to make u-boot work for fat32 filesystem
[jz_uboot.git] / common / cmd_i2c.c
blobc543bb5314892df8799afc754f8dfd4a54774107
1 /*
2 * (C) Copyright 2001
3 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
5 * See file CREDITS for list of people who contributed to this
6 * project.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
25 * I2C Functions similar to the standard memory functions.
27 * There are several parameters in many of the commands that bear further
28 * explanations:
30 * Two of the commands (imm and imw) take a byte/word/long modifier
31 * (e.g. imm.w specifies the word-length modifier). This was done to
32 * allow manipulating word-length registers. It was not done on any other
33 * commands because it was not deemed useful.
35 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
36 * Each I2C chip on the bus has a unique address. On the I2C data bus,
37 * the address is the upper seven bits and the LSB is the "read/write"
38 * bit. Note that the {i2c_chip} address specified on the command
39 * line is not shifted up: e.g. a typical EEPROM memory chip may have
40 * an I2C address of 0x50, but the data put on the bus will be 0xA0
41 * for write and 0xA1 for read. This "non shifted" address notation
42 * matches at least half of the data sheets :-/.
44 * {addr} is the address (or offset) within the chip. Small memory
45 * chips have 8 bit addresses. Large memory chips have 16 bit
46 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
47 * Many non-memory chips have multiple registers and {addr} is used
48 * as the register index. Some non-memory chips have only one register
49 * and therefore don't need any {addr} parameter.
51 * The default {addr} parameter is one byte (.1) which works well for
52 * memories and registers with 8 bits of address space.
54 * You can specify the length of the {addr} field with the optional .0,
55 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
56 * manipulating a single register device which doesn't use an address
57 * field, use "0.0" for the address and the ".0" length field will
58 * suppress the address in the I2C data stream. This also works for
59 * successive reads using the I2C auto-incrementing memory pointer.
61 * If you are manipulating a large memory with 2-byte addresses, use
62 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
64 * Then there are the unfortunate memory chips that spill the most
65 * significant 1, 2, or 3 bits of address into the chip address byte.
66 * This effectively makes one chip (logically) look like 2, 4, or
67 * 8 chips. This is handled (awkwardly) by #defining
68 * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
69 * {addr} field (since .1 is the default, it doesn't actually have to
70 * be specified). Examples: given a memory chip at I2C chip address
71 * 0x50, the following would happen...
72 * imd 50 0 10 display 16 bytes starting at 0x000
73 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
74 * imd 50 100 10 display 16 bytes starting at 0x100
75 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
76 * imd 50 210 10 display 16 bytes starting at 0x210
77 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
78 * This is awfully ugly. It would be nice if someone would think up
79 * a better way of handling this.
81 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
84 #include <common.h>
85 #include <command.h>
86 #include <i2c.h>
87 #include <asm/byteorder.h>
89 #if (CONFIG_COMMANDS & CFG_CMD_I2C)
92 /* Display values from last command.
93 * Memory modify remembered values are different from display memory.
95 static uchar i2c_dp_last_chip;
96 static uint i2c_dp_last_addr;
97 static uint i2c_dp_last_alen;
98 static uint i2c_dp_last_length = 0x10;
100 static uchar i2c_mm_last_chip;
101 static uint i2c_mm_last_addr;
102 static uint i2c_mm_last_alen;
104 #if defined(CFG_I2C_NOPROBES)
105 static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
106 #endif
108 static int
109 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
110 extern int cmd_get_data_size(char* arg, int default_size);
113 * Syntax:
114 * imd {i2c_chip} {addr}{.0, .1, .2} {len}
116 #define DISP_LINE_LEN 16
118 int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
120 u_char chip;
121 uint addr, alen, length;
122 int j, nbytes, linebytes;
124 /* We use the last specified parameters, unless new ones are
125 * entered.
127 chip = i2c_dp_last_chip;
128 addr = i2c_dp_last_addr;
129 alen = i2c_dp_last_alen;
130 length = i2c_dp_last_length;
132 if (argc < 3) {
133 printf ("Usage:\n%s\n", cmdtp->usage);
134 return 1;
137 if ((flag & CMD_FLAG_REPEAT) == 0) {
139 * New command specified.
141 alen = 1;
144 * I2C chip address
146 chip = simple_strtoul(argv[1], NULL, 16);
149 * I2C data address within the chip. This can be 1 or
150 * 2 bytes long. Some day it might be 3 bytes long :-).
152 addr = simple_strtoul(argv[2], NULL, 16);
153 alen = 1;
154 for(j = 0; j < 8; j++) {
155 if (argv[2][j] == '.') {
156 alen = argv[2][j+1] - '0';
157 if (alen > 4) {
158 printf ("Usage:\n%s\n", cmdtp->usage);
159 return 1;
161 break;
162 } else if (argv[2][j] == '\0') {
163 break;
168 * If another parameter, it is the length to display.
169 * Length is the number of objects, not number of bytes.
171 if (argc > 3)
172 length = simple_strtoul(argv[3], NULL, 16);
176 * Print the lines.
178 * We buffer all read data, so we can make sure data is read only
179 * once.
181 nbytes = length;
182 do {
183 unsigned char linebuf[DISP_LINE_LEN];
184 unsigned char *cp;
186 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
188 if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
189 puts ("Error reading the chip.\n");
190 } else {
191 printf("%04x:", addr);
192 cp = linebuf;
193 for (j=0; j<linebytes; j++) {
194 printf(" %02x", *cp++);
195 addr++;
197 puts (" ");
198 cp = linebuf;
199 for (j=0; j<linebytes; j++) {
200 if ((*cp < 0x20) || (*cp > 0x7e))
201 puts (".");
202 else
203 printf("%c", *cp);
204 cp++;
206 putc ('\n');
208 nbytes -= linebytes;
209 } while (nbytes > 0);
211 i2c_dp_last_chip = chip;
212 i2c_dp_last_addr = addr;
213 i2c_dp_last_alen = alen;
214 i2c_dp_last_length = length;
216 return 0;
219 int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
221 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
225 int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
227 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
230 /* Write (fill) memory
232 * Syntax:
233 * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
235 int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
237 uchar chip;
238 ulong addr;
239 uint alen;
240 uchar byte;
241 int count;
242 int j;
244 if ((argc < 4) || (argc > 5)) {
245 printf ("Usage:\n%s\n", cmdtp->usage);
246 return 1;
250 * Chip is always specified.
252 chip = simple_strtoul(argv[1], NULL, 16);
255 * Address is always specified.
257 addr = simple_strtoul(argv[2], NULL, 16);
258 alen = 1;
259 for(j = 0; j < 8; j++) {
260 if (argv[2][j] == '.') {
261 alen = argv[2][j+1] - '0';
262 if(alen > 4) {
263 printf ("Usage:\n%s\n", cmdtp->usage);
264 return 1;
266 break;
267 } else if (argv[2][j] == '\0') {
268 break;
273 * Value to write is always specified.
275 byte = simple_strtoul(argv[3], NULL, 16);
278 * Optional count
280 if(argc == 5) {
281 count = simple_strtoul(argv[4], NULL, 16);
282 } else {
283 count = 1;
286 while (count-- > 0) {
287 if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
288 puts ("Error writing the chip.\n");
291 * Wait for the write to complete. The write can take
292 * up to 10mSec (we allow a little more time).
294 * On some chips, while the write is in progress, the
295 * chip doesn't respond. This apparently isn't a
296 * universal feature so we don't take advantage of it.
299 * No write delay with FRAM devices.
301 #if !defined(CFG_I2C_FRAM)
302 udelay(11000);
303 #endif
305 #if 0
306 for(timeout = 0; timeout < 10; timeout++) {
307 udelay(2000);
308 if(i2c_probe(chip) == 0)
309 break;
311 #endif
314 return (0);
318 /* Calculate a CRC on memory
320 * Syntax:
321 * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
323 int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
325 uchar chip;
326 ulong addr;
327 uint alen;
328 int count;
329 uchar byte;
330 ulong crc;
331 ulong err;
332 int j;
334 if (argc < 4) {
335 printf ("Usage:\n%s\n", cmdtp->usage);
336 return 1;
340 * Chip is always specified.
342 chip = simple_strtoul(argv[1], NULL, 16);
345 * Address is always specified.
347 addr = simple_strtoul(argv[2], NULL, 16);
348 alen = 1;
349 for(j = 0; j < 8; j++) {
350 if (argv[2][j] == '.') {
351 alen = argv[2][j+1] - '0';
352 if(alen > 4) {
353 printf ("Usage:\n%s\n", cmdtp->usage);
354 return 1;
356 break;
357 } else if (argv[2][j] == '\0') {
358 break;
363 * Count is always specified
365 count = simple_strtoul(argv[3], NULL, 16);
367 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
369 * CRC a byte at a time. This is going to be slooow, but hey, the
370 * memories are small and slow too so hopefully nobody notices.
372 crc = 0;
373 err = 0;
374 while(count-- > 0) {
375 if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
376 err++;
378 crc = crc32 (crc, &byte, 1);
379 addr++;
381 if(err > 0)
383 puts ("Error reading the chip,\n");
384 } else {
385 printf ("%08lx\n", crc);
388 return 0;
392 /* Modify memory.
394 * Syntax:
395 * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
396 * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
399 static int
400 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
402 uchar chip;
403 ulong addr;
404 uint alen;
405 ulong data;
406 int size = 1;
407 int nbytes;
408 int j;
409 extern char console_buffer[];
411 if (argc != 3) {
412 printf ("Usage:\n%s\n", cmdtp->usage);
413 return 1;
416 #ifdef CONFIG_BOOT_RETRY_TIME
417 reset_cmd_timeout(); /* got a good command to get here */
418 #endif
420 * We use the last specified parameters, unless new ones are
421 * entered.
423 chip = i2c_mm_last_chip;
424 addr = i2c_mm_last_addr;
425 alen = i2c_mm_last_alen;
427 if ((flag & CMD_FLAG_REPEAT) == 0) {
429 * New command specified. Check for a size specification.
430 * Defaults to byte if no or incorrect specification.
432 size = cmd_get_data_size(argv[0], 1);
435 * Chip is always specified.
437 chip = simple_strtoul(argv[1], NULL, 16);
440 * Address is always specified.
442 addr = simple_strtoul(argv[2], NULL, 16);
443 alen = 1;
444 for(j = 0; j < 8; j++) {
445 if (argv[2][j] == '.') {
446 alen = argv[2][j+1] - '0';
447 if(alen > 4) {
448 printf ("Usage:\n%s\n", cmdtp->usage);
449 return 1;
451 break;
452 } else if (argv[2][j] == '\0') {
453 break;
459 * Print the address, followed by value. Then accept input for
460 * the next value. A non-converted value exits.
462 do {
463 printf("%08lx:", addr);
464 if(i2c_read(chip, addr, alen, (uchar *)&data, size) != 0) {
465 puts ("\nError reading the chip,\n");
466 } else {
467 data = cpu_to_be32(data);
468 if(size == 1) {
469 printf(" %02lx", (data >> 24) & 0x000000FF);
470 } else if(size == 2) {
471 printf(" %04lx", (data >> 16) & 0x0000FFFF);
472 } else {
473 printf(" %08lx", data);
477 nbytes = readline (" ? ");
478 if (nbytes == 0) {
480 * <CR> pressed as only input, don't modify current
481 * location and move to next.
483 if (incrflag)
484 addr += size;
485 nbytes = size;
486 #ifdef CONFIG_BOOT_RETRY_TIME
487 reset_cmd_timeout(); /* good enough to not time out */
488 #endif
490 #ifdef CONFIG_BOOT_RETRY_TIME
491 else if (nbytes == -2) {
492 break; /* timed out, exit the command */
494 #endif
495 else {
496 char *endp;
498 data = simple_strtoul(console_buffer, &endp, 16);
499 if(size == 1) {
500 data = data << 24;
501 } else if(size == 2) {
502 data = data << 16;
504 data = be32_to_cpu(data);
505 nbytes = endp - console_buffer;
506 if (nbytes) {
507 #ifdef CONFIG_BOOT_RETRY_TIME
509 * good enough to not time out
511 reset_cmd_timeout();
512 #endif
513 if(i2c_write(chip, addr, alen, (uchar *)&data, size) != 0) {
514 puts ("Error writing the chip.\n");
516 #ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS
517 udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
518 #endif
519 if (incrflag)
520 addr += size;
523 } while (nbytes);
525 chip = i2c_mm_last_chip;
526 addr = i2c_mm_last_addr;
527 alen = i2c_mm_last_alen;
529 return 0;
533 * Syntax:
534 * iprobe {addr}{.0, .1, .2}
536 int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
538 int j;
539 #if defined(CFG_I2C_NOPROBES)
540 int k, skip;
541 #endif
543 puts ("Valid chip addresses:");
544 for(j = 0; j < 128; j++) {
545 #if defined(CFG_I2C_NOPROBES)
546 skip = 0;
547 for (k = 0; k < sizeof(i2c_no_probes); k++){
548 if (j == i2c_no_probes[k]){
549 skip = 1;
550 break;
553 if (skip)
554 continue;
555 #endif
556 if(i2c_probe(j) == 0) {
557 printf(" %02X", j);
560 putc ('\n');
562 #if defined(CFG_I2C_NOPROBES)
563 puts ("Excluded chip addresses:");
564 for( k = 0; k < sizeof(i2c_no_probes); k++ )
565 printf(" %02X", i2c_no_probes[k] );
566 putc ('\n');
567 #endif
569 return 0;
574 * Syntax:
575 * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
576 * {length} - Number of bytes to read
577 * {delay} - A DECIMAL number and defaults to 1000 uSec
579 int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
581 u_char chip;
582 ulong alen;
583 uint addr;
584 uint length;
585 u_char bytes[16];
586 int delay;
587 int j;
589 if (argc < 3) {
590 printf ("Usage:\n%s\n", cmdtp->usage);
591 return 1;
595 * Chip is always specified.
597 chip = simple_strtoul(argv[1], NULL, 16);
600 * Address is always specified.
602 addr = simple_strtoul(argv[2], NULL, 16);
603 alen = 1;
604 for(j = 0; j < 8; j++) {
605 if (argv[2][j] == '.') {
606 alen = argv[2][j+1] - '0';
607 if (alen > 4) {
608 printf ("Usage:\n%s\n", cmdtp->usage);
609 return 1;
611 break;
612 } else if (argv[2][j] == '\0') {
613 break;
618 * Length is the number of objects, not number of bytes.
620 length = 1;
621 length = simple_strtoul(argv[3], NULL, 16);
622 if(length > sizeof(bytes)) {
623 length = sizeof(bytes);
627 * The delay time (uSec) is optional.
629 delay = 1000;
630 if (argc > 3) {
631 delay = simple_strtoul(argv[4], NULL, 10);
634 * Run the loop...
636 while(1) {
637 if(i2c_read(chip, addr, alen, bytes, length) != 0) {
638 puts ("Error reading the chip.\n");
640 udelay(delay);
643 /* NOTREACHED */
644 return 0;
649 * The SDRAM command is separately configured because many
650 * (most?) embedded boards don't use SDRAM DIMMs.
652 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
655 * Syntax:
656 * sdram {i2c_chip}
658 int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
660 u_char chip;
661 u_char data[128];
662 u_char cksum;
663 int j;
665 if (argc < 2) {
666 printf ("Usage:\n%s\n", cmdtp->usage);
667 return 1;
670 * Chip is always specified.
672 chip = simple_strtoul(argv[1], NULL, 16);
674 if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
675 puts ("No SDRAM Serial Presence Detect found.\n");
676 return 1;
679 cksum = 0;
680 for (j = 0; j < 63; j++) {
681 cksum += data[j];
683 if(cksum != data[63]) {
684 printf ("WARNING: Configuration data checksum failure:\n"
685 " is 0x%02x, calculated 0x%02x\n",
686 data[63], cksum);
688 printf("SPD data revision %d.%d\n",
689 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
690 printf("Bytes used 0x%02X\n", data[0]);
691 printf("Serial memory size 0x%02X\n", 1 << data[1]);
692 puts ("Memory type ");
693 switch(data[2]) {
694 case 2: puts ("EDO\n"); break;
695 case 4: puts ("SDRAM\n"); break;
696 default: puts ("unknown\n"); break;
698 puts ("Row address bits ");
699 if((data[3] & 0x00F0) == 0) {
700 printf("%d\n", data[3] & 0x0F);
701 } else {
702 printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
704 puts ("Column address bits ");
705 if((data[4] & 0x00F0) == 0) {
706 printf("%d\n", data[4] & 0x0F);
707 } else {
708 printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
710 printf("Module rows %d\n", data[5]);
711 printf("Module data width %d bits\n", (data[7] << 8) | data[6]);
712 puts ("Interface signal levels ");
713 switch(data[8]) {
714 case 0: puts ("5.0v/TTL\n"); break;
715 case 1: puts ("LVTTL\n"); break;
716 case 2: puts ("HSTL 1.5\n"); break;
717 case 3: puts ("SSTL 3.3\n"); break;
718 case 4: puts ("SSTL 2.5\n"); break;
719 default: puts ("unknown\n"); break;
721 printf("SDRAM cycle time %d.%d nS\n",
722 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
723 printf("SDRAM access time %d.%d nS\n",
724 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
725 puts ("EDC configuration ");
726 switch(data[11]) {
727 case 0: puts ("None\n"); break;
728 case 1: puts ("Parity\n"); break;
729 case 2: puts ("ECC\n"); break;
730 default: puts ("unknown\n"); break;
732 if((data[12] & 0x80) == 0) {
733 puts ("No self refresh, rate ");
734 } else {
735 puts ("Self refresh, rate ");
737 switch(data[12] & 0x7F) {
738 case 0: puts ("15.625uS\n"); break;
739 case 1: puts ("3.9uS\n"); break;
740 case 2: puts ("7.8uS\n"); break;
741 case 3: puts ("31.3uS\n"); break;
742 case 4: puts ("62.5uS\n"); break;
743 case 5: puts ("125uS\n"); break;
744 default: puts ("unknown\n"); break;
746 printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
747 if((data[13] & 0x80) != 0) {
748 printf(" (second bank) %d\n",
749 2 * (data[13] & 0x7F));
751 if(data[14] != 0) {
752 printf("EDC width %d\n",
753 data[14] & 0x7F);
754 if((data[14] & 0x80) != 0) {
755 printf(" (second bank) %d\n",
756 2 * (data[14] & 0x7F));
759 printf("Min clock delay, back-to-back random column addresses %d\n",
760 data[15]);
761 puts ("Burst length(s) ");
762 if (data[16] & 0x80) puts (" Page");
763 if (data[16] & 0x08) puts (" 8");
764 if (data[16] & 0x04) puts (" 4");
765 if (data[16] & 0x02) puts (" 2");
766 if (data[16] & 0x01) puts (" 1");
767 putc ('\n');
768 printf("Number of banks %d\n", data[17]);
769 puts ("CAS latency(s) ");
770 if (data[18] & 0x80) puts (" TBD");
771 if (data[18] & 0x40) puts (" 7");
772 if (data[18] & 0x20) puts (" 6");
773 if (data[18] & 0x10) puts (" 5");
774 if (data[18] & 0x08) puts (" 4");
775 if (data[18] & 0x04) puts (" 3");
776 if (data[18] & 0x02) puts (" 2");
777 if (data[18] & 0x01) puts (" 1");
778 putc ('\n');
779 puts ("CS latency(s) ");
780 if (data[19] & 0x80) puts (" TBD");
781 if (data[19] & 0x40) puts (" 6");
782 if (data[19] & 0x20) puts (" 5");
783 if (data[19] & 0x10) puts (" 4");
784 if (data[19] & 0x08) puts (" 3");
785 if (data[19] & 0x04) puts (" 2");
786 if (data[19] & 0x02) puts (" 1");
787 if (data[19] & 0x01) puts (" 0");
788 putc ('\n');
789 puts ("WE latency(s) ");
790 if (data[20] & 0x80) puts (" TBD");
791 if (data[20] & 0x40) puts (" 6");
792 if (data[20] & 0x20) puts (" 5");
793 if (data[20] & 0x10) puts (" 4");
794 if (data[20] & 0x08) puts (" 3");
795 if (data[20] & 0x04) puts (" 2");
796 if (data[20] & 0x02) puts (" 1");
797 if (data[20] & 0x01) puts (" 0");
798 putc ('\n');
799 puts ("Module attributes:\n");
800 if (!data[21]) puts (" (none)\n");
801 if (data[21] & 0x80) puts (" TBD (bit 7)\n");
802 if (data[21] & 0x40) puts (" Redundant row address\n");
803 if (data[21] & 0x20) puts (" Differential clock input\n");
804 if (data[21] & 0x10) puts (" Registerd DQMB inputs\n");
805 if (data[21] & 0x08) puts (" Buffered DQMB inputs\n");
806 if (data[21] & 0x04) puts (" On-card PLL\n");
807 if (data[21] & 0x02) puts (" Registered address/control lines\n");
808 if (data[21] & 0x01) puts (" Buffered address/control lines\n");
809 puts ("Device attributes:\n");
810 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
811 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
812 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
813 else puts (" Upper Vcc tolerance 10%\n");
814 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
815 else puts (" Lower Vcc tolerance 10%\n");
816 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
817 if (data[22] & 0x04) puts (" Supports precharge all\n");
818 if (data[22] & 0x02) puts (" Supports auto precharge\n");
819 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
820 printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n",
821 (data[23] >> 4) & 0x0F, data[23] & 0x0F);
822 printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
823 (data[24] >> 4) & 0x0F, data[24] & 0x0F);
824 printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n",
825 (data[25] >> 4) & 0x0F, data[25] & 0x0F);
826 printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
827 (data[26] >> 4) & 0x0F, data[26] & 0x0F);
828 printf("Minimum row precharge %d nS\n", data[27]);
829 printf("Row active to row active min %d nS\n", data[28]);
830 printf("RAS to CAS delay min %d nS\n", data[29]);
831 printf("Minimum RAS pulse width %d nS\n", data[30]);
832 puts ("Density of each row ");
833 if (data[31] & 0x80) puts (" 512");
834 if (data[31] & 0x40) puts (" 256");
835 if (data[31] & 0x20) puts (" 128");
836 if (data[31] & 0x10) puts (" 64");
837 if (data[31] & 0x08) puts (" 32");
838 if (data[31] & 0x04) puts (" 16");
839 if (data[31] & 0x02) puts (" 8");
840 if (data[31] & 0x01) puts (" 4");
841 puts ("MByte\n");
842 printf("Command and Address setup %c%d.%d nS\n",
843 (data[32] & 0x80) ? '-' : '+',
844 (data[32] >> 4) & 0x07, data[32] & 0x0F);
845 printf("Command and Address hold %c%d.%d nS\n",
846 (data[33] & 0x80) ? '-' : '+',
847 (data[33] >> 4) & 0x07, data[33] & 0x0F);
848 printf("Data signal input setup %c%d.%d nS\n",
849 (data[34] & 0x80) ? '-' : '+',
850 (data[34] >> 4) & 0x07, data[34] & 0x0F);
851 printf("Data signal input hold %c%d.%d nS\n",
852 (data[35] & 0x80) ? '-' : '+',
853 (data[35] >> 4) & 0x07, data[35] & 0x0F);
854 puts ("Manufacturer's JEDEC ID ");
855 for(j = 64; j <= 71; j++)
856 printf("%02X ", data[j]);
857 putc ('\n');
858 printf("Manufacturing Location %02X\n", data[72]);
859 puts ("Manufacturer's Part Number ");
860 for(j = 73; j <= 90; j++)
861 printf("%02X ", data[j]);
862 putc ('\n');
863 printf("Revision Code %02X %02X\n", data[91], data[92]);
864 printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
865 puts ("Assembly Serial Number ");
866 for(j = 95; j <= 98; j++)
867 printf("%02X ", data[j]);
868 putc ('\n');
869 printf("Speed rating PC%d\n",
870 data[126] == 0x66 ? 66 : data[126]);
872 return 0;
874 #endif /* CFG_CMD_SDRAM */
877 /***************************************************/
879 U_BOOT_CMD(
880 imd, 4, 1, do_i2c_md, \
881 "imd - i2c memory display\n", \
882 "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
885 U_BOOT_CMD(
886 imm, 3, 1, do_i2c_mm,
887 "imm - i2c memory modify (auto-incrementing)\n",
888 "chip address[.0, .1, .2]\n"
889 " - memory modify, auto increment address\n"
891 U_BOOT_CMD(
892 inm, 3, 1, do_i2c_nm,
893 "inm - memory modify (constant address)\n",
894 "chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
897 U_BOOT_CMD(
898 imw, 5, 1, do_i2c_mw,
899 "imw - memory write (fill)\n",
900 "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
903 U_BOOT_CMD(
904 icrc32, 5, 1, do_i2c_crc,
905 "icrc32 - checksum calculation\n",
906 "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
909 U_BOOT_CMD(
910 iprobe, 1, 1, do_i2c_probe,
911 "iprobe - probe to discover valid I2C chip addresses\n",
912 "\n -discover valid I2C chip addresses\n"
916 * Require full name for "iloop" because it is an infinite loop!
918 U_BOOT_CMD(
919 iloop, 5, 1, do_i2c_loop,
920 "iloop - infinite loop on address range\n",
921 "chip address[.0, .1, .2] [# of objects]\n"
922 " - loop, reading a set of addresses\n"
925 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
926 U_BOOT_CMD(
927 isdram, 2, 1, do_sdram,
928 "isdram - print SDRAM configuration information\n",
929 "chip\n - print SDRAM configuration information\n"
930 " (valid chip values 50..57)\n"
932 #endif
933 #endif /* CFG_CMD_I2C */