1 /* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000,2001,2002,2003,2004,2005,2006,2007 Josh Coalson
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
8 * - Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * - Neither the name of the Xiph.org Foundation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 #include "juce_FlacHeader.h"
42 #include "include/private/bitmath.h"
43 #include "include/private/fixed.h"
44 #include "../assert.h"
47 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
48 #define M_LN2 0.69314718055994530942
54 #define min(x,y) ((x) < (y)? (x) : (y))
59 #define local_abs(x) ((unsigned)((x)<0? -(x) : (x)))
61 #ifdef FLAC__INTEGER_ONLY_LIBRARY
62 /* rbps stands for residual bits per sample
65 * rbps = log (-----------)
68 static FLAC__fixedpoint
local__compute_rbps_integerized(FLAC__uint32 err
, FLAC__uint32 n
)
71 unsigned bits
; /* the number of bits required to represent a number */
72 int fracbits
; /* the number of bits of rbps that comprise the fractional part */
74 FLAC__ASSERT(sizeof(rbps
) == sizeof(FLAC__fixedpoint
));
75 FLAC__ASSERT(err
> 0);
78 FLAC__ASSERT(n
<= FLAC__MAX_BLOCK_SIZE
);
82 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
83 * These allow us later to know we won't lose too much precision in the
84 * fixed-point division (err<<fracbits)/n.
87 fracbits
= (8*sizeof(err
)) - (FLAC__bitmath_ilog2(err
)+1);
91 /* err now holds err/n with fracbits fractional bits */
94 * Whittle err down to 16 bits max. 16 significant bits is enough for
97 FLAC__ASSERT(err
> 0);
98 bits
= FLAC__bitmath_ilog2(err
)+1;
101 fracbits
-= (bits
-16);
103 rbps
= (FLAC__uint32
)err
;
105 /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
106 rbps
*= FLAC__FP_LN2
;
108 FLAC__ASSERT(fracbits
>= 0);
110 /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
112 const int f
= fracbits
& 3;
119 rbps
= FLAC__fixedpoint_log2(rbps
, fracbits
, (unsigned)(-1));
125 * The return value must have 16 fractional bits. Since the whole part
126 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
127 * must be >= -3, these assertion allows us to be able to shift rbps
128 * left if necessary to get 16 fracbits without losing any bits of the
129 * whole part of rbps.
131 * There is a slight chance due to accumulated error that the whole part
132 * will require 6 bits, so we use 6 in the assertion. Really though as
133 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
135 FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps
)+1 <= fracbits
+ 6);
136 FLAC__ASSERT(fracbits
>= -3);
138 /* now shift the decimal point into place */
140 return rbps
<< (16-fracbits
);
141 else if(fracbits
> 16)
142 return rbps
>> (fracbits
-16);
147 static FLAC__fixedpoint
local__compute_rbps_wide_integerized(FLAC__uint64 err
, FLAC__uint32 n
)
150 unsigned bits
; /* the number of bits required to represent a number */
151 int fracbits
; /* the number of bits of rbps that comprise the fractional part */
153 FLAC__ASSERT(sizeof(rbps
) == sizeof(FLAC__fixedpoint
));
154 FLAC__ASSERT(err
> 0);
157 FLAC__ASSERT(n
<= FLAC__MAX_BLOCK_SIZE
);
161 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
162 * These allow us later to know we won't lose too much precision in the
163 * fixed-point division (err<<fracbits)/n.
166 fracbits
= (8*sizeof(err
)) - (FLAC__bitmath_ilog2_wide(err
)+1);
170 /* err now holds err/n with fracbits fractional bits */
173 * Whittle err down to 16 bits max. 16 significant bits is enough for
176 FLAC__ASSERT(err
> 0);
177 bits
= FLAC__bitmath_ilog2_wide(err
)+1;
180 fracbits
-= (bits
-16);
182 rbps
= (FLAC__uint32
)err
;
184 /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
185 rbps
*= FLAC__FP_LN2
;
187 FLAC__ASSERT(fracbits
>= 0);
189 /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
191 const int f
= fracbits
& 3;
198 rbps
= FLAC__fixedpoint_log2(rbps
, fracbits
, (unsigned)(-1));
204 * The return value must have 16 fractional bits. Since the whole part
205 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
206 * must be >= -3, these assertion allows us to be able to shift rbps
207 * left if necessary to get 16 fracbits without losing any bits of the
208 * whole part of rbps.
210 * There is a slight chance due to accumulated error that the whole part
211 * will require 6 bits, so we use 6 in the assertion. Really though as
212 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
214 FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps
)+1 <= fracbits
+ 6);
215 FLAC__ASSERT(fracbits
>= -3);
217 /* now shift the decimal point into place */
219 return rbps
<< (16-fracbits
);
220 else if(fracbits
> 16)
221 return rbps
>> (fracbits
-16);
227 #ifndef FLAC__INTEGER_ONLY_LIBRARY
228 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data
[], unsigned data_len
, FLAC__float residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
230 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data
[], unsigned data_len
, FLAC__fixedpoint residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
233 FLAC__int32 last_error_0
= data
[-1];
234 FLAC__int32 last_error_1
= data
[-1] - data
[-2];
235 FLAC__int32 last_error_2
= last_error_1
- (data
[-2] - data
[-3]);
236 FLAC__int32 last_error_3
= last_error_2
- (data
[-2] - 2*data
[-3] + data
[-4]);
237 FLAC__int32 error
, save
;
238 FLAC__uint32 total_error_0
= 0, total_error_1
= 0, total_error_2
= 0, total_error_3
= 0, total_error_4
= 0;
241 for(i
= 0; i
< data_len
; i
++) {
242 error
= data
[i
] ; total_error_0
+= local_abs(error
); save
= error
;
243 error
-= last_error_0
; total_error_1
+= local_abs(error
); last_error_0
= save
; save
= error
;
244 error
-= last_error_1
; total_error_2
+= local_abs(error
); last_error_1
= save
; save
= error
;
245 error
-= last_error_2
; total_error_3
+= local_abs(error
); last_error_2
= save
; save
= error
;
246 error
-= last_error_3
; total_error_4
+= local_abs(error
); last_error_3
= save
;
249 if(total_error_0
< min(min(min(total_error_1
, total_error_2
), total_error_3
), total_error_4
))
251 else if(total_error_1
< min(min(total_error_2
, total_error_3
), total_error_4
))
253 else if(total_error_2
< min(total_error_3
, total_error_4
))
255 else if(total_error_3
< total_error_4
)
260 /* Estimate the expected number of bits per residual signal sample. */
261 /* 'total_error*' is linearly related to the variance of the residual */
262 /* signal, so we use it directly to compute E(|x|) */
263 FLAC__ASSERT(data_len
> 0 || total_error_0
== 0);
264 FLAC__ASSERT(data_len
> 0 || total_error_1
== 0);
265 FLAC__ASSERT(data_len
> 0 || total_error_2
== 0);
266 FLAC__ASSERT(data_len
> 0 || total_error_3
== 0);
267 FLAC__ASSERT(data_len
> 0 || total_error_4
== 0);
268 #ifndef FLAC__INTEGER_ONLY_LIBRARY
269 residual_bits_per_sample
[0] = (FLAC__float
)((total_error_0
> 0) ? log(M_LN2
* (FLAC__double
)total_error_0
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
270 residual_bits_per_sample
[1] = (FLAC__float
)((total_error_1
> 0) ? log(M_LN2
* (FLAC__double
)total_error_1
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
271 residual_bits_per_sample
[2] = (FLAC__float
)((total_error_2
> 0) ? log(M_LN2
* (FLAC__double
)total_error_2
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
272 residual_bits_per_sample
[3] = (FLAC__float
)((total_error_3
> 0) ? log(M_LN2
* (FLAC__double
)total_error_3
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
273 residual_bits_per_sample
[4] = (FLAC__float
)((total_error_4
> 0) ? log(M_LN2
* (FLAC__double
)total_error_4
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
275 residual_bits_per_sample
[0] = (total_error_0
> 0) ? local__compute_rbps_integerized(total_error_0
, data_len
) : 0;
276 residual_bits_per_sample
[1] = (total_error_1
> 0) ? local__compute_rbps_integerized(total_error_1
, data_len
) : 0;
277 residual_bits_per_sample
[2] = (total_error_2
> 0) ? local__compute_rbps_integerized(total_error_2
, data_len
) : 0;
278 residual_bits_per_sample
[3] = (total_error_3
> 0) ? local__compute_rbps_integerized(total_error_3
, data_len
) : 0;
279 residual_bits_per_sample
[4] = (total_error_4
> 0) ? local__compute_rbps_integerized(total_error_4
, data_len
) : 0;
285 #ifndef FLAC__INTEGER_ONLY_LIBRARY
286 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data
[], unsigned data_len
, FLAC__float residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
288 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data
[], unsigned data_len
, FLAC__fixedpoint residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
291 FLAC__int32 last_error_0
= data
[-1];
292 FLAC__int32 last_error_1
= data
[-1] - data
[-2];
293 FLAC__int32 last_error_2
= last_error_1
- (data
[-2] - data
[-3]);
294 FLAC__int32 last_error_3
= last_error_2
- (data
[-2] - 2*data
[-3] + data
[-4]);
295 FLAC__int32 error
, save
;
296 /* total_error_* are 64-bits to avoid overflow when encoding
297 * erratic signals when the bits-per-sample and blocksize are
300 FLAC__uint64 total_error_0
= 0, total_error_1
= 0, total_error_2
= 0, total_error_3
= 0, total_error_4
= 0;
303 for(i
= 0; i
< data_len
; i
++) {
304 error
= data
[i
] ; total_error_0
+= local_abs(error
); save
= error
;
305 error
-= last_error_0
; total_error_1
+= local_abs(error
); last_error_0
= save
; save
= error
;
306 error
-= last_error_1
; total_error_2
+= local_abs(error
); last_error_1
= save
; save
= error
;
307 error
-= last_error_2
; total_error_3
+= local_abs(error
); last_error_2
= save
; save
= error
;
308 error
-= last_error_3
; total_error_4
+= local_abs(error
); last_error_3
= save
;
311 if(total_error_0
< min(min(min(total_error_1
, total_error_2
), total_error_3
), total_error_4
))
313 else if(total_error_1
< min(min(total_error_2
, total_error_3
), total_error_4
))
315 else if(total_error_2
< min(total_error_3
, total_error_4
))
317 else if(total_error_3
< total_error_4
)
322 /* Estimate the expected number of bits per residual signal sample. */
323 /* 'total_error*' is linearly related to the variance of the residual */
324 /* signal, so we use it directly to compute E(|x|) */
325 FLAC__ASSERT(data_len
> 0 || total_error_0
== 0);
326 FLAC__ASSERT(data_len
> 0 || total_error_1
== 0);
327 FLAC__ASSERT(data_len
> 0 || total_error_2
== 0);
328 FLAC__ASSERT(data_len
> 0 || total_error_3
== 0);
329 FLAC__ASSERT(data_len
> 0 || total_error_4
== 0);
330 #ifndef FLAC__INTEGER_ONLY_LIBRARY
331 #if defined _MSC_VER || defined __MINGW32__
332 /* with MSVC you have to spoon feed it the casting */
333 residual_bits_per_sample
[0] = (FLAC__float
)((total_error_0
> 0) ? log(M_LN2
* (FLAC__double
)(FLAC__int64
)total_error_0
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
334 residual_bits_per_sample
[1] = (FLAC__float
)((total_error_1
> 0) ? log(M_LN2
* (FLAC__double
)(FLAC__int64
)total_error_1
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
335 residual_bits_per_sample
[2] = (FLAC__float
)((total_error_2
> 0) ? log(M_LN2
* (FLAC__double
)(FLAC__int64
)total_error_2
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
336 residual_bits_per_sample
[3] = (FLAC__float
)((total_error_3
> 0) ? log(M_LN2
* (FLAC__double
)(FLAC__int64
)total_error_3
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
337 residual_bits_per_sample
[4] = (FLAC__float
)((total_error_4
> 0) ? log(M_LN2
* (FLAC__double
)(FLAC__int64
)total_error_4
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
339 residual_bits_per_sample
[0] = (FLAC__float
)((total_error_0
> 0) ? log(M_LN2
* (FLAC__double
)total_error_0
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
340 residual_bits_per_sample
[1] = (FLAC__float
)((total_error_1
> 0) ? log(M_LN2
* (FLAC__double
)total_error_1
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
341 residual_bits_per_sample
[2] = (FLAC__float
)((total_error_2
> 0) ? log(M_LN2
* (FLAC__double
)total_error_2
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
342 residual_bits_per_sample
[3] = (FLAC__float
)((total_error_3
> 0) ? log(M_LN2
* (FLAC__double
)total_error_3
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
343 residual_bits_per_sample
[4] = (FLAC__float
)((total_error_4
> 0) ? log(M_LN2
* (FLAC__double
)total_error_4
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
346 residual_bits_per_sample
[0] = (total_error_0
> 0) ? local__compute_rbps_wide_integerized(total_error_0
, data_len
) : 0;
347 residual_bits_per_sample
[1] = (total_error_1
> 0) ? local__compute_rbps_wide_integerized(total_error_1
, data_len
) : 0;
348 residual_bits_per_sample
[2] = (total_error_2
> 0) ? local__compute_rbps_wide_integerized(total_error_2
, data_len
) : 0;
349 residual_bits_per_sample
[3] = (total_error_3
> 0) ? local__compute_rbps_wide_integerized(total_error_3
, data_len
) : 0;
350 residual_bits_per_sample
[4] = (total_error_4
> 0) ? local__compute_rbps_wide_integerized(total_error_4
, data_len
) : 0;
356 void FLAC__fixed_compute_residual(const FLAC__int32 data
[], unsigned data_len
, unsigned order
, FLAC__int32 residual
[])
358 const int idata_len
= (int)data_len
;
363 FLAC__ASSERT(sizeof(residual
[0]) == sizeof(data
[0]));
364 memcpy(residual
, data
, sizeof(residual
[0])*data_len
);
367 for(i
= 0; i
< idata_len
; i
++)
368 residual
[i
] = data
[i
] - data
[i
-1];
371 for(i
= 0; i
< idata_len
; i
++)
372 #if 1 /* OPT: may be faster with some compilers on some systems */
373 residual
[i
] = data
[i
] - (data
[i
-1] << 1) + data
[i
-2];
375 residual
[i
] = data
[i
] - 2*data
[i
-1] + data
[i
-2];
379 for(i
= 0; i
< idata_len
; i
++)
380 #if 1 /* OPT: may be faster with some compilers on some systems */
381 residual
[i
] = data
[i
] - (((data
[i
-1]-data
[i
-2])<<1) + (data
[i
-1]-data
[i
-2])) - data
[i
-3];
383 residual
[i
] = data
[i
] - 3*data
[i
-1] + 3*data
[i
-2] - data
[i
-3];
387 for(i
= 0; i
< idata_len
; i
++)
388 #if 1 /* OPT: may be faster with some compilers on some systems */
389 residual
[i
] = data
[i
] - ((data
[i
-1]+data
[i
-3])<<2) + ((data
[i
-2]<<2) + (data
[i
-2]<<1)) + data
[i
-4];
391 residual
[i
] = data
[i
] - 4*data
[i
-1] + 6*data
[i
-2] - 4*data
[i
-3] + data
[i
-4];
399 void FLAC__fixed_restore_signal(const FLAC__int32 residual
[], unsigned data_len
, unsigned order
, FLAC__int32 data
[])
401 int i
, idata_len
= (int)data_len
;
405 FLAC__ASSERT(sizeof(residual
[0]) == sizeof(data
[0]));
406 memcpy(data
, residual
, sizeof(residual
[0])*data_len
);
409 for(i
= 0; i
< idata_len
; i
++)
410 data
[i
] = residual
[i
] + data
[i
-1];
413 for(i
= 0; i
< idata_len
; i
++)
414 #if 1 /* OPT: may be faster with some compilers on some systems */
415 data
[i
] = residual
[i
] + (data
[i
-1]<<1) - data
[i
-2];
417 data
[i
] = residual
[i
] + 2*data
[i
-1] - data
[i
-2];
421 for(i
= 0; i
< idata_len
; i
++)
422 #if 1 /* OPT: may be faster with some compilers on some systems */
423 data
[i
] = residual
[i
] + (((data
[i
-1]-data
[i
-2])<<1) + (data
[i
-1]-data
[i
-2])) + data
[i
-3];
425 data
[i
] = residual
[i
] + 3*data
[i
-1] - 3*data
[i
-2] + data
[i
-3];
429 for(i
= 0; i
< idata_len
; i
++)
430 #if 1 /* OPT: may be faster with some compilers on some systems */
431 data
[i
] = residual
[i
] + ((data
[i
-1]+data
[i
-3])<<2) - ((data
[i
-2]<<2) + (data
[i
-2]<<1)) - data
[i
-4];
433 data
[i
] = residual
[i
] + 4*data
[i
-1] - 6*data
[i
-2] + 4*data
[i
-3] - data
[i
-4];