2 This file is part of Kig, a KDE program for Interactive Geometry...
3 Copyright (C) 2002 Dominique Devriese <devriese@kde.org>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
22 #ifndef KIG_MISC_COMMON_H
23 #define KIG_MISC_COMMON_H
25 #include "coordinate.h"
30 #include <kdeversion.h>
36 #if KDE_IS_VERSION( 3, 1, 0 )
37 #define KIG_USE_KDOUBLEVALIDATOR
39 #undef KIG_USE_KDOUBLEVALIDATOR
42 #undef KIG_USE_KDOUBLEVALIDATOR
48 extern const double double_inf
;
51 * Here, we define some algorithms which we need in
55 double getDoubleFromUser( const QString
& caption
, const QString
& label
, double value
,
56 QWidget
* parent
, bool* ok
, double min
, double max
, int decimals
);
59 * Simple class representing a line. Used by various functions in Kig.
64 * \ifnot creating-python-scripting-doc
65 * Default constructor. Sets a and b to the origin.
68 LineData() : a(), b() {};
70 * Constructor. Sets a and b to the given Coordinates.
72 LineData( const Coordinate
& na
, const Coordinate
& nb
) : a( na
), b( nb
) {};
74 * One point on the line.
78 * Another point on the line.
82 * The direction of the line. Equivalent to b - a.
84 const Coordinate
dir() const { return b
- a
; };
86 * The length from a to b.
88 double length() const { return ( b
- a
).length(); };
91 * Return true if this line is parallel to l.
93 bool isParallelTo( const LineData
& l
) const;
96 * Return true if this line is orthogonal to l.
98 bool isOrthogonalTo( const LineData
& l
) const;
102 * Equality. Tests two LineData's for equality.
104 bool operator==( const LineData
& l
, const LineData
& r
);
107 * This calcs the rotation of point a around point c by arc arc. Arc
108 * is in radians, in the range 0 < arc < 2*pi ...
110 Coordinate
calcRotatedPoint( const Coordinate
& a
, const Coordinate
& c
, const double arc
);
113 * this returns a point, so that the line through point t
114 * and the point returned is perpendicular to the line l.
116 Coordinate
calcPointOnPerpend( const LineData
& l
, const Coordinate
& t
);
119 * this returns a point, so that the line through point t and the
120 * point returned is perpendicular to the direction given in dir...
122 Coordinate
calcPointOnPerpend( const Coordinate
& dir
, const Coordinate
& t
);
125 * this returns a point, so that the line through point t
126 * and the point returned is parallel with the line l
128 Coordinate
calcPointOnParallel( const LineData
& l
, const Coordinate
& t
);
131 * this returns a point, so that the line through point t
132 * and the point returned is parallel with the direction given in dir...
134 Coordinate
calcPointOnParallel( const Coordinate
& dir
, const Coordinate
& t
);
138 * this calcs the point where the lines l and m intersect...
140 Coordinate
calcIntersectionPoint( const LineData
& l
, const LineData
& m
);
143 * this calcs the intersection points of the circle with center c and
144 * radius sqrt( r ), and the line l. As a circle and a
145 * line have two intersection points, side tells us which one we
146 * need... It should be 1 or -1. If the line and the circle have no
147 * intersection, valid is set to false, otherwise to true...
148 * Note that sqr is the _square_ of the radius. We do this to avoid
151 const Coordinate
calcCircleLineIntersect( const Coordinate
& c
,
157 * this calcs the intersection points of the arc with center c,
158 * radius sqrt( r ), start angle sa and angle angle, and the line l.
159 * As a arc and a line can have max two intersection points, side
160 * tells us which one we need... It should be 1 or -1. If the line
161 * and the arc have no intersection, valid is set to false, otherwise
162 * to true... Note that sqr is the _square_ of the radius. We do
163 * this to avoid rounding errors...
165 const Coordinate
calcArcLineIntersect( const Coordinate
& c
, const double sqr
,
166 const double sa
, const double angle
,
167 const LineData
& l
, int side
);
170 * this calculates the perpendicular projection of point p on line
173 const Coordinate
calcPointProjection( const Coordinate
& p
,
177 * calc the distance of point p to the line through a and b...
179 double calcDistancePointLine( const Coordinate
& p
,
183 * this sets p1 and p2 to p1' and p2' so that p1'p2' is the same line
184 * as p1p2, and so that p1' and p2' are on the border of the Rect...
186 void calcBorderPoints( Coordinate
& p1
, Coordinate
& p2
, const Rect
& r
);
190 void calcBorderPoints( double& xa
, double& xb
, double& ya
, double& yb
, const Rect
& r
);
192 * cleaner overload, intended to replace the above two...
194 const LineData
calcBorderPoints( const LineData
& l
, const Rect
& r
);
197 * this does the same as the above function, but only for b..
199 void calcRayBorderPoints( const Coordinate
& a
, Coordinate
& b
, const Rect
& r
);
202 * This function calculates the center of the circle going through the
203 * three given points..
205 const Coordinate
calcCenter(
206 const Coordinate
& a
, const Coordinate
& b
, const Coordinate
& c
);
211 void calcRayBorderPoints( const double xa
, const double xb
, double& ya
,
212 double& yb
, const Rect
& r
);
215 * calc the mirror point of p over the line l
217 const Coordinate
calcMirrorPoint( const LineData
& l
,
218 const Coordinate
& p
);
221 * test collinearity of three points
223 bool areCollinear( const Coordinate
& p1
, const Coordinate
& p2
,
224 const Coordinate
& p3
);
227 * test if a 2x2 matrix is singular (relatively to the
228 * norm of the two row vectors)
230 bool isSingular( const double& a
, const double& b
,
231 const double& c
, const double& d
);
234 * is o on the line defined by point a and point b ?
235 * fault is the allowed difference...
237 bool isOnLine( const Coordinate
& o
, const Coordinate
& a
,
238 const Coordinate
& b
, const double fault
);
241 * is o on the segment defined by point a and point b ?
242 * this calls isOnLine(), but also checks if o is "between" a and b...
243 * fault is the allowed difference...
245 bool isOnSegment( const Coordinate
& o
, const Coordinate
& a
,
246 const Coordinate
& b
, const double fault
);
248 bool isOnRay( const Coordinate
& o
, const Coordinate
& a
,
249 const Coordinate
& b
, const double fault
);
251 bool isOnArc( const Coordinate
& o
, const Coordinate
& c
, const double r
,
252 const double sa
, const double a
, const double fault
);
254 Coordinate
calcCircleRadicalStartPoint( const Coordinate
& ca
,
255 const Coordinate
& cb
,
256 double sqra
, double sqrb
);
259 * Is the line, segment, ray or vector inside r ? We need the imp to
260 * distinguish between rays, lines, segments or whatever.. ( we use
261 * their contains functions actually.. )
263 bool lineInRect( const Rect
& r
, const Coordinate
& a
, const Coordinate
& b
,
264 const int width
, const ObjectImp
* imp
, const KigWidget
& w
);
266 template <typename T
>
267 T
kigMin( const T
& a
, const T
& b
)
269 return a
< b
? a
: b
;
272 template <typename T
>
273 T
kigMax( const T
& a
, const T
& b
)
275 return a
> b
? a
: b
;
278 template <typename T
>
279 T
kigAbs( const T
& a
)
281 return a
>= 0 ? a
: -a
;
284 template <typename T
>
285 int kigSgn( const T
& a
)
287 return a
== 0 ? 0 : a
> 0 ? +1 : -1;
290 extern const double test_threshold
;