[FLYWOOF411] add board documentation
[inav/snaewe.git] / src / main / rx / nrf24_h8_3d.c
blob3547ab5acf9d72fdc9527b6550c5903fd92774be
1 /*
2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
18 // This file borrows heavily from project Deviation,
19 // see http://deviationtx.com
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
25 #include <platform.h>
27 #ifdef USE_RX_H8_3D
29 #include "build/build_config.h"
31 #include "common/utils.h"
33 #include "drivers/rx_nrf24l01.h"
34 #include "drivers/rx_xn297.h"
35 #include "drivers/time.h"
37 #include "rx/rx.h"
38 #include "rx/rx_spi.h"
39 #include "rx/nrf24_h8_3d.h"
43 * Deviation transmitter sends 345 bind packets, then starts sending data packets.
44 * Packets are send at rate of at least one every 4 milliseconds, ie at least 250Hz.
45 * This means binding phase lasts 1.4 seconds, the transmitter then enters the data phase.
46 * Other transmitters may vary but should have similar characteristics.
51 * H8_3D Protocol
52 * No auto acknowledgment
53 * Payload size is 20, static
54 * Data rate is 1Mbps
55 * Bind Phase
56 * uses address {0xab,0xac,0xad,0xae,0xaf}, converted by XN297 to {0x41, 0xbd, 0x42, 0xd4, 0xc2}
57 * hops between 4 channels
58 * Data Phase
59 * uses same address as bind phase
60 * hops between 4 channels generated from txId received in bind packets
63 #define RC_CHANNEL_COUNT 14
65 #define FLAG_FLIP 0x01
66 #define FLAG_RATE_MID 0x02
67 #define FLAG_RATE_HIGH 0x04
68 #define FLAG_HEADLESS 0x10 // RTH + headless on H8, headless on JJRC H20
69 #define FLAG_RTH 0x20 // 360° flip mode on H8 3D, RTH on JJRC H20
70 #define FLAG_PICTURE 0x40 // on payload[18]
71 #define FLAG_VIDEO 0x80 // on payload[18]
72 #define FLAG_CAMERA_UP 0x04 // on payload[18]
73 #define FLAG_CAMERA_DOWN 0x08 // on payload[18]
75 typedef enum {
76 STATE_BIND = 0,
77 STATE_DATA
78 } protocol_state_t;
80 STATIC_UNIT_TESTED protocol_state_t protocolState;
82 #define H8_3D_PROTOCOL_PAYLOAD_SIZE 20
83 STATIC_UNIT_TESTED uint8_t payloadSize;
85 #define CRC_LEN 2
86 #define RX_TX_ADDR_LEN 5
87 STATIC_UNIT_TESTED uint8_t rxTxAddrXN297[RX_TX_ADDR_LEN] = {0x41, 0xbd, 0x42, 0xd4, 0xc2}; // converted XN297 address
88 #define TX_ID_LEN 4
89 STATIC_UNIT_TESTED uint8_t txId[TX_ID_LEN];
90 static uint32_t *rxSpiIdPtr;
92 // radio channels for frequency hopping
93 #define H8_3D_RF_CHANNEL_COUNT 4
94 STATIC_UNIT_TESTED uint8_t h8_3dRfChannelCount = H8_3D_RF_CHANNEL_COUNT;
95 STATIC_UNIT_TESTED uint8_t h8_3dRfChannelIndex;
96 STATIC_UNIT_TESTED uint8_t h8_3dRfChannels[H8_3D_RF_CHANNEL_COUNT];
97 // hop between these channels in the bind phase
98 #define H8_3D_RF_BIND_CHANNEL_START 0x06
99 #define H8_3D_RF_BIND_CHANNEL_END 0x26
101 #define DATA_HOP_TIMEOUT 5000 // 5ms
102 #define BIND_HOP_TIMEOUT 1000 // 1ms, to find the bind channel as quickly as possible
103 static timeUs_t hopTimeout = BIND_HOP_TIMEOUT;
104 static timeUs_t timeOfLastHop;
106 STATIC_UNIT_TESTED bool h8_3dCheckBindPacket(const uint8_t *payload)
108 bool bindPacket = false;
109 if ((payload[5] == 0x00) && (payload[6] == 0x00) && (payload[7] == 0x01)) {
110 const uint32_t checkSumTxId = (payload[1] + payload[2] + payload[3] + payload[4]) & 0xff;
111 if (checkSumTxId == payload[8]) {
112 bindPacket = true;
113 txId[0] = payload[1];
114 txId[1] = payload[2];
115 txId[2] = payload[3];
116 txId[3] = payload[4];
117 if (rxSpiIdPtr != NULL && *rxSpiIdPtr == 0) {
118 // copy the txId so it can be saved
119 memcpy(rxSpiIdPtr, txId, sizeof(uint32_t));
123 return bindPacket;
126 STATIC_UNIT_TESTED uint16_t h8_3dConvertToPwm(uint8_t val, int16_t _min, int16_t _max)
128 #define PWM_RANGE (PWM_RANGE_MAX - PWM_RANGE_MIN)
130 int32_t ret = val;
131 const int32_t range = _max - _min;
132 ret = PWM_RANGE_MIN + ((ret - _min) * PWM_RANGE)/range;
133 return (uint16_t)ret;
136 void h8_3dNrf24SetRcDataFromPayload(uint16_t *rcData, const uint8_t *payload)
138 rcData[RC_SPI_ROLL] = h8_3dConvertToPwm(payload[12], 0xbb, 0x43); // aileron
139 rcData[RC_SPI_PITCH] = h8_3dConvertToPwm(payload[11], 0x43, 0xbb); // elevator
140 rcData[RC_SPI_THROTTLE] = h8_3dConvertToPwm(payload[9], 0, 0xff); // throttle
141 const int8_t yawByte = payload[10]; // rudder
142 rcData[RC_SPI_YAW] = yawByte >= 0 ? h8_3dConvertToPwm(yawByte, -0x3c, 0x3c) : h8_3dConvertToPwm(yawByte, 0xbc, 0x44);
144 const uint8_t flags = payload[17];
145 const uint8_t flags2 = payload[18];
146 if (flags & FLAG_RATE_HIGH) {
147 rcData[RC_CHANNEL_RATE] = PWM_RANGE_MAX;
148 } else if (flags & FLAG_RATE_MID) {
149 rcData[RC_CHANNEL_RATE] = PWM_RANGE_MIDDLE;
150 } else {
151 rcData[RC_CHANNEL_RATE] = PWM_RANGE_MIN;
154 rcData[RC_CHANNEL_FLIP] = flags & FLAG_FLIP ? PWM_RANGE_MAX : PWM_RANGE_MIN;
155 rcData[RC_CHANNEL_PICTURE] = flags2 & FLAG_PICTURE ? PWM_RANGE_MAX : PWM_RANGE_MIN;
156 rcData[RC_CHANNEL_VIDEO] = flags2 & FLAG_VIDEO ? PWM_RANGE_MAX : PWM_RANGE_MIN;
157 rcData[RC_CHANNEL_HEADLESS] = flags & FLAG_HEADLESS ? PWM_RANGE_MAX : PWM_RANGE_MIN;
158 rcData[RC_CHANNEL_RTH] = flags & FLAG_RTH ? PWM_RANGE_MAX : PWM_RANGE_MIN;
160 if (flags2 & FLAG_CAMERA_UP) {
161 rcData[RC_SPI_AUX7] = PWM_RANGE_MAX;
162 } else if (flags2 & FLAG_CAMERA_DOWN) {
163 rcData[RC_SPI_AUX7] = PWM_RANGE_MIN;
164 } else {
165 rcData[RC_SPI_AUX7] = PWM_RANGE_MIDDLE;
167 rcData[RC_SPI_AUX8] = h8_3dConvertToPwm(payload[14], 0x10, 0x30);
168 rcData[RC_SPI_AUX9] = h8_3dConvertToPwm(payload[15], 0x30, 0x10);
169 rcData[RC_SPI_AUX10] = h8_3dConvertToPwm(payload[16], 0x10, 0x30);
172 static void h8_3dHopToNextChannel(void)
174 ++h8_3dRfChannelIndex;
175 if (protocolState == STATE_BIND) {
176 if (h8_3dRfChannelIndex > H8_3D_RF_BIND_CHANNEL_END) {
177 h8_3dRfChannelIndex = H8_3D_RF_BIND_CHANNEL_START;
179 NRF24L01_SetChannel(h8_3dRfChannelIndex);
180 } else {
181 if (h8_3dRfChannelIndex >= h8_3dRfChannelCount) {
182 h8_3dRfChannelIndex = 0;
184 NRF24L01_SetChannel(h8_3dRfChannels[h8_3dRfChannelIndex]);
188 // The hopping channels are determined by the txId
189 static void h8_3dSetHoppingChannels(const uint8_t *txId)
191 for (int ii = 0; ii < H8_3D_RF_CHANNEL_COUNT; ++ii) {
192 h8_3dRfChannels[ii] = 0x06 + (0x0f * ii) + ((txId[ii] >> 4) + (txId[ii] & 0x0f)) % 0x0f;
196 static void h8_3dSetBound(const uint8_t *txId)
198 protocolState = STATE_DATA;
199 h8_3dSetHoppingChannels(txId);
200 hopTimeout = DATA_HOP_TIMEOUT;
201 timeOfLastHop = micros();
202 h8_3dRfChannelIndex = 0;
203 NRF24L01_SetChannel(h8_3dRfChannels[0]);
206 static bool h8_3dCrcOK(uint16_t crc, const uint8_t *payload)
208 if (payload[payloadSize] != (crc >> 8)) {
209 return false;
211 if (payload[payloadSize + 1] != (crc & 0xff)) {
212 return false;
214 return true;
218 * This is called periodically by the scheduler.
219 * Returns NRF24L01_RECEIVED_DATA if a data packet was received.
221 rx_spi_received_e h8_3dNrf24DataReceived(uint8_t *payload, uint16_t *linkQuality)
223 rx_spi_received_e ret = RX_SPI_RECEIVED_NONE;
224 bool payloadReceived = false;
225 if (NRF24L01_ReadPayloadIfAvailable(payload, payloadSize + CRC_LEN)) {
226 const uint16_t crc = XN297_UnscramblePayload(payload, payloadSize, rxTxAddrXN297);
227 if (h8_3dCrcOK(crc, payload)) {
228 payloadReceived = true;
231 switch (protocolState) {
232 case STATE_BIND:
233 if (payloadReceived) {
234 const bool bindPacket = h8_3dCheckBindPacket(payload);
235 if (bindPacket) {
236 ret = RX_SPI_RECEIVED_BIND;
237 h8_3dSetBound(txId);
240 break;
241 case STATE_DATA:
242 if (payloadReceived) {
243 ret = RX_SPI_RECEIVED_DATA;
245 break;
247 const timeUs_t timeNowUs = micros();
248 if ((ret == RX_SPI_RECEIVED_DATA) || (timeNowUs > timeOfLastHop + hopTimeout)) {
249 h8_3dHopToNextChannel();
250 timeOfLastHop = timeNowUs;
252 return ret;
255 static void h8_3dNrf24Setup(rx_spi_protocol_e protocol, const uint32_t *rxSpiId)
257 UNUSED(protocol);
258 protocolState = STATE_BIND;
260 NRF24L01_Initialize(0); // sets PWR_UP, no CRC - hardware CRC not used for XN297
261 NRF24L01_SetupBasic();
263 NRF24L01_WriteReg(NRF24L01_06_RF_SETUP, NRF24L01_06_RF_SETUP_RF_DR_1Mbps | NRF24L01_06_RF_SETUP_RF_PWR_n12dbm);
264 // RX_ADDR for pipes P1-P5 are left at default values
265 NRF24L01_WriteRegisterMulti(NRF24L01_0A_RX_ADDR_P0, rxTxAddrXN297, RX_TX_ADDR_LEN);
266 rxSpiIdPtr = (uint32_t*)rxSpiId;
267 if (rxSpiId == NULL || *rxSpiId == 0) {
268 h8_3dRfChannelIndex = H8_3D_RF_BIND_CHANNEL_START;
269 NRF24L01_SetChannel(H8_3D_RF_BIND_CHANNEL_START);
270 } else {
271 h8_3dSetBound((uint8_t*)rxSpiId);
274 payloadSize = H8_3D_PROTOCOL_PAYLOAD_SIZE;
275 NRF24L01_WriteReg(NRF24L01_11_RX_PW_P0, payloadSize + CRC_LEN); // payload + 2 bytes CRC
277 NRF24L01_SetRxMode(); // enter receive mode to start listening for packets
280 void h8_3dNrf24Init(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfig)
282 rxRuntimeConfig->channelCount = RC_CHANNEL_COUNT;
283 h8_3dNrf24Setup((rx_spi_protocol_e)rxConfig->rx_spi_protocol, &rxConfig->rx_spi_id);
285 #endif