negative values for dive for better clarity
159 const float maxClimbDeciDeg = DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle);
160 const float minDiveDeciDeg = -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle);
162 // PID controller to translate energy balance error [J] into pitch angle [decideg]
163 float targetPitchAngle = navPidApply3(&posControl.pids.fw_alt, demSEB, estSEB, US2S(deltaMicros), minDiveDeciDeg, maxClimbDeciDeg, 0, pitchGainInv, 1.0f);
165 // Apply low-pass filter to prevent rapid correction
166 targetPitchAngle = pt1FilterApply4(&velzFilterState, targetPitchAngle, getSmoothnessCutoffFreq(NAV_FW_BASE_PITCH_CUTOFF_FREQUENCY_HZ), US2S(deltaMicros));
168 // Reconstrain pitch angle ( >0 - climb, <0 - dive)
169 targetPitchAngle = constrainf(targetPitchAngle, minDiveDeciDeg, maxClimbDeciDeg);
170 posControl.rcAdjustment[PITCH] = targetPitchAngle;
173 void applyFixedWingAltitudeAndThrottleController(timeUs_t currentTimeUs)
175 static timeUs_t previousTimePositionUpdate = 0; // Occurs @ altitude sensor update rate (max MAX_ALTITUDE_UPDATE_RATE_HZ)
177 if ((posControl.flags.estAltStatus >= EST_USABLE)) {
178 if (posControl.flags.verticalPositionDataNew) {
179 const timeDeltaLarge_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
180 previousTimePositionUpdate = currentTimeUs;
182 // Check if last correction was not too long ago
183 if (deltaMicrosPositionUpdate < MAX_POSITION_UPDATE_INTERVAL_US) {
184 updateAltitudeVelocityAndPitchController_FW(deltaMicrosPositionUpdate);
186 else {
187 // Position update has not occurred in time (first iteration or glitch), reset altitude controller
188 resetFixedWingAltitudeController();
191 // Indicate that information is no longer usable
192 posControl.flags.verticalPositionDataConsumed = true;
195 isPitchAdjustmentValid = true;
197 else {
198 // No valid altitude sensor data, don't adjust pitch automatically, rcCommand[PITCH] is passed through to PID controller
199 isPitchAdjustmentValid = false;
203 /*-----------------------------------------------------------
204 * Adjusts desired heading from pilot's input
205 *-----------------------------------------------------------*/
206 bool adjustFixedWingHeadingFromRCInput(void)
208 if (ABS(rcCommand[YAW]) > rcControlsConfig()->pos_hold_deadband) {
209 return true;
212 return false;
215 /*-----------------------------------------------------------
216 * XY-position controller for multicopter aircraft
217 *-----------------------------------------------------------*/
218 static fpVector3_t virtualDesiredPosition;
219 static pt1Filter_t fwPosControllerCorrectionFilterState;
222 * TODO Currently this function resets both FixedWing and Rover & Boat position controller
224 void resetFixedWingPositionController(void)
226 virtualDesiredPosition.x = 0;
227 virtualDesiredPosition.y = 0;
228 virtualDesiredPosition.z = 0;
230 navPidReset(&posControl.pids.fw_nav);
231 navPidReset(&posControl.pids.fw_heading);
232 posControl.rcAdjustment[ROLL] = 0;
233 posControl.rcAdjustment[YAW] = 0;
234 isRollAdjustmentValid = false;
235 isYawAdjustmentValid = false;
237 pt1FilterReset(&fwPosControllerCorrectionFilterState, 0.0f);
240 static int8_t loiterDirection(void) {
241 int8_t dir = 1; //NAV_LOITER_RIGHT
243 if (pidProfile()->loiter_direction == NAV_LOITER_LEFT) {
244 dir = -1;
247 if (pidProfile()->loiter_direction == NAV_LOITER_YAW) {
249 if (rcCommand[YAW] < -250) {
250 loiterDirYaw = 1; //RIGHT //yaw is contrariwise
253 if (rcCommand[YAW] > 250) {
254 loiterDirYaw = -1; //LEFT //see annexCode in fc_core.c
257 dir = loiterDirYaw;
260 if (IS_RC_MODE_ACTIVE(BOXLOITERDIRCHN)) {
261 dir *= -1;
264 return dir;
267 static void calculateVirtualPositionTarget_FW(float trackingPeriod)
269 if (FLIGHT_MODE(NAV_COURSE_HOLD_MODE)) {
270 return;
273 float posErrorX = posControl.desiredState.pos.x - navGetCurrentActualPositionAndVelocity()->pos.x;
274 float posErrorY = posControl.desiredState.pos.y - navGetCurrentActualPositionAndVelocity()->pos.y;
276 float distanceToActualTarget = calc_length_pythagorean_2D(posErrorX, posErrorY);
278 // Limit minimum forward velocity to 1 m/s
279 float trackingDistance = trackingPeriod * MAX(posControl.actualState.velXY, 100.0f);
281 uint32_t navLoiterRadius = getLoiterRadius(navConfig()->fw.loiter_radius);
282 fpVector3_t loiterCenterPos = posControl.desiredState.pos;
283 int8_t loiterTurnDirection = loiterDirection();
285 // Detemine if a circular loiter is required.
286 // For waypoints only use circular loiter when angular visibility is > 30 degs, otherwise head straight toward target
287 #define TAN_15DEG 0.26795f
288 needToCalculateCircularLoiter = isNavHoldPositionActive() &&
289 (distanceToActualTarget <= (navLoiterRadius / TAN_15DEG)) &&
290 (distanceToActualTarget > 50.0f);
292 /* WP turn smoothing with 2 options, 1: pass through WP, 2: cut inside turn missing WP
293 * Works for turns > 30 degs and < 160 degs.
294 * Option 1 switches to loiter path around waypoint using navLoiterRadius.
295 * Loiter centered on point inside turn at required distance from waypoint and
296 * on a bearing midway between current and next waypoint course bearings.
297 * Option 2 simply uses a normal turn once the turn initiation point is reached */
298 int32_t waypointTurnAngle = posControl.activeWaypoint.nextTurnAngle == -1 ? -1 : ABS(posControl.activeWaypoint.nextTurnAngle);
299 posControl.flags.wpTurnSmoothingActive = false;
300 if (waypointTurnAngle > 3000 && waypointTurnAngle < 16000 && isWaypointNavTrackingActive() && !needToCalculateCircularLoiter) {
301 // turnStartFactor adjusts start of loiter based on turn angle
302 float turnStartFactor;
303 if (navConfig()->fw.wp_turn_smoothing == WP_TURN_SMOOTHING_ON) { // passes through WP
304 turnStartFactor = waypointTurnAngle / 6000.0f;
305 } else { // // cut inside turn missing WP
306 turnStartFactor = constrainf(tan_approx(CENTIDEGREES_TO_RADIANS(waypointTurnAngle / 2.0f)), 1.0f, 2.0f);
308 // velXY provides additional turn initiation distance based on an assumed 1 second delayed turn response time
309 if (posControl.wpDistance < (posControl.actualState.velXY + navLoiterRadius * turnStartFactor)) {
310 if (navConfig()->fw.wp_turn_smoothing == WP_TURN_SMOOTHING_ON) {
311 int32_t loiterCenterBearing = wrap_36000(((wrap_18000(posControl.activeWaypoint.nextTurnAngle - 18000)) / 2) + posControl.activeWaypoint.yaw + 18000);
312 loiterCenterPos.x = posControl.activeWaypoint.pos.x + navLoiterRadius * cos_approx(CENTIDEGREES_TO_RADIANS(loiterCenterBearing));
313 loiterCenterPos.y = posControl.activeWaypoint.pos.y + navLoiterRadius * sin_approx(CENTIDEGREES_TO_RADIANS(loiterCenterBearing));
315 posErrorX = loiterCenterPos.x - navGetCurrentActualPositionAndVelocity()->pos.x;
316 posErrorY = loiterCenterPos.y - navGetCurrentActualPositionAndVelocity()->pos.y;
318 // turn direction to next waypoint
319 loiterTurnDirection = posControl.activeWaypoint.nextTurnAngle > 0 ? 1 : -1; // 1 = right
321 needToCalculateCircularLoiter = true;
323 posControl.flags.wpTurnSmoothingActive = true;
327 // We are closing in on a waypoint, calculate circular loiter if required
328 if (needToCalculateCircularLoiter) {
329 float loiterAngle = atan2_approx(-posErrorY, -posErrorX) + DEGREES_TO_RADIANS(loiterTurnDirection * 45.0f);
330 float loiterTargetX = loiterCenterPos.x + navLoiterRadius * cos_approx(loiterAngle);
331 float loiterTargetY = loiterCenterPos.y + navLoiterRadius * sin_approx(loiterAngle);
333 // We have temporary loiter target. Recalculate distance and position error
334 posErrorX = loiterTargetX - navGetCurrentActualPositionAndVelocity()->pos.x;
335 posErrorY = loiterTargetY - navGetCurrentActualPositionAndVelocity()->pos.y;
336 distanceToActualTarget = calc_length_pythagorean_2D(posErrorX, posErrorY);
339 // Calculate virtual waypoint
340 virtualDesiredPosition.x = navGetCurrentActualPositionAndVelocity()->pos.x + posErrorX * (trackingDistance / distanceToActualTarget);
341 virtualDesiredPosition.y = navGetCurrentActualPositionAndVelocity()->pos.y + posErrorY * (trackingDistance / distanceToActualTarget);
343 // Shift position according to pilot's ROLL input (up to max_manual_speed velocity)
344 if (posControl.flags.isAdjustingPosition) {
345 int16_t rcRollAdjustment = applyDeadbandRescaled(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband, -500, 500);
347 if (rcRollAdjustment) {
348 float rcShiftY = rcRollAdjustment * navConfig()->general.max_manual_speed / 500.0f * trackingPeriod;
350 // Rotate this target shift from body frame to to earth frame and apply to position target
351 virtualDesiredPosition.x += -rcShiftY * posControl.actualState.sinYaw;
352 virtualDesiredPosition.y += rcShiftY * posControl.actualState.cosYaw;
357 bool adjustFixedWingPositionFromRCInput(void)
359 int16_t rcRollAdjustment = applyDeadbandRescaled(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband, -500, 500);
360 return (rcRollAdjustment);
363 float processHeadingYawController(timeDelta_t deltaMicros, int32_t navHeadingError, bool errorIsDecreasing) {
364 static float limit = 0.0f;
366 if (limit == 0.0f) {
367 limit = pidProfile()->navFwPosHdgPidsumLimit * 100.0f;
370 const pidControllerFlags_e yawPidFlags = errorIsDecreasing ? PID_SHRINK_INTEGRATOR : 0;
372 const float yawAdjustment = navPidApply2(
373 &posControl.pids.fw_heading,
375 applyDeadband(navHeadingError, navConfig()->fw.yawControlDeadband * 100),
376 US2S(deltaMicros),
377 -limit,
378 limit,
379 yawPidFlags
380 ) * 0.01f;
382 DEBUG_SET(DEBUG_NAV_YAW, 0, posControl.pids.fw_heading.proportional);
383 DEBUG_SET(DEBUG_NAV_YAW, 1, posControl.pids.fw_heading.integral);
384 DEBUG_SET(DEBUG_NAV_YAW, 2, posControl.pids.fw_heading.derivative);
385 DEBUG_SET(DEBUG_NAV_YAW, 3, navHeadingError);
386 DEBUG_SET(DEBUG_NAV_YAW, 4, posControl.pids.fw_heading.output_constrained);
388 return yawAdjustment;
391 static void updatePositionHeadingController_FW(timeUs_t currentTimeUs, timeDelta_t deltaMicros)
393 static timeUs_t previousTimeMonitoringUpdate;
394 static int32_t previousHeadingError;
395 static bool errorIsDecreasing;
396 static bool forceTurnDirection = false;
398 if (FLIGHT_MODE(NAV_COURSE_HOLD_MODE)) {
399 virtualTargetBearing = posControl.desiredState.yaw;
400 } else {
401 // We have virtual position target, calculate heading error
402 int32_t virtualTargetBearing = calculateBearingToDestination(&virtualDesiredPosition);
405 /* If waypoint tracking enabled quickly force craft toward waypoint course line and closely track along it */
406 if (navConfig()->fw.wp_tracking_accuracy && isWaypointNavTrackingActive() && !needToCalculateCircularLoiter) {
407 // courseVirtualCorrection initially used to determine current position relative to course line for later use
408 int32_t courseVirtualCorrection = wrap_18000(posControl.activeWaypoint.yaw - virtualTargetBearing);
409 float distToCourseLine = ABS(posControl.wpDistance * sin_approx(CENTIDEGREES_TO_RADIANS(courseVirtualCorrection)));
411 // tracking only active when certain distance and heading conditions are met
412 if ((ABS(wrap_18000(virtualTargetBearing - posControl.actualState.yaw)) < 9000 || posControl.wpDistance < 1000.0f) && distToCourseLine > 200) {
413 int32_t courseHeadingError = wrap_18000(posControl.activeWaypoint.yaw - posControl.actualState.yaw);
415 // captureFactor adjusts distance/heading sensitivity balance when closing in on course line.
416 // Closing distance threashold based on speed and an assumed 1 second response time.
417 float captureFactor = distToCourseLine < posControl.actualState.velXY ? constrainf(2.0f - ABS(courseHeadingError) / 500.0f, 0.0f, 2.0f) : 1.0f;
419 // bias between reducing distance to course line and aligning with course heading adjusted by waypoint_tracking_accuracy
420 // initial courseCorrectionFactor based on distance to course line
421 float courseCorrectionFactor = constrainf(captureFactor * distToCourseLine / (1000.0f * navConfig()->fw.wp_tracking_accuracy), 0.0f, 1.0f);
422 courseCorrectionFactor = courseVirtualCorrection < 0 ? -courseCorrectionFactor : courseCorrectionFactor;
424 // course heading alignment factor
425 float courseHeadingFactor = constrainf(courseHeadingError / 18000.0f, 0.0f, 1.0f);
426 courseHeadingFactor = courseHeadingError < 0 ? -courseHeadingFactor : courseHeadingFactor;
428 // final courseCorrectionFactor combining distance and heading factors
429 courseCorrectionFactor = constrainf(courseCorrectionFactor - courseHeadingFactor, -1.0f, 1.0f);
431 // final courseVirtualCorrection value
432 courseVirtualCorrection = DEGREES_TO_CENTIDEGREES(navConfig()->fw.wp_tracking_max_angle) * courseCorrectionFactor;
433 virtualTargetBearing = wrap_36000(posControl.activeWaypoint.yaw - courseVirtualCorrection);
438 * Calculate NAV heading error
439 * Units are centidegrees
441 navHeadingError = wrap_18000(virtualTargetBearing - posControl.actualState.yaw);
443 // Forced turn direction
444 // If heading error is close to 180 deg we initiate forced turn and only disable it when heading error goes below 90 deg
445 if (ABS(navHeadingError) > 17000) {
446 forceTurnDirection = true;
448 else if (ABS(navHeadingError) < 9000 && forceTurnDirection) {
449 forceTurnDirection = false;
452 // If forced turn direction flag is enabled we fix the sign of the direction
453 if (forceTurnDirection) {
454 navHeadingError = loiterDirection() * ABS(navHeadingError);
457 // Slow error monitoring (2Hz rate)
458 if ((currentTimeUs - previousTimeMonitoringUpdate) >= HZ2US(NAV_FW_CONTROL_MONITORING_RATE)) {
459 // Check if error is decreasing over time
460 errorIsDecreasing = (ABS(previousHeadingError) > ABS(navHeadingError));
462 // Save values for next iteration
463 previousHeadingError = navHeadingError;
464 previousTimeMonitoringUpdate = currentTimeUs;
467 // Only allow PID integrator to shrink if error is decreasing over time
468 const pidControllerFlags_e pidFlags = PID_DTERM_FROM_ERROR | (errorIsDecreasing ? PID_SHRINK_INTEGRATOR : 0);
470 // Input error in (deg*100), output roll angle (deg*100)
471 float rollAdjustment = navPidApply2(&posControl.pids.fw_nav, posControl.actualState.yaw + navHeadingError, posControl.actualState.yaw, US2S(deltaMicros),
472 -DEGREES_TO_CENTIDEGREES(navConfig()->fw.max_bank_angle),
473 DEGREES_TO_CENTIDEGREES(navConfig()->fw.max_bank_angle),
474 pidFlags);
476 // Apply low-pass filter to prevent rapid correction
477 rollAdjustment = pt1FilterApply4(&fwPosControllerCorrectionFilterState, rollAdjustment, getSmoothnessCutoffFreq(NAV_FW_BASE_ROLL_CUTOFF_FREQUENCY_HZ), US2S(deltaMicros));
479 // Convert rollAdjustment to decidegrees (rcAdjustment holds decidegrees)
480 posControl.rcAdjustment[ROLL] = CENTIDEGREES_TO_DECIDEGREES(rollAdjustment);
483 * Yaw adjustment
484 * It is working in relative mode and we aim to keep error at zero
486 if (STATE(FW_HEADING_USE_YAW)) {
487 posControl.rcAdjustment[YAW] = processHeadingYawController(deltaMicros, navHeadingError, errorIsDecreasing);
488 } else {
489 posControl.rcAdjustment[YAW] = 0;
493 void applyFixedWingPositionController(timeUs_t currentTimeUs)
495 static timeUs_t previousTimePositionUpdate = 0; // Occurs @ GPS update rate
497 // Apply controller only if position source is valid. In absence of valid pos sensor (GPS loss), we'd stick in forced ANGLE mode
498 if ((posControl.flags.estPosStatus >= EST_USABLE)) {
499 // If we have new position - update velocity and acceleration controllers
500 if (posControl.flags.horizontalPositionDataNew) {
501 const timeDeltaLarge_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
502 previousTimePositionUpdate = currentTimeUs;
504 if (deltaMicrosPositionUpdate < MAX_POSITION_UPDATE_INTERVAL_US) {
505 // Calculate virtual position target at a distance of forwardVelocity * HZ2S(POSITION_TARGET_UPDATE_RATE_HZ)
506 // Account for pilot's roll input (move position target left/right at max of max_manual_speed)
507 // POSITION_TARGET_UPDATE_RATE_HZ should be chosen keeping in mind that position target shouldn't be reached until next pos update occurs
508 // FIXME: verify the above
509 calculateVirtualPositionTarget_FW(HZ2S(MIN_POSITION_UPDATE_RATE_HZ) * 2);
511 updatePositionHeadingController_FW(currentTimeUs, deltaMicrosPositionUpdate);
513 else {
514 // Position update has not occurred in time (first iteration or glitch), reset altitude controller
515 resetFixedWingPositionController();
518 // Indicate that information is no longer usable
519 posControl.flags.horizontalPositionDataConsumed = true;
522 isRollAdjustmentValid = true;
523 isYawAdjustmentValid = true;
525 else {
526 // No valid pos sensor data, don't adjust pitch automatically, rcCommand[ROLL] is passed through to PID controller
527 isRollAdjustmentValid = false;
528 isYawAdjustmentValid = false;
532 int16_t applyFixedWingMinSpeedController(timeUs_t currentTimeUs)
534 static timeUs_t previousTimePositionUpdate = 0; // Occurs @ GPS update rate
536 // Apply controller only if position source is valid
537 if ((posControl.flags.estPosStatus >= EST_USABLE)) {
538 // If we have new position - update velocity and acceleration controllers
539 if (posControl.flags.horizontalPositionDataNew) {
540 const timeDeltaLarge_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
541 previousTimePositionUpdate = currentTimeUs;
543 if (deltaMicrosPositionUpdate < MAX_POSITION_UPDATE_INTERVAL_US) {
544 float velThrottleBoost = (NAV_FW_MIN_VEL_SPEED_BOOST - posControl.actualState.velXY) * NAV_FW_THROTTLE_SPEED_BOOST_GAIN * US2S(deltaMicrosPositionUpdate);
546 // If we are in the deadband of 50cm/s - don't update speed boost
547 if (fabsf(posControl.actualState.velXY - NAV_FW_MIN_VEL_SPEED_BOOST) > 50) {
548 throttleSpeedAdjustment += velThrottleBoost;
551 throttleSpeedAdjustment = constrainf(throttleSpeedAdjustment, 0.0f, 500.0f);
553 else {
554 // Position update has not occurred in time (first iteration or glitch), reset altitude controller
555 throttleSpeedAdjustment = 0;
558 // Indicate that information is no longer usable
559 posControl.flags.horizontalPositionDataConsumed = true;
562 else {
563 // No valid pos sensor data, we can't calculate speed
564 throttleSpeedAdjustment = 0;
567 return throttleSpeedAdjustment;
570 int16_t fixedWingPitchToThrottleCorrection(int16_t pitch, timeUs_t currentTimeUs)
572 static timeUs_t previousTimePitchToThrCorr = 0;
573 const timeDeltaLarge_t deltaMicrosPitchToThrCorr = currentTimeUs - previousTimePitchToThrCorr;
574 previousTimePitchToThrCorr = currentTimeUs;
576 static pt1Filter_t pitchToThrFilterState;
578 // Apply low-pass filter to pitch angle to smooth throttle correction
579 int16_t filteredPitch = (int16_t)pt1FilterApply4(&pitchToThrFilterState, pitch, getPitchToThrottleSmoothnessCutoffFreq(NAV_FW_BASE_PITCH_CUTOFF_FREQUENCY_HZ), US2S(deltaMicrosPitchToThrCorr));
581 if (ABS(pitch - filteredPitch) > navConfig()->fw.pitch_to_throttle_thresh) {
582 // Unfiltered throttle correction outside of pitch deadband
583 return DECIDEGREES_TO_DEGREES(pitch) * currentBatteryProfile->nav.fw.pitch_to_throttle;
585 else {
586 // Filtered throttle correction inside of pitch deadband
587 return DECIDEGREES_TO_DEGREES(filteredPitch) * currentBatteryProfile->nav.fw.pitch_to_throttle;
591 void applyFixedWingPitchRollThrottleController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
593 int16_t minThrottleCorrection = currentBatteryProfile->nav.fw.min_throttle - currentBatteryProfile->nav.fw.cruise_throttle;
594 int16_t maxThrottleCorrection = currentBatteryProfile->nav.fw.max_throttle - currentBatteryProfile->nav.fw.cruise_throttle;
596 if (isRollAdjustmentValid && (navStateFlags & NAV_CTL_POS)) {
597 // ROLL >0 right, <0 left
598 int16_t rollCorrection = constrain(posControl.rcAdjustment[ROLL], -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_bank_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_bank_angle));
599 rcCommand[ROLL] = pidAngleToRcCommand(rollCorrection, pidProfile()->max_angle_inclination[FD_ROLL]);
602 if (isYawAdjustmentValid && (navStateFlags & NAV_CTL_POS)) {
603 rcCommand[YAW] = posControl.rcAdjustment[YAW];
606 if (isPitchAdjustmentValid && (navStateFlags & NAV_CTL_ALT)) {
607 // PITCH >0 dive, <0 climb
608 int16_t pitchCorrection = constrain(posControl.rcAdjustment[PITCH], -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle));
609 rcCommand[PITCH] = -pidAngleToRcCommand(pitchCorrection, pidProfile()->max_angle_inclination[FD_PITCH]);
610 int16_t throttleCorrection = fixedWingPitchToThrottleCorrection(pitchCorrection, currentTimeUs);
612 #ifdef NAV_FIXED_WING_LANDING
613 if (navStateFlags & NAV_CTL_LAND) {
614 // During LAND we do not allow to raise THROTTLE when nose is up to reduce speed
615 throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, 0);
616 } else {
617 #endif
618 throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, maxThrottleCorrection);
619 #ifdef NAV_FIXED_WING_LANDING
621 #endif
623 // Speed controller - only apply in POS mode when NOT NAV_CTL_LAND
624 if ((navStateFlags & NAV_CTL_POS) && !(navStateFlags & NAV_CTL_LAND)) {
625 throttleCorrection += applyFixedWingMinSpeedController(currentTimeUs);
626 throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, maxThrottleCorrection);
629 uint16_t correctedThrottleValue = constrain(currentBatteryProfile->nav.fw.cruise_throttle + throttleCorrection, currentBatteryProfile->nav.fw.min_throttle, currentBatteryProfile->nav.fw.max_throttle);
631 // Manual throttle increase
632 if (navConfig()->fw.allow_manual_thr_increase && !FLIGHT_MODE(FAILSAFE_MODE)) {
633 if (rcCommand[THROTTLE] < PWM_RANGE_MIN + (PWM_RANGE_MAX - PWM_RANGE_MIN) * 0.95){
634 correctedThrottleValue += MAX(0, rcCommand[THROTTLE] - currentBatteryProfile->nav.fw.cruise_throttle);
635 } else {
636 correctedThrottleValue = motorConfig()->maxthrottle;
638 isAutoThrottleManuallyIncreased = (rcCommand[THROTTLE] > currentBatteryProfile->nav.fw.cruise_throttle);
639 } else {
640 isAutoThrottleManuallyIncreased = false;
643 rcCommand[THROTTLE] = constrain(correctedThrottleValue, getThrottleIdleValue(), motorConfig()->maxthrottle);
646 #ifdef NAV_FIXED_WING_LANDING
648 * Then altitude is below landing slowdown min. altitude, enable final approach procedure
649 * TODO refactor conditions in this metod if logic is proven to be correct
651 if (navStateFlags & NAV_CTL_LAND || STATE(LANDING_DETECTED)) {
652 int32_t finalAltitude = navConfig()->general.land_slowdown_minalt + posControl.rthState.homeTmpWaypoint.z;
654 if ((posControl.flags.estAltStatus >= EST_USABLE && navGetCurrentActualPositionAndVelocity()->pos.z <= finalAltitude) ||
655 (posControl.flags.estAglStatus == EST_TRUSTED && posControl.actualState.agl.pos.z <= navConfig()->general.land_slowdown_minalt)) {
657 // Set motor to min. throttle and stop it when MOTOR_STOP feature is enabled
658 rcCommand[THROTTLE] = getThrottleIdleValue();
659 ENABLE_STATE(NAV_MOTOR_STOP_OR_IDLE);
661 // Stabilize ROLL axis on 0 degrees banking regardless of loiter radius and position
662 rcCommand[ROLL] = 0;
664 // Stabilize PITCH angle into shallow dive as specified by the nav_fw_land_dive_angle setting (default value is 2 - defined in navigation.c).
665 rcCommand[PITCH] = pidAngleToRcCommand(DEGREES_TO_DECIDEGREES(navConfig()->fw.land_dive_angle), pidProfile()->max_angle_inclination[FD_PITCH]);
668 #endif
671 bool isFixedWingAutoThrottleManuallyIncreased()
673 return isAutoThrottleManuallyIncreased;
676 bool isFixedWingFlying(void)
678 float airspeed = 0.0f;
679 #ifdef USE_PITOT
680 airspeed = getAirspeedEstimate();
681 #endif
682 bool throttleCondition = getMotorCount() == 0 || rcCommand[THROTTLE] > currentBatteryProfile->nav.fw.cruise_throttle;
683 bool velCondition = posControl.actualState.velXY > 250.0f || airspeed > 250.0f;
684 bool launchCondition = isNavLaunchEnabled() && fixedWingLaunchStatus() == FW_LAUNCH_FLYING;
686 return (isImuHeadingValid() && throttleCondition && velCondition) || launchCondition;
689 /*-----------------------------------------------------------
690 * FixedWing land detector
691 *-----------------------------------------------------------*/
692 bool isFixedWingLandingDetected(void)
694 DEBUG_SET(DEBUG_LANDING, 4, 0);
695 static bool fixAxisCheck = false;
696 const bool throttleIsLow = calculateThrottleStatus(THROTTLE_STATUS_TYPE_RC) == THROTTLE_LOW;
698 // Basic condition to start looking for landing
699 bool startCondition = (navGetCurrentStateFlags() & (NAV_CTL_LAND | NAV_CTL_EMERG))
700 || FLIGHT_MODE(FAILSAFE_MODE)
701 || (!navigationIsControllingThrottle() && throttleIsLow);
703 if (!startCondition || posControl.flags.resetLandingDetector) {
704 return fixAxisCheck = posControl.flags.resetLandingDetector = false;
706 DEBUG_SET(DEBUG_LANDING, 4, 1);
708 static timeMs_t fwLandingTimerStartAt;
709 static int16_t fwLandSetRollDatum;
710 static int16_t fwLandSetPitchDatum;
711 const float sensitivity = navConfig()->general.land_detect_sensitivity / 5.0f;
713 timeMs_t currentTimeMs = millis();
715 // Check horizontal and vertical velocities are low (cm/s)
716 bool velCondition = fabsf(navGetCurrentActualPositionAndVelocity()->vel.z) < (50.0f * sensitivity) &&
717 posControl.actualState.velXY < (100.0f * sensitivity);
718 // Check angular rates are low (degs/s)
719 bool gyroCondition = averageAbsGyroRates() < (2.0f * sensitivity);
720 DEBUG_SET(DEBUG_LANDING, 2, velCondition);
721 DEBUG_SET(DEBUG_LANDING, 3, gyroCondition);
723 if (velCondition && gyroCondition){
724 DEBUG_SET(DEBUG_LANDING, 4, 2);
725 DEBUG_SET(DEBUG_LANDING, 5, fixAxisCheck);
726 if (!fixAxisCheck) { // capture roll and pitch angles to be used as datums to check for absolute change
727 fwLandSetRollDatum = attitude.values.roll; //0.1 deg increments
728 fwLandSetPitchDatum = attitude.values.pitch;
729 fixAxisCheck = true;
730 fwLandingTimerStartAt = currentTimeMs;
731 } else {
732 const uint8_t angleLimit = 5 * sensitivity;
733 bool isRollAxisStatic = ABS(fwLandSetRollDatum - attitude.values.roll) < angleLimit;
734 bool isPitchAxisStatic = ABS(fwLandSetPitchDatum - attitude.values.pitch) < angleLimit;
735 DEBUG_SET(DEBUG_LANDING, 6, isRollAxisStatic);
736 DEBUG_SET(DEBUG_LANDING, 7, isPitchAxisStatic);
737 if (isRollAxisStatic && isPitchAxisStatic) {
738 // Probably landed, low horizontal and vertical velocities and no axis rotation in Roll and Pitch
739 timeMs_t safetyTimeDelay = 2000 + navConfig()->general.auto_disarm_delay;
740 return currentTimeMs - fwLandingTimerStartAt > safetyTimeDelay; // check conditions stable for 2s + optional extra delay
741 } else {
742 fixAxisCheck = false;
746 return false;
749 /*-----------------------------------------------------------
750 * FixedWing emergency landing
751 *-----------------------------------------------------------*/
752 void applyFixedWingEmergencyLandingController(timeUs_t currentTimeUs)
754 rcCommand[ROLL] = pidAngleToRcCommand(failsafeConfig()->failsafe_fw_roll_angle, pidProfile()->max_angle_inclination[FD_ROLL]);
755 rcCommand[YAW] = -pidRateToRcCommand(failsafeConfig()->failsafe_fw_yaw_rate, currentControlRateProfile->stabilized.rates[FD_YAW]);
756 rcCommand[THROTTLE] = currentBatteryProfile->failsafe_throttle;
758 if (posControl.flags.estAltStatus >= EST_USABLE) {
759 updateClimbRateToAltitudeController(-1.0f * navConfig()->general.emerg_descent_rate, ROC_TO_ALT_NORMAL);
760 applyFixedWingAltitudeAndThrottleController(currentTimeUs);
762 int16_t pitchCorrection = constrain(posControl.rcAdjustment[PITCH], -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle));
763 rcCommand[PITCH] = -pidAngleToRcCommand(pitchCorrection, pidProfile()->max_angle_inclination[FD_PITCH]);
764 } else {
765 rcCommand[PITCH] = pidAngleToRcCommand(failsafeConfig()->failsafe_fw_pitch_angle, pidProfile()->max_angle_inclination[FD_PITCH]);
769 /*-----------------------------------------------------------
770 * Calculate loiter target based on current position and velocity
771 *-----------------------------------------------------------*/
772 void calculateFixedWingInitialHoldPosition(fpVector3_t * pos)
774 // TODO: stub, this should account for velocity and target loiter radius
775 *pos = navGetCurrentActualPositionAndVelocity()->pos;
778 void resetFixedWingHeadingController(void)
780 updateHeadingHoldTarget(CENTIDEGREES_TO_DEGREES(posControl.actualState.yaw));
783 void applyFixedWingNavigationController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
785 if (navStateFlags & NAV_CTL_LAUNCH) {
786 applyFixedWingLaunchController(currentTimeUs);
788 else if (navStateFlags & NAV_CTL_EMERG) {
789 applyFixedWingEmergencyLandingController(currentTimeUs);
791 else {
792 #ifdef NAV_FW_LIMIT_MIN_FLY_VELOCITY
793 // Don't apply anything if ground speed is too low (<3m/s)
794 if (posControl.actualState.velXY > 300) {
795 #else
796 if (true) {
797 #endif
798 if (navStateFlags & NAV_CTL_ALT) {
799 if (getMotorStatus() == MOTOR_STOPPED_USER || FLIGHT_MODE(SOARING_MODE)) {
800 // Motor has been stopped by user or soaring mode enabled to override altitude control
801 resetFixedWingAltitudeController();
802 setDesiredPosition(&navGetCurrentActualPositionAndVelocity()->pos, posControl.actualState.yaw, NAV_POS_UPDATE_Z);
803 } else {
804 applyFixedWingAltitudeAndThrottleController(currentTimeUs);
808 if (navStateFlags & NAV_CTL_POS) {
809 applyFixedWingPositionController(currentTimeUs);
812 } else {
813 posControl.rcAdjustment[PITCH] = 0;
814 posControl.rcAdjustment[ROLL] = 0;
817 if (FLIGHT_MODE(NAV_COURSE_HOLD_MODE) && posControl.flags.isAdjustingPosition) {
818 rcCommand[ROLL] = applyDeadbandRescaled(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband, -500, 500);
821 //if (navStateFlags & NAV_CTL_YAW)
822 if ((navStateFlags & NAV_CTL_ALT) || (navStateFlags & NAV_CTL_POS)) {
823 applyFixedWingPitchRollThrottleController(navStateFlags, currentTimeUs);
826 if (FLIGHT_MODE(SOARING_MODE) && navConfig()->general.flags.soaring_motor_stop) {
827 ENABLE_STATE(NAV_MOTOR_STOP_OR_IDLE);
832 int32_t navigationGetHeadingError(void)
834 return navHeadingError;