1 /***************************************************************************
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
10 * Copyright (C) 2005 Miika Pekkarinen
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
32 #include "replaygain.h"
36 #include "fixedpoint.h"
39 /* 16-bit samples are scaled based on these constants. The shift should be
43 #define WORD_FRACBITS 27
45 #define NATIVE_DEPTH 16
46 /* If the small buffer size changes, check the assembly code! */
47 #define SMALL_SAMPLE_BUF_COUNT 256
48 #define DEFAULT_GAIN 0x01000000
50 /* enums to index conversion properly with stereo mode and other settings */
53 SAMPLE_INPUT_LE_NATIVE_I_STEREO
= STEREO_INTERLEAVED
,
54 SAMPLE_INPUT_LE_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
,
55 SAMPLE_INPUT_LE_NATIVE_MONO
= STEREO_MONO
,
56 SAMPLE_INPUT_GT_NATIVE_I_STEREO
= STEREO_INTERLEAVED
+ STEREO_NUM_MODES
,
57 SAMPLE_INPUT_GT_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
+ STEREO_NUM_MODES
,
58 SAMPLE_INPUT_GT_NATIVE_MONO
= STEREO_MONO
+ STEREO_NUM_MODES
,
59 SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
= STEREO_NUM_MODES
64 SAMPLE_OUTPUT_MONO
= 0,
66 SAMPLE_OUTPUT_DITHERED_MONO
,
67 SAMPLE_OUTPUT_DITHERED_STEREO
70 /****************************************************************************
71 * NOTE: Any assembly routines that use these structures must be updated
72 * if current data members are moved or changed.
76 uint32_t delta
; /* 00h */
77 uint32_t phase
; /* 04h */
78 int32_t last_sample
[2]; /* 08h */
82 /* This is for passing needed data to assembly dsp routines. If another
83 * dsp parameter needs to be passed, add to the end of the structure
84 * and remove from dsp_config.
85 * If another function type becomes assembly optimized and requires dsp
86 * config info, add a pointer paramter of type "struct dsp_data *".
87 * If removing something from other than the end, reserve the spot or
88 * else update every implementation for every target.
89 * Be sure to add the offset of the new member for easy viewing as well. :)
90 * It is the first member of dsp_config and all members can be accessesed
91 * through the main aggregate but this is intended to make a safe haven
92 * for these items whereas the c part can be rearranged at will. dsp_data
93 * could even moved within dsp_config without disurbing the order.
97 int output_scale
; /* 00h */
98 int num_channels
; /* 04h */
99 struct resample_data resample_data
; /* 08h */
100 int32_t clip_min
; /* 18h */
101 int32_t clip_max
; /* 1ch */
102 int32_t gain
; /* 20h - Note that this is in S8.23 format. */
109 long error
[3]; /* 00h */
110 long random
; /* 0ch */
114 struct crossfeed_data
116 int32_t gain
; /* 00h - Direct path gain */
117 int32_t coefs
[3]; /* 04h - Coefficients for the shelving filter */
118 int32_t history
[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
119 int32_t delay
[13][2]; /* 20h */
120 int32_t *index
; /* 88h - Current pointer into the delay line */
124 /* Current setup is one lowshelf filters three peaking filters and one
125 * highshelf filter. Varying the number of shelving filters make no sense,
126 * but adding peaking filters is possible.
130 char enabled
[5]; /* 00h - Flags for active filters */
131 struct eqfilter filters
[5]; /* 08h - packing is 4? */
135 /* Include header with defines which functions are implemented in assembly
136 code for the target */
139 /* Typedefs keep things much neater in this case */
140 typedef void (*sample_input_fn_type
)(int count
, const char *src
[],
142 typedef int (*resample_fn_type
)(int count
, struct dsp_data
*data
,
143 const int32_t *src
[], int32_t *dst
[]);
144 typedef void (*sample_output_fn_type
)(int count
, struct dsp_data
*data
,
145 const int32_t *src
[], int16_t *dst
);
147 /* Single-DSP channel processing in place */
148 typedef void (*channels_process_fn_type
)(int count
, int32_t *buf
[]);
149 /* DSP local channel processing in place */
150 typedef void (*channels_process_dsp_fn_type
)(int count
, struct dsp_data
*data
,
155 ***************************************************************************/
159 struct dsp_data data
; /* Config members for use in asm routines */
160 long codec_frequency
; /* Sample rate of data coming from the codec */
161 long frequency
; /* Effective sample rate after pitch shift (if any) */
165 int32_t tdspeed_percent
; /* Speed% * PITCH_SPEED_PRECISION */
166 bool tdspeed_active
; /* Timestretch is in use */
168 #ifdef HAVE_SW_TONE_CONTROLS
169 /* Filter struct for software bass/treble controls */
170 struct eqfilter tone_filter
;
172 /* Functions that change depending upon settings - NULL if stage is
174 sample_input_fn_type input_samples
;
175 resample_fn_type resample
;
176 sample_output_fn_type output_samples
;
177 /* These will be NULL for the voice codec and is more economical that
179 channels_process_dsp_fn_type apply_gain
;
180 channels_process_fn_type apply_crossfeed
;
181 channels_process_fn_type eq_process
;
182 channels_process_fn_type channels_process
;
185 /* General DSP config */
186 static struct dsp_config dsp_conf
[2] IBSS_ATTR
; /* 0=A, 1=V */
188 static struct dither_data dither_data
[2] IBSS_ATTR
; /* 0=left, 1=right */
189 static long dither_mask IBSS_ATTR
;
190 static long dither_bias IBSS_ATTR
;
192 struct crossfeed_data crossfeed_data IDATA_ATTR
= /* A */
194 .index
= (int32_t *)crossfeed_data
.delay
198 static struct eq_state eq_data
; /* A */
200 /* Software tone controls */
201 #ifdef HAVE_SW_TONE_CONTROLS
202 static int prescale
; /* A/V */
203 static int bass
; /* A/V */
204 static int treble
; /* A/V */
207 /* Settings applicable to audio codec only */
208 static int32_t pitch_ratio
= PITCH_SPEED_100
;
209 static int channels_mode
;
212 static bool dither_enabled
;
213 static long eq_precut
;
214 static long track_gain
;
215 static bool new_gain
;
216 static long album_gain
;
217 static long track_peak
;
218 static long album_peak
;
219 static long replaygain
;
220 static bool crossfeed_enabled
;
222 #define AUDIO_DSP (dsp_conf[CODEC_IDX_AUDIO])
223 #define VOICE_DSP (dsp_conf[CODEC_IDX_VOICE])
225 /* The internal format is 32-bit samples, non-interleaved, stereo. This
226 * format is similar to the raw output from several codecs, so the amount
227 * of copying needed is minimized for that case.
230 #define RESAMPLE_RATIO 4 /* Enough for 11,025 Hz -> 44,100 Hz */
232 static int32_t small_sample_buf
[SMALL_SAMPLE_BUF_COUNT
] IBSS_ATTR
;
233 static int32_t small_resample_buf
[SMALL_SAMPLE_BUF_COUNT
* RESAMPLE_RATIO
] IBSS_ATTR
;
235 static int32_t *big_sample_buf
= NULL
;
236 static int32_t *big_resample_buf
= NULL
;
237 static int big_sample_buf_count
= -1; /* -1=unknown, 0=not available */
239 static int sample_buf_count
;
240 static int32_t *sample_buf
;
241 static int32_t *resample_buf
;
243 #define SAMPLE_BUF_LEFT_CHANNEL 0
244 #define SAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2)
245 #define RESAMPLE_BUF_LEFT_CHANNEL 0
246 #define RESAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2 * RESAMPLE_RATIO)
249 /* Clip sample to signed 16 bit range */
250 static inline int32_t clip_sample_16(int32_t sample
)
252 if ((int16_t)sample
!= sample
)
253 sample
= 0x7fff ^ (sample
>> 31);
257 int32_t sound_get_pitch(void)
262 void sound_set_pitch(int32_t percent
)
264 pitch_ratio
= percent
;
265 dsp_configure(&AUDIO_DSP
, DSP_SWITCH_FREQUENCY
,
266 AUDIO_DSP
.codec_frequency
);
269 static void tdspeed_setup(struct dsp_config
*dspc
)
271 /* Assume timestretch will not be used */
272 dspc
->tdspeed_active
= false;
273 sample_buf
= small_sample_buf
;
274 resample_buf
= small_resample_buf
;
275 sample_buf_count
= SMALL_SAMPLE_BUF_COUNT
;
277 if(!dsp_timestretch_available())
278 return; /* Timestretch not enabled or buffer not allocated */
279 if (dspc
->tdspeed_percent
== 0)
280 dspc
->tdspeed_percent
= PITCH_SPEED_100
;
282 dspc
->codec_frequency
== 0 ? NATIVE_FREQUENCY
: dspc
->codec_frequency
,
283 dspc
->stereo_mode
!= STEREO_MONO
,
284 dspc
->tdspeed_percent
))
285 return; /* Timestretch not possible or needed with these parameters */
287 /* Timestretch is to be used */
288 dspc
->tdspeed_active
= true;
289 sample_buf
= big_sample_buf
;
290 sample_buf_count
= big_sample_buf_count
;
291 resample_buf
= big_resample_buf
;
294 void dsp_timestretch_enable(bool enabled
)
296 /* Hook to set up timestretch buffer on first call to settings_apply() */
297 if (big_sample_buf_count
< 0) /* Only do something on first call */
301 /* Set up timestretch buffers */
302 big_sample_buf_count
= SMALL_SAMPLE_BUF_COUNT
* RESAMPLE_RATIO
;
303 big_sample_buf
= small_resample_buf
;
304 big_resample_buf
= (int32_t *) buffer_alloc(big_sample_buf_count
* RESAMPLE_RATIO
* sizeof(int32_t));
308 /* Not enabled at startup, "big" buffers will never be available */
309 big_sample_buf_count
= 0;
311 tdspeed_setup(&AUDIO_DSP
);
315 void dsp_set_timestretch(int32_t percent
)
317 AUDIO_DSP
.tdspeed_percent
= percent
;
318 tdspeed_setup(&AUDIO_DSP
);
321 int32_t dsp_get_timestretch()
323 return AUDIO_DSP
.tdspeed_percent
;
326 bool dsp_timestretch_available()
328 return (global_settings
.timestretch_enabled
&& big_sample_buf_count
> 0);
331 /* Convert count samples to the internal format, if needed. Updates src
332 * to point past the samples "consumed" and dst is set to point to the
333 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
334 * is no point in processing the same data twice.
337 /* convert count 16-bit mono to 32-bit mono */
338 static void sample_input_lte_native_mono(
339 int count
, const char *src
[], int32_t *dst
[])
341 const int16_t *s
= (int16_t *) src
[0];
342 const int16_t * const send
= s
+ count
;
343 int32_t *d
= dst
[0] = dst
[1] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
344 int scale
= WORD_SHIFT
;
348 *d
++ = *s
++ << scale
;
355 /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
356 static void sample_input_lte_native_i_stereo(
357 int count
, const char *src
[], int32_t *dst
[])
359 const int32_t *s
= (int32_t *) src
[0];
360 const int32_t * const send
= s
+ count
;
361 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
362 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
363 int scale
= WORD_SHIFT
;
368 #ifdef ROCKBOX_LITTLE_ENDIAN
369 *dl
++ = (slr
>> 16) << scale
;
370 *dr
++ = (int32_t)(int16_t)slr
<< scale
;
371 #else /* ROCKBOX_BIG_ENDIAN */
372 *dl
++ = (int32_t)(int16_t)slr
<< scale
;
373 *dr
++ = (slr
>> 16) << scale
;
381 /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
382 static void sample_input_lte_native_ni_stereo(
383 int count
, const char *src
[], int32_t *dst
[])
385 const int16_t *sl
= (int16_t *) src
[0];
386 const int16_t *sr
= (int16_t *) src
[1];
387 const int16_t * const slend
= sl
+ count
;
388 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
389 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
390 int scale
= WORD_SHIFT
;
394 *dl
++ = *sl
++ << scale
;
395 *dr
++ = *sr
++ << scale
;
403 /* convert count 32-bit mono to 32-bit mono */
404 static void sample_input_gt_native_mono(
405 int count
, const char *src
[], int32_t *dst
[])
407 dst
[0] = dst
[1] = (int32_t *)src
[0];
408 src
[0] = (char *)(dst
[0] + count
);
411 /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
412 static void sample_input_gt_native_i_stereo(
413 int count
, const char *src
[], int32_t *dst
[])
415 const int32_t *s
= (int32_t *)src
[0];
416 const int32_t * const send
= s
+ 2*count
;
417 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
418 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
427 src
[0] = (char *)send
;
430 /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
431 static void sample_input_gt_native_ni_stereo(
432 int count
, const char *src
[], int32_t *dst
[])
434 dst
[0] = (int32_t *)src
[0];
435 dst
[1] = (int32_t *)src
[1];
436 src
[0] = (char *)(dst
[0] + count
);
437 src
[1] = (char *)(dst
[1] + count
);
441 * sample_input_new_format()
443 * set the to-native sample conversion function based on dsp sample parameters
446 * needs syncing with changes to the following dsp parameters:
447 * * dsp->stereo_mode (A/V)
448 * * dsp->sample_depth (A/V)
450 static void sample_input_new_format(struct dsp_config
*dsp
)
452 static const sample_input_fn_type sample_input_functions
[] =
454 [SAMPLE_INPUT_LE_NATIVE_MONO
] = sample_input_lte_native_mono
,
455 [SAMPLE_INPUT_LE_NATIVE_I_STEREO
] = sample_input_lte_native_i_stereo
,
456 [SAMPLE_INPUT_LE_NATIVE_NI_STEREO
] = sample_input_lte_native_ni_stereo
,
457 [SAMPLE_INPUT_GT_NATIVE_MONO
] = sample_input_gt_native_mono
,
458 [SAMPLE_INPUT_GT_NATIVE_I_STEREO
] = sample_input_gt_native_i_stereo
,
459 [SAMPLE_INPUT_GT_NATIVE_NI_STEREO
] = sample_input_gt_native_ni_stereo
,
462 int convert
= dsp
->stereo_mode
;
464 if (dsp
->sample_depth
> NATIVE_DEPTH
)
465 convert
+= SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
;
467 dsp
->input_samples
= sample_input_functions
[convert
];
471 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
472 /* write mono internal format to output format */
473 static void sample_output_mono(int count
, struct dsp_data
*data
,
474 const int32_t *src
[], int16_t *dst
)
476 const int32_t *s0
= src
[0];
477 const int scale
= data
->output_scale
;
478 const int dc_bias
= 1 << (scale
- 1);
482 int32_t lr
= clip_sample_16((*s0
++ + dc_bias
) >> scale
);
488 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
490 /* write stereo internal format to output format */
491 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
492 static void sample_output_stereo(int count
, struct dsp_data
*data
,
493 const int32_t *src
[], int16_t *dst
)
495 const int32_t *s0
= src
[0];
496 const int32_t *s1
= src
[1];
497 const int scale
= data
->output_scale
;
498 const int dc_bias
= 1 << (scale
- 1);
502 *dst
++ = clip_sample_16((*s0
++ + dc_bias
) >> scale
);
503 *dst
++ = clip_sample_16((*s1
++ + dc_bias
) >> scale
);
507 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
510 * The "dither" code to convert the 24-bit samples produced by libmad was
511 * taken from the coolplayer project - coolplayer.sourceforge.net
513 * This function handles mono and stereo outputs.
515 static void sample_output_dithered(int count
, struct dsp_data
*data
,
516 const int32_t *src
[], int16_t *dst
)
518 const int32_t mask
= dither_mask
;
519 const int32_t bias
= dither_bias
;
520 const int scale
= data
->output_scale
;
521 const int32_t min
= data
->clip_min
;
522 const int32_t max
= data
->clip_max
;
523 const int32_t range
= max
- min
;
527 for (ch
= 0; ch
< data
->num_channels
; ch
++)
529 struct dither_data
* const dither
= &dither_data
[ch
];
530 const int32_t *s
= src
[ch
];
533 for (i
= 0, d
= &dst
[ch
]; i
< count
; i
++, s
++, d
+= 2)
535 int32_t output
, sample
;
538 /* Noise shape and bias (for correct rounding later) */
540 sample
+= dither
->error
[0] - dither
->error
[1] + dither
->error
[2];
541 dither
->error
[2] = dither
->error
[1];
542 dither
->error
[1] = dither
->error
[0]/2;
544 output
= sample
+ bias
;
546 /* Dither, highpass triangle PDF */
547 random
= dither
->random
*0x0019660dL
+ 0x3c6ef35fL
;
548 output
+= (random
& mask
) - (dither
->random
& mask
);
549 dither
->random
= random
;
551 /* Round sample to output range */
555 dither
->error
[0] = sample
- output
;
558 if ((uint32_t)(output
- min
) > (uint32_t)range
)
566 /* Quantize and store */
567 *d
= output
>> scale
;
571 if (data
->num_channels
== 2)
574 /* Have to duplicate left samples into the right channel since
575 pcm buffer and hardware is interleaved stereo */
587 * sample_output_new_format()
589 * set the from-native to ouput sample conversion routine
592 * needs syncing with changes to the following dsp parameters:
593 * * dsp->stereo_mode (A/V)
594 * * dither_enabled (A)
596 static void sample_output_new_format(struct dsp_config
*dsp
)
598 static const sample_output_fn_type sample_output_functions
[] =
601 sample_output_stereo
,
602 sample_output_dithered
,
603 sample_output_dithered
606 int out
= dsp
->data
.num_channels
- 1;
608 if (dsp
== &AUDIO_DSP
&& dither_enabled
)
611 dsp
->output_samples
= sample_output_functions
[out
];
615 * Linear interpolation resampling that introduces a one sample delay because
616 * of our inability to look into the future at the end of a frame.
618 #ifndef DSP_HAVE_ASM_RESAMPLING
619 static int dsp_downsample(int count
, struct dsp_data
*data
,
620 const int32_t *src
[], int32_t *dst
[])
622 int ch
= data
->num_channels
- 1;
623 uint32_t delta
= data
->resample_data
.delta
;
627 /* Rolled channel loop actually showed slightly faster. */
630 /* Just initialize things and not worry too much about the relatively
631 * uncommon case of not being able to spit out a sample for the frame.
633 const int32_t *s
= src
[ch
];
634 int32_t last
= data
->resample_data
.last_sample
[ch
];
636 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
638 phase
= data
->resample_data
.phase
;
641 /* Do we need last sample of previous frame for interpolation? */
645 while (pos
< (uint32_t)count
)
647 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
655 /* Wrap phase accumulator back to start of next frame. */
656 data
->resample_data
.phase
= phase
- (count
<< 16);
660 static int dsp_upsample(int count
, struct dsp_data
*data
,
661 const int32_t *src
[], int32_t *dst
[])
663 int ch
= data
->num_channels
- 1;
664 uint32_t delta
= data
->resample_data
.delta
;
668 /* Rolled channel loop actually showed slightly faster. */
671 /* Should always be able to output a sample for a ratio up to RESAMPLE_RATIO */
672 const int32_t *s
= src
[ch
];
673 int32_t last
= data
->resample_data
.last_sample
[ch
];
675 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
677 phase
= data
->resample_data
.phase
;
682 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[0] - last
);
687 while (pos
< (uint32_t)count
)
690 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
697 /* Wrap phase accumulator back to start of next frame. */
698 data
->resample_data
.phase
= phase
& 0xffff;
701 #endif /* DSP_HAVE_ASM_RESAMPLING */
703 static void resampler_new_delta(struct dsp_config
*dsp
)
705 dsp
->data
.resample_data
.delta
= (unsigned long)
706 dsp
->frequency
* 65536LL / NATIVE_FREQUENCY
;
708 if (dsp
->frequency
== NATIVE_FREQUENCY
)
710 /* NOTE: If fully glitch-free transistions from no resampling to
711 resampling are desired, last_sample history should be maintained
712 even when not resampling. */
713 dsp
->resample
= NULL
;
714 dsp
->data
.resample_data
.phase
= 0;
715 dsp
->data
.resample_data
.last_sample
[0] = 0;
716 dsp
->data
.resample_data
.last_sample
[1] = 0;
718 else if (dsp
->frequency
< NATIVE_FREQUENCY
)
719 dsp
->resample
= dsp_upsample
;
721 dsp
->resample
= dsp_downsample
;
724 /* Resample count stereo samples. Updates the src array, if resampling is
725 * done, to refer to the resampled data. Returns number of stereo samples
726 * for further processing.
728 static inline int resample(struct dsp_config
*dsp
, int count
, int32_t *src
[])
732 &resample_buf
[RESAMPLE_BUF_LEFT_CHANNEL
],
733 &resample_buf
[RESAMPLE_BUF_RIGHT_CHANNEL
],
736 count
= dsp
->resample(count
, &dsp
->data
, (const int32_t **)src
, dst
);
739 src
[1] = dst
[dsp
->data
.num_channels
- 1];
744 static void dither_init(struct dsp_config
*dsp
)
746 memset(dither_data
, 0, sizeof (dither_data
));
747 dither_bias
= (1L << (dsp
->frac_bits
- NATIVE_DEPTH
));
748 dither_mask
= (1L << (dsp
->frac_bits
+ 1 - NATIVE_DEPTH
)) - 1;
751 void dsp_dither_enable(bool enable
)
753 struct dsp_config
*dsp
= &AUDIO_DSP
;
754 dither_enabled
= enable
;
755 sample_output_new_format(dsp
);
758 /* Applies crossfeed to the stereo signal in src.
759 * Crossfeed is a process where listening over speakers is simulated. This
760 * is good for old hard panned stereo records, which might be quite fatiguing
761 * to listen to on headphones with no crossfeed.
763 #ifndef DSP_HAVE_ASM_CROSSFEED
764 static void apply_crossfeed(int count
, int32_t *buf
[])
766 int32_t *hist_l
= &crossfeed_data
.history
[0];
767 int32_t *hist_r
= &crossfeed_data
.history
[2];
768 int32_t *delay
= &crossfeed_data
.delay
[0][0];
769 int32_t *coefs
= &crossfeed_data
.coefs
[0];
770 int32_t gain
= crossfeed_data
.gain
;
771 int32_t *di
= crossfeed_data
.index
;
777 for (i
= 0; i
< count
; i
++)
782 /* Filter delayed sample from left speaker */
783 acc
= FRACMUL(*di
, coefs
[0]);
784 acc
+= FRACMUL(hist_l
[0], coefs
[1]);
785 acc
+= FRACMUL(hist_l
[1], coefs
[2]);
786 /* Save filter history for left speaker */
790 /* Filter delayed sample from right speaker */
791 acc
= FRACMUL(*di
, coefs
[0]);
792 acc
+= FRACMUL(hist_r
[0], coefs
[1]);
793 acc
+= FRACMUL(hist_r
[1], coefs
[2]);
794 /* Save filter history for right speaker */
798 /* Now add the attenuated direct sound and write to outputs */
799 buf
[0][i
] = FRACMUL(left
, gain
) + hist_r
[1];
800 buf
[1][i
] = FRACMUL(right
, gain
) + hist_l
[1];
802 /* Wrap delay line index if bigger than delay line size */
803 if (di
>= delay
+ 13*2)
806 /* Write back local copies of data we've modified */
807 crossfeed_data
.index
= di
;
809 #endif /* DSP_HAVE_ASM_CROSSFEED */
812 * dsp_set_crossfeed(bool enable)
815 * needs syncing with changes to the following dsp parameters:
816 * * dsp->stereo_mode (A)
818 void dsp_set_crossfeed(bool enable
)
820 crossfeed_enabled
= enable
;
821 AUDIO_DSP
.apply_crossfeed
= (enable
&& AUDIO_DSP
.data
.num_channels
> 1)
822 ? apply_crossfeed
: NULL
;
825 void dsp_set_crossfeed_direct_gain(int gain
)
827 crossfeed_data
.gain
= get_replaygain_int(gain
* 10) << 7;
828 /* If gain is negative, the calculation overflowed and we need to clamp */
829 if (crossfeed_data
.gain
< 0)
830 crossfeed_data
.gain
= 0x7fffffff;
833 /* Both gains should be below 0 dB */
834 void dsp_set_crossfeed_cross_params(long lf_gain
, long hf_gain
, long cutoff
)
836 int32_t *c
= crossfeed_data
.coefs
;
837 long scaler
= get_replaygain_int(lf_gain
* 10) << 7;
839 cutoff
= 0xffffffff/NATIVE_FREQUENCY
*cutoff
;
841 /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
842 * point instead of shelf midpoint. This is for compatibility with the old
843 * crossfeed shelf filter and should be removed if crossfeed settings are
844 * ever made incompatible for any other good reason.
846 cutoff
= fp_div(cutoff
, get_replaygain_int(hf_gain
*5), 24);
847 filter_shelf_coefs(cutoff
, hf_gain
, false, c
);
848 /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
849 * over 1 and can do this safely
851 c
[0] = FRACMUL_SHL(c
[0], scaler
, 4);
852 c
[1] = FRACMUL_SHL(c
[1], scaler
, 4);
856 /* Apply a constant gain to the samples (e.g., for ReplayGain).
857 * Note that this must be called before the resampler.
859 #ifndef DSP_HAVE_ASM_APPLY_GAIN
860 static void dsp_apply_gain(int count
, struct dsp_data
*data
, int32_t *buf
[])
862 const int32_t gain
= data
->gain
;
865 for (ch
= 0; ch
< data
->num_channels
; ch
++)
867 int32_t *d
= buf
[ch
];
870 for (i
= 0; i
< count
; i
++)
871 d
[i
] = FRACMUL_SHL(d
[i
], gain
, 8);
874 #endif /* DSP_HAVE_ASM_APPLY_GAIN */
876 /* Combine all gains to a global gain. */
877 static void set_gain(struct dsp_config
*dsp
)
879 dsp
->data
.gain
= DEFAULT_GAIN
;
881 /* Replay gain not relevant to voice */
882 if (dsp
== &AUDIO_DSP
&& replaygain
)
884 dsp
->data
.gain
= replaygain
;
887 if (dsp
->eq_process
&& eq_precut
)
890 (long) (((int64_t) dsp
->data
.gain
* eq_precut
) >> 24);
893 #ifdef HAVE_SW_VOLUME_CONTROL
894 if (global_settings
.volume
< SW_VOLUME_MAX
||
895 global_settings
.volume
> SW_VOLUME_MIN
)
897 int vol_gain
= get_replaygain_int(global_settings
.volume
* 100);
898 dsp
->data
.gain
= (long) (((int64_t) dsp
->data
.gain
* vol_gain
) >> 24);
902 if (dsp
->data
.gain
== DEFAULT_GAIN
)
908 dsp
->data
.gain
>>= 1;
911 dsp
->apply_gain
= dsp
->data
.gain
!= 0 ? dsp_apply_gain
: NULL
;
915 * Update the amount to cut the audio before applying the equalizer.
917 * @param precut to apply in decibels (multiplied by 10)
919 void dsp_set_eq_precut(int precut
)
921 eq_precut
= get_replaygain_int(precut
* -10);
922 set_gain(&AUDIO_DSP
);
926 * Synchronize the equalizer filter coefficients with the global settings.
928 * @param band the equalizer band to synchronize
930 void dsp_set_eq_coefs(int band
)
934 unsigned long cutoff
, q
;
936 /* Adjust setting pointer to the band we actually want to change */
937 setting
= &global_settings
.eq_band0_cutoff
+ (band
* 3);
939 /* Convert user settings to format required by coef generator functions */
940 cutoff
= 0xffffffff / NATIVE_FREQUENCY
* (*setting
++);
947 /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
948 which it should be, since we're executed from the main thread. */
950 /* Assume a band is disabled if the gain is zero */
953 eq_data
.enabled
[band
] = 0;
958 eq_ls_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
960 eq_hs_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
962 eq_pk_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
964 eq_data
.enabled
[band
] = 1;
968 /* Apply EQ filters to those bands that have got it switched on. */
969 static void eq_process(int count
, int32_t *buf
[])
971 static const int shifts
[] =
973 EQ_SHELF_SHIFT
, /* low shelf */
974 EQ_PEAK_SHIFT
, /* peaking */
975 EQ_PEAK_SHIFT
, /* peaking */
976 EQ_PEAK_SHIFT
, /* peaking */
977 EQ_SHELF_SHIFT
, /* high shelf */
979 unsigned int channels
= AUDIO_DSP
.data
.num_channels
;
982 /* filter configuration currently is 1 low shelf filter, 3 band peaking
983 filters and 1 high shelf filter, in that order. we need to know this
984 so we can choose the correct shift factor.
986 for (i
= 0; i
< 5; i
++)
988 if (!eq_data
.enabled
[i
])
990 eq_filter(buf
, &eq_data
.filters
[i
], count
, channels
, shifts
[i
]);
995 * Use to enable the equalizer.
997 * @param enable true to enable the equalizer
999 void dsp_set_eq(bool enable
)
1001 AUDIO_DSP
.eq_process
= enable
? eq_process
: NULL
;
1002 set_gain(&AUDIO_DSP
);
1005 static void dsp_set_stereo_width(int value
)
1007 long width
, straight
, cross
;
1009 width
= value
* 0x7fffff / 100;
1013 straight
= (0x7fffff + width
) / 2;
1014 cross
= straight
- width
;
1018 /* straight = (1 + width) / (2 * width) */
1019 straight
= ((int64_t)(0x7fffff + width
) << 22) / width
;
1020 cross
= straight
- 0x7fffff;
1023 dsp_sw_gain
= straight
<< 8;
1024 dsp_sw_cross
= cross
<< 8;
1028 * Implements the different channel configurations and stereo width.
1031 /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
1034 static void channels_process_sound_chan_stereo(int count
, int32_t *buf
[])
1036 /* The channels are each just themselves */
1037 (void)count
; (void)buf
;
1041 #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
1042 static void channels_process_sound_chan_mono(int count
, int32_t *buf
[])
1044 int32_t *sl
= buf
[0], *sr
= buf
[1];
1048 int32_t lr
= *sl
/2 + *sr
/2;
1052 while (--count
> 0);
1054 #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
1056 #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
1057 static void channels_process_sound_chan_custom(int count
, int32_t *buf
[])
1059 const int32_t gain
= dsp_sw_gain
;
1060 const int32_t cross
= dsp_sw_cross
;
1061 int32_t *sl
= buf
[0], *sr
= buf
[1];
1067 *sl
++ = FRACMUL(l
, gain
) + FRACMUL(r
, cross
);
1068 *sr
++ = FRACMUL(r
, gain
) + FRACMUL(l
, cross
);
1070 while (--count
> 0);
1072 #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
1074 static void channels_process_sound_chan_mono_left(int count
, int32_t *buf
[])
1076 /* Just copy over the other channel */
1077 memcpy(buf
[1], buf
[0], count
* sizeof (*buf
));
1080 static void channels_process_sound_chan_mono_right(int count
, int32_t *buf
[])
1082 /* Just copy over the other channel */
1083 memcpy(buf
[0], buf
[1], count
* sizeof (*buf
));
1086 #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
1087 static void channels_process_sound_chan_karaoke(int count
, int32_t *buf
[])
1089 int32_t *sl
= buf
[0], *sr
= buf
[1];
1093 int32_t ch
= *sl
/2 - *sr
/2;
1097 while (--count
> 0);
1099 #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
1101 static void dsp_set_channel_config(int value
)
1103 static const channels_process_fn_type channels_process_functions
[] =
1105 /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
1106 [SOUND_CHAN_STEREO
] = NULL
,
1107 [SOUND_CHAN_MONO
] = channels_process_sound_chan_mono
,
1108 [SOUND_CHAN_CUSTOM
] = channels_process_sound_chan_custom
,
1109 [SOUND_CHAN_MONO_LEFT
] = channels_process_sound_chan_mono_left
,
1110 [SOUND_CHAN_MONO_RIGHT
] = channels_process_sound_chan_mono_right
,
1111 [SOUND_CHAN_KARAOKE
] = channels_process_sound_chan_karaoke
,
1114 if ((unsigned)value
>= ARRAYLEN(channels_process_functions
) ||
1115 AUDIO_DSP
.stereo_mode
== STEREO_MONO
)
1117 value
= SOUND_CHAN_STEREO
;
1120 /* This doesn't apply to voice */
1121 channels_mode
= value
;
1122 AUDIO_DSP
.channels_process
= channels_process_functions
[value
];
1125 #if CONFIG_CODEC == SWCODEC
1127 #ifdef HAVE_SW_TONE_CONTROLS
1128 static void set_tone_controls(void)
1130 filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY
*200,
1131 0xffffffff/NATIVE_FREQUENCY
*3500,
1132 bass
, treble
, -prescale
,
1133 AUDIO_DSP
.tone_filter
.coefs
);
1134 /* Sync the voice dsp coefficients */
1135 memcpy(&VOICE_DSP
.tone_filter
.coefs
, AUDIO_DSP
.tone_filter
.coefs
,
1136 sizeof (VOICE_DSP
.tone_filter
.coefs
));
1140 /* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
1143 int dsp_callback(int msg
, intptr_t param
)
1147 #ifdef HAVE_SW_TONE_CONTROLS
1148 case DSP_CALLBACK_SET_PRESCALE
:
1150 set_tone_controls();
1152 /* prescaler is always set after calling any of these, so we wait with
1153 * calculating coefs until the above case is hit.
1155 case DSP_CALLBACK_SET_BASS
:
1158 case DSP_CALLBACK_SET_TREBLE
:
1161 #ifdef HAVE_SW_VOLUME_CONTROL
1162 case DSP_CALLBACK_SET_SW_VOLUME
:
1163 set_gain(&AUDIO_DSP
);
1167 case DSP_CALLBACK_SET_CHANNEL_CONFIG
:
1168 dsp_set_channel_config(param
);
1170 case DSP_CALLBACK_SET_STEREO_WIDTH
:
1171 dsp_set_stereo_width(param
);
1180 /* Process and convert src audio to dst based on the DSP configuration,
1181 * reading count number of audio samples. dst is assumed to be large
1182 * enough; use dsp_output_count() to get the required number. src is an
1183 * array of pointers; for mono and interleaved stereo, it contains one
1184 * pointer to the start of the audio data and the other is ignored; for
1185 * non-interleaved stereo, it contains two pointers, one for each audio
1186 * channel. Returns number of bytes written to dst.
1188 int dsp_process(struct dsp_config
*dsp
, char *dst
, const char *src
[], int count
)
1191 static long last_yield
;
1195 #if defined(CPU_COLDFIRE)
1196 /* set emac unit for dsp processing, and save old macsr, we're running in
1197 codec thread context at this point, so can't clobber it */
1198 unsigned long old_macsr
= coldfire_get_macsr();
1199 coldfire_set_macsr(EMAC_FRACTIONAL
| EMAC_SATURATE
);
1203 dsp_set_replaygain(); /* Gain has changed */
1205 /* Perform at least one yield before starting */
1206 last_yield
= current_tick
;
1209 /* Testing function pointers for NULL is preferred since the pointer
1210 will be preloaded to be used for the call if not. */
1213 int samples
= MIN(sample_buf_count
/2, count
);
1216 dsp
->input_samples(samples
, src
, tmp
);
1218 if (dsp
->tdspeed_active
)
1219 samples
= tdspeed_doit(tmp
, samples
);
1221 int chunk_offset
= 0;
1225 t2
[0] = tmp
[0]+chunk_offset
;
1226 t2
[1] = tmp
[1]+chunk_offset
;
1228 int chunk
= MIN(sample_buf_count
/2, samples
);
1229 chunk_offset
+= chunk
;
1232 if (dsp
->apply_gain
)
1233 dsp
->apply_gain(chunk
, &dsp
->data
, t2
);
1235 if (dsp
->resample
&& (chunk
= resample(dsp
, chunk
, t2
)) <= 0)
1236 break; /* I'm pretty sure we're downsampling here */
1238 if (dsp
->apply_crossfeed
)
1239 dsp
->apply_crossfeed(chunk
, t2
);
1241 if (dsp
->eq_process
)
1242 dsp
->eq_process(chunk
, t2
);
1244 #ifdef HAVE_SW_TONE_CONTROLS
1245 if ((bass
| treble
) != 0)
1246 eq_filter(t2
, &dsp
->tone_filter
, chunk
,
1247 dsp
->data
.num_channels
, FILTER_BISHELF_SHIFT
);
1250 if (dsp
->channels_process
)
1251 dsp
->channels_process(chunk
, t2
);
1253 dsp
->output_samples(chunk
, &dsp
->data
, (const int32_t **)t2
, (int16_t *)dst
);
1256 dst
+= chunk
* sizeof (int16_t) * 2;
1258 /* yield at least once each tick */
1259 tick
= current_tick
;
1260 if (TIME_AFTER(tick
, last_yield
))
1268 #if defined(CPU_COLDFIRE)
1269 /* set old macsr again */
1270 coldfire_set_macsr(old_macsr
);
1275 /* Given count number of input samples, calculate the maximum number of
1276 * samples of output data that would be generated (the calculation is not
1277 * entirely exact and rounds upwards to be on the safe side; during
1278 * resampling, the number of samples generated depends on the current state
1279 * of the resampler).
1281 /* dsp_input_size MUST be called afterwards */
1282 int dsp_output_count(struct dsp_config
*dsp
, int count
)
1284 if (dsp
->tdspeed_active
)
1285 count
= tdspeed_est_output_size();
1288 count
= (int)(((unsigned long)count
* NATIVE_FREQUENCY
1289 + (dsp
->frequency
- 1)) / dsp
->frequency
);
1292 /* Now we have the resampled sample count which must not exceed
1293 * RESAMPLE_BUF_RIGHT_CHANNEL to avoid resample buffer overflow. One
1294 * must call dsp_input_count() to get the correct input sample
1297 if (count
> RESAMPLE_BUF_RIGHT_CHANNEL
)
1298 count
= RESAMPLE_BUF_RIGHT_CHANNEL
;
1303 /* Given count output samples, calculate number of input samples
1304 * that would be consumed in order to fill the output buffer.
1306 int dsp_input_count(struct dsp_config
*dsp
, int count
)
1308 /* count is now the number of resampled input samples. Convert to
1309 original input samples. */
1312 /* Use the real resampling delta =
1313 * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
1314 * round towards zero to avoid buffer overflows. */
1315 count
= (int)(((unsigned long)count
*
1316 dsp
->data
.resample_data
.delta
) >> 16);
1319 if (dsp
->tdspeed_active
)
1320 count
= tdspeed_est_input_size(count
);
1325 static void dsp_set_gain_var(long *var
, long value
)
1331 static void dsp_update_functions(struct dsp_config
*dsp
)
1333 sample_input_new_format(dsp
);
1334 sample_output_new_format(dsp
);
1335 if (dsp
== &AUDIO_DSP
)
1336 dsp_set_crossfeed(crossfeed_enabled
);
1339 intptr_t dsp_configure(struct dsp_config
*dsp
, int setting
, intptr_t value
)
1346 case CODEC_IDX_AUDIO
:
1347 return (intptr_t)&AUDIO_DSP
;
1348 case CODEC_IDX_VOICE
:
1349 return (intptr_t)&VOICE_DSP
;
1351 return (intptr_t)NULL
;
1354 case DSP_SET_FREQUENCY
:
1355 memset(&dsp
->data
.resample_data
, 0, sizeof (dsp
->data
.resample_data
));
1356 /* Fall through!!! */
1357 case DSP_SWITCH_FREQUENCY
:
1358 dsp
->codec_frequency
= (value
== 0) ? NATIVE_FREQUENCY
: value
;
1359 /* Account for playback speed adjustment when setting dsp->frequency
1360 if we're called from the main audio thread. Voice UI thread should
1361 not need this feature.
1363 if (dsp
== &AUDIO_DSP
)
1364 dsp
->frequency
= pitch_ratio
* dsp
->codec_frequency
/ PITCH_SPEED_100
;
1366 dsp
->frequency
= dsp
->codec_frequency
;
1368 resampler_new_delta(dsp
);
1372 case DSP_SET_SAMPLE_DEPTH
:
1373 dsp
->sample_depth
= value
;
1375 if (dsp
->sample_depth
<= NATIVE_DEPTH
)
1377 dsp
->frac_bits
= WORD_FRACBITS
;
1378 dsp
->sample_bytes
= sizeof (int16_t); /* samples are 16 bits */
1379 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1380 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1384 dsp
->frac_bits
= value
;
1385 dsp
->sample_bytes
= sizeof (int32_t); /* samples are 32 bits */
1386 dsp
->data
.clip_max
= (1 << value
) - 1;
1387 dsp
->data
.clip_min
= -(1 << value
);
1390 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1391 sample_input_new_format(dsp
);
1395 case DSP_SET_STEREO_MODE
:
1396 dsp
->stereo_mode
= value
;
1397 dsp
->data
.num_channels
= value
== STEREO_MONO
? 1 : 2;
1398 dsp_update_functions(dsp
);
1403 dsp
->stereo_mode
= STEREO_NONINTERLEAVED
;
1404 dsp
->data
.num_channels
= 2;
1405 dsp
->sample_depth
= NATIVE_DEPTH
;
1406 dsp
->frac_bits
= WORD_FRACBITS
;
1407 dsp
->sample_bytes
= sizeof (int16_t);
1408 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1409 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1410 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1411 dsp
->codec_frequency
= dsp
->frequency
= NATIVE_FREQUENCY
;
1413 if (dsp
== &AUDIO_DSP
)
1422 dsp_update_functions(dsp
);
1423 resampler_new_delta(dsp
);
1428 memset(&dsp
->data
.resample_data
, 0,
1429 sizeof (dsp
->data
.resample_data
));
1430 resampler_new_delta(dsp
);
1435 case DSP_SET_TRACK_GAIN
:
1436 if (dsp
== &AUDIO_DSP
)
1437 dsp_set_gain_var(&track_gain
, value
);
1440 case DSP_SET_ALBUM_GAIN
:
1441 if (dsp
== &AUDIO_DSP
)
1442 dsp_set_gain_var(&album_gain
, value
);
1445 case DSP_SET_TRACK_PEAK
:
1446 if (dsp
== &AUDIO_DSP
)
1447 dsp_set_gain_var(&track_peak
, value
);
1450 case DSP_SET_ALBUM_PEAK
:
1451 if (dsp
== &AUDIO_DSP
)
1452 dsp_set_gain_var(&album_peak
, value
);
1462 void dsp_set_replaygain(void)
1468 if ((global_settings
.replaygain_type
!= REPLAYGAIN_OFF
) ||
1469 global_settings
.replaygain_noclip
)
1471 bool track_mode
= get_replaygain_mode(track_gain
!= 0,
1472 album_gain
!= 0) == REPLAYGAIN_TRACK
;
1473 long peak
= (track_mode
|| !album_peak
) ? track_peak
: album_peak
;
1475 if (global_settings
.replaygain_type
!= REPLAYGAIN_OFF
)
1477 gain
= (track_mode
|| !album_gain
) ? track_gain
: album_gain
;
1479 if (global_settings
.replaygain_preamp
)
1481 long preamp
= get_replaygain_int(
1482 global_settings
.replaygain_preamp
* 10);
1484 gain
= (long) (((int64_t) gain
* preamp
) >> 24);
1490 /* So that noclip can work even with no gain information. */
1491 gain
= DEFAULT_GAIN
;
1494 if (global_settings
.replaygain_noclip
&& (peak
!= 0)
1495 && ((((int64_t) gain
* peak
) >> 24) >= DEFAULT_GAIN
))
1497 gain
= (((int64_t) DEFAULT_GAIN
<< 24) / peak
);
1500 if (gain
== DEFAULT_GAIN
)
1502 /* Nothing to do, disable processing. */
1507 /* Store in S8.23 format to simplify calculations. */
1509 set_gain(&AUDIO_DSP
);