2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
28 /* Calculate frequency band tables */
37 #include "sbr_syntax.h"
40 /* static function declarations */
41 static int32_t find_bands(uint8_t warp
, uint8_t bands
, uint8_t a0
, uint8_t a1
);
44 /* calculate the start QMF channel for the master frequency band table */
45 /* parameter is also called k0 */
46 uint8_t qmf_start_channel(uint8_t bs_start_freq
, uint8_t bs_samplerate_mode
,
49 static const uint8_t startMinTable
[12] = { 7, 7, 10, 11, 12, 16, 16,
51 static const uint8_t offsetIndexTable
[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0,
53 static const int8_t offset
[7][16] = {
54 { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 },
55 { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 },
56 { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
57 { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
58 { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 },
59 { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 },
60 { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 }
62 uint8_t startMin
= startMinTable
[get_sr_index(sample_rate
)];
63 uint8_t offsetIndex
= offsetIndexTable
[get_sr_index(sample_rate
)];
65 #if 0 /* replaced with table (startMinTable) */
66 if (sample_rate
>= 64000)
68 startMin
= (uint8_t)((5000.*128.)/(float)sample_rate
+ 0.5);
69 } else if (sample_rate
< 32000) {
70 startMin
= (uint8_t)((3000.*128.)/(float)sample_rate
+ 0.5);
72 startMin
= (uint8_t)((4000.*128.)/(float)sample_rate
+ 0.5);
76 if (bs_samplerate_mode
)
78 return startMin
+ offset
[offsetIndex
][bs_start_freq
];
80 #if 0 /* replaced by offsetIndexTable */
84 return startMin
+ offset
[0][bs_start_freq
];
86 return startMin
+ offset
[1][bs_start_freq
];
88 return startMin
+ offset
[2][bs_start_freq
];
90 return startMin
+ offset
[3][bs_start_freq
];
92 if (sample_rate
> 64000)
94 return startMin
+ offset
[5][bs_start_freq
];
95 } else { /* 44100 <= sample_rate <= 64000 */
96 return startMin
+ offset
[4][bs_start_freq
];
101 return startMin
+ offset
[6][bs_start_freq
];
105 static int longcmp(const void *a
, const void *b
)
107 return ((int)(*(int32_t*)a
- *(int32_t*)b
));
110 /* calculate the stop QMF channel for the master frequency band table */
111 /* parameter is also called k2 */
112 uint8_t qmf_stop_channel(uint8_t bs_stop_freq
, uint32_t sample_rate
,
115 if (bs_stop_freq
== 15)
117 return min(64, k0
* 3);
118 } else if (bs_stop_freq
== 14) {
119 return min(64, k0
* 2);
121 static const uint8_t stopMinTable
[12] = { 13, 15, 20, 21, 23,
122 32, 32, 35, 48, 64, 70, 96 };
123 static const int8_t offset
[12][14] = {
124 { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 },
125 { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 },
126 { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 },
127 { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 },
128 { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 },
129 { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
130 { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
131 { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 },
132 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 },
133 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
134 { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 },
135 { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 }
139 int32_t stopDk
[13], stopDk_t
[14], k2
;
141 uint8_t stopMin
= stopMinTable
[get_sr_index(sample_rate
)];
143 #if 0 /* replaced by table lookup */
144 if (sample_rate
>= 64000)
146 stopMin
= (uint8_t)((10000.*128.)/(float)sample_rate
+ 0.5);
147 } else if (sample_rate
< 32000) {
148 stopMin
= (uint8_t)((6000.*128.)/(float)sample_rate
+ 0.5);
150 stopMin
= (uint8_t)((8000.*128.)/(float)sample_rate
+ 0.5);
154 #if 0 /* replaced by table lookup */
155 /* diverging power series */
156 for (i
= 0; i
<= 13; i
++)
158 stopDk_t
[i
] = (int32_t)(stopMin
*pow(64.0/stopMin
, i
/13.0) + 0.5);
160 for (i
= 0; i
< 13; i
++)
162 stopDk
[i
] = stopDk_t
[i
+1] - stopDk_t
[i
];
166 qsort(stopDk
, 13, sizeof(stopDk
[0]), longcmp
);
169 for (i
= 0; i
< bs_stop_freq
; i
++)
175 /* bs_stop_freq <= 13 */
176 return min(64, stopMin
+ offset
[get_sr_index(sample_rate
)][min(bs_stop_freq
, 13)]);
182 /* calculate the master frequency table from k0, k2, bs_freq_scale
185 version for bs_freq_scale = 0
187 uint8_t master_frequency_table_fs0(sbr_info
*sbr
, uint8_t k0
, uint8_t k2
,
188 uint8_t bs_alter_scale
)
193 uint32_t nrBands
, k2Achieved
;
194 int32_t k2Diff
, vDk
[64] = {0};
196 /* mft only defined for k2 > k0 */
203 dk
= bs_alter_scale
? 2 : 1;
205 #if 0 /* replaced by float-less design */
206 nrBands
= 2 * (int32_t)((float)(k2
-k0
)/(dk
*2) + (-1+dk
)/2.0f
);
210 nrBands
= (((k2
-k0
+2)>>2)<<1);
212 nrBands
= (((k2
-k0
)>>1)<<1);
215 nrBands
= min(nrBands
, 63);
219 k2Achieved
= k0
+ nrBands
* dk
;
220 k2Diff
= k2
- k2Achieved
;
221 for (k
= 0; k
< nrBands
; k
++)
226 incr
= (k2Diff
> 0) ? -1 : 1;
227 k
= (uint8_t) ((k2Diff
> 0) ? (nrBands
-1) : 0);
237 sbr
->f_master
[0] = k0
;
238 for (k
= 1; k
<= nrBands
; k
++)
239 sbr
->f_master
[k
] = (uint8_t)(sbr
->f_master
[k
-1] + vDk
[k
-1]);
241 sbr
->N_master
= (uint8_t)nrBands
;
242 sbr
->N_master
= (min(sbr
->N_master
, 64));
245 printf("f_master[%d]: ", nrBands
);
246 for (k
= 0; k
<= nrBands
; k
++)
248 printf("%d ", sbr
->f_master
[k
]);
257 This function finds the number of bands using this formula:
258 bands * log(a1/a0)/log(2.0) + 0.5
260 static int32_t find_bands(uint8_t warp
, uint8_t bands
, uint8_t a0
, uint8_t a1
)
263 /* table with log2() values */
264 static const real_t log2Table
[65] = {
265 COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
266 COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
267 COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
268 COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
269 COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
270 COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
271 COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
272 COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
273 COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
274 COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
275 COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
276 COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
277 COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
278 COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
279 COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
280 COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
283 real_t r0
= log2Table
[a0
]; /* coef */
284 real_t r1
= log2Table
[a1
]; /* coef */
285 real_t r2
= (r1
- r0
); /* coef */
288 r2
= MUL_C(r2
, COEF_CONST(1.0/1.3));
290 /* convert r2 to real and then multiply and round */
291 r2
= (r2
>> (COEF_BITS
-REAL_BITS
)) * bands
+ (1<<(REAL_BITS
-1));
293 return (r2
>> REAL_BITS
);
295 real_t div
= (real_t
)log(2.0);
296 if (warp
) div
*= (real_t
)1.3;
298 return (int32_t)(bands
* log((float)a1
/(float)a0
)/div
+ 0.5);
302 static real_t
find_initial_power(uint8_t bands
, uint8_t a0
, uint8_t a1
)
305 /* table with log() values */
306 static const real_t logTable
[65] = {
307 COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
308 COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
309 COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
310 COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
311 COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
312 COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
313 COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
314 COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
315 COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
316 COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
317 COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
318 COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
319 COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
320 COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
321 COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
322 COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
323 COEF_CONST(4.158883083)
325 /* standard Taylor polynomial coefficients for exp(x) around 0 */
326 /* a polynomial around x=1 is more precise, as most values are around 1.07,
327 but this is just fine already */
328 static const real_t c1
= COEF_CONST(1.0);
329 static const real_t c2
= COEF_CONST(1.0/2.0);
330 static const real_t c3
= COEF_CONST(1.0/6.0);
331 static const real_t c4
= COEF_CONST(1.0/24.0);
333 real_t r0
= logTable
[a0
]; /* coef */
334 real_t r1
= logTable
[a1
]; /* coef */
335 real_t r2
= (r1
- r0
) / bands
; /* coef */
336 real_t rexp
= c1
+ MUL_C((c1
+ MUL_C((c2
+ MUL_C((c3
+ MUL_C(c4
,r2
)), r2
)), r2
)), r2
);
338 return (rexp
>> (COEF_BITS
-REAL_BITS
)); /* real */
340 return (real_t
)pow((real_t
)a1
/(real_t
)a0
, 1.0/(real_t
)bands
);
345 version for bs_freq_scale > 0
347 uint8_t master_frequency_table(sbr_info
*sbr
, uint8_t k0
, uint8_t k2
,
348 uint8_t bs_freq_scale
, uint8_t bs_alter_scale
)
350 uint8_t k
, bands
, twoRegions
;
352 uint8_t nrBand0
, nrBand1
;
353 int32_t vDk0
[64] = {0}, vDk1
[64] = {0};
354 int32_t vk0
[64] = {0}, vk1
[64] = {0};
355 uint8_t temp1
[] = { 6, 5, 4 };
362 (void)bs_alter_scale
;
363 /* mft only defined for k2 > k0 */
370 bands
= temp1
[bs_freq_scale
-1];
373 rk0
= (real_t
)k0
<< REAL_BITS
;
374 rk2
= (real_t
)k2
<< REAL_BITS
;
375 if (rk2
> MUL_C(rk0
, COEF_CONST(2.2449)))
377 if ((float)k2
/(float)k0
> 2.2449)
387 nrBand0
= (uint8_t)(2 * find_bands(0, bands
, k0
, k1
));
388 nrBand0
= min(nrBand0
, 63);
392 q
= find_initial_power(nrBand0
, k0
, k1
);
394 qk
= (real_t
)k0
<< REAL_BITS
;
395 //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
399 A_1
= (int32_t)(qk
+ .5);
401 for (k
= 0; k
<= nrBand0
; k
++)
406 A_1
= (int32_t)((qk
+ REAL_CONST(0.5)) >> REAL_BITS
);
409 A_1
= (int32_t)(qk
+ 0.5);
415 qsort(vDk0
, nrBand0
, sizeof(vDk0
[0]), longcmp
);
418 for (k
= 1; k
<= nrBand0
; k
++)
420 vk0
[k
] = vk0
[k
-1] + vDk0
[k
-1];
427 for (k
= 0; k
<= nrBand0
; k
++)
428 sbr
->f_master
[k
] = (uint8_t) vk0
[k
];
430 sbr
->N_master
= nrBand0
;
431 sbr
->N_master
= min(sbr
->N_master
, 64);
435 nrBand1
= (uint8_t)(2 * find_bands(1 /* warped */, bands
, k1
, k2
));
436 nrBand1
= min(nrBand1
, 63);
438 q
= find_initial_power(nrBand1
, k1
, k2
);
440 qk
= (real_t
)k1
<< REAL_BITS
;
441 //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
445 A_1
= (int32_t)(qk
+ .5);
447 for (k
= 0; k
<= nrBand1
- 1; k
++)
452 A_1
= (int32_t)((qk
+ REAL_CONST(0.5)) >> REAL_BITS
);
455 A_1
= (int32_t)(qk
+ 0.5);
460 if (vDk1
[0] < vDk0
[nrBand0
- 1])
465 qsort(vDk1
, nrBand1
+ 1, sizeof(vDk1
[0]), longcmp
);
466 change
= vDk0
[nrBand0
- 1] - vDk1
[0];
467 vDk1
[0] = vDk0
[nrBand0
- 1];
468 vDk1
[nrBand1
- 1] = vDk1
[nrBand1
- 1] - change
;
472 qsort(vDk1
, nrBand1
, sizeof(vDk1
[0]), longcmp
);
474 for (k
= 1; k
<= nrBand1
; k
++)
476 vk1
[k
] = vk1
[k
-1] + vDk1
[k
-1];
481 sbr
->N_master
= nrBand0
+ nrBand1
;
482 sbr
->N_master
= min(sbr
->N_master
, 64);
483 for (k
= 0; k
<= nrBand0
; k
++)
485 sbr
->f_master
[k
] = (uint8_t) vk0
[k
];
487 for (k
= nrBand0
+ 1; k
<= sbr
->N_master
; k
++)
489 sbr
->f_master
[k
] = (uint8_t) vk1
[k
- nrBand0
];
493 printf("f_master[%d]: ", sbr
->N_master
);
494 for (k
= 0; k
<= sbr
->N_master
; k
++)
496 printf("%d ", sbr
->f_master
[k
]);
504 /* calculate the derived frequency border tables from f_master */
505 uint8_t derived_frequency_table(sbr_info
*sbr
, uint8_t bs_xover_band
,
511 /* The following relation shall be satisfied: bs_xover_band < N_Master */
512 if (sbr
->N_master
<= bs_xover_band
)
515 sbr
->N_high
= sbr
->N_master
- bs_xover_band
;
516 sbr
->N_low
= (sbr
->N_high
>>1) + (sbr
->N_high
- ((sbr
->N_high
>>1)<<1));
518 sbr
->n
[0] = sbr
->N_low
;
519 sbr
->n
[1] = sbr
->N_high
;
521 for (k
= 0; k
<= sbr
->N_high
; k
++)
523 sbr
->f_table_res
[HI_RES
][k
] = sbr
->f_master
[k
+ bs_xover_band
];
526 sbr
->M
= sbr
->f_table_res
[HI_RES
][sbr
->N_high
] - sbr
->f_table_res
[HI_RES
][0];
527 sbr
->kx
= sbr
->f_table_res
[HI_RES
][0];
530 if (sbr
->kx
+ sbr
->M
> 64)
533 minus
= (sbr
->N_high
& 1) ? 1 : 0;
535 for (k
= 0; k
<= sbr
->N_low
; k
++)
540 i
= (uint8_t)(2*k
- minus
);
541 sbr
->f_table_res
[LO_RES
][k
] = sbr
->f_table_res
[HI_RES
][i
];
545 printf("bs_freq_scale: %d\n", sbr
->bs_freq_scale
);
546 printf("bs_limiter_bands: %d\n", sbr
->bs_limiter_bands
);
547 printf("f_table_res[HI_RES][%d]: ", sbr
->N_high
);
548 for (k
= 0; k
<= sbr
->N_high
; k
++)
550 printf("%d ", sbr
->f_table_res
[HI_RES
][k
]);
555 printf("f_table_res[LO_RES][%d]: ", sbr
->N_low
);
556 for (k
= 0; k
<= sbr
->N_low
; k
++)
558 printf("%d ", sbr
->f_table_res
[LO_RES
][k
]);
564 if (sbr
->bs_noise_bands
== 0)
569 sbr
->N_Q
= max(1, (int32_t)(sbr
->bs_noise_bands
*(log(k2
/(float)sbr
->kx
)/log(2.0)) + 0.5));
571 sbr
->N_Q
= (uint8_t)(max(1, find_bands(0, sbr
->bs_noise_bands
, sbr
->kx
, k2
)));
573 sbr
->N_Q
= min(5, sbr
->N_Q
);
576 for (k
= 0; k
<= sbr
->N_Q
; k
++)
582 /* i = i + (int32_t)((sbr->N_low - i)/(sbr->N_Q + 1 - k)); */
583 i
= i
+ (sbr
->N_low
- i
)/(sbr
->N_Q
+ 1 - k
);
585 sbr
->f_table_noise
[k
] = sbr
->f_table_res
[LO_RES
][i
];
588 /* build table for mapping k to g in hf patching */
589 for (k
= 0; k
< 64; k
++)
592 for (g
= 0; g
< sbr
->N_Q
; g
++)
594 if ((sbr
->f_table_noise
[g
] <= k
) &&
595 (k
< sbr
->f_table_noise
[g
+1]))
597 sbr
->table_map_k_to_g
[k
] = g
;
604 printf("f_table_noise[%d]: ", sbr
->N_Q
);
605 for (k
= 0; k
<= sbr
->N_Q
; k
++)
607 printf("%d ", sbr
->f_table_noise
[k
] - sbr
->kx
);
615 /* TODO: blegh, ugly */
616 /* Modified to calculate for all possible bs_limiter_bands always
617 * This reduces the number calls to this functions needed (now only on
620 void limiter_frequency_table(sbr_info
*sbr
)
623 static const real_t limiterBandsPerOctave
[] = { REAL_CONST(1.2),
624 REAL_CONST(2), REAL_CONST(3) };
626 static const real_t limiterBandsCompare
[] = { REAL_CONST(1.327152),
627 REAL_CONST(1.185093), REAL_CONST(1.119872) };
635 sbr
->f_table_lim
[0][0] = sbr
->f_table_res
[LO_RES
][0] - sbr
->kx
;
636 sbr
->f_table_lim
[0][1] = sbr
->f_table_res
[LO_RES
][sbr
->N_low
] - sbr
->kx
;
640 printf("f_table_lim[%d][%d]: ", 0, sbr
->N_L
[0]);
641 for (k
= 0; k
<= sbr
->N_L
[0]; k
++)
643 printf("%d ", sbr
->f_table_lim
[0][k
]);
648 for (s
= 1; s
< 4; s
++)
650 int32_t limTable
[100 /*TODO*/] = {0};
651 uint8_t patchBorders
[64/*??*/] = {0};
654 limBands
= limiterBandsPerOctave
[s
- 1];
657 patchBorders
[0] = sbr
->kx
;
658 for (k
= 1; k
<= sbr
->noPatches
; k
++)
660 patchBorders
[k
] = patchBorders
[k
-1] + sbr
->patchNoSubbands
[k
-1];
663 for (k
= 0; k
<= sbr
->N_low
; k
++)
665 limTable
[k
] = sbr
->f_table_res
[LO_RES
][k
];
667 for (k
= 1; k
< sbr
->noPatches
; k
++)
669 limTable
[k
+sbr
->N_low
] = patchBorders
[k
];
673 qsort(limTable
, sbr
->noPatches
+ sbr
->N_low
, sizeof(limTable
[0]), longcmp
);
675 nrLim
= sbr
->noPatches
+ sbr
->N_low
- 1;
677 if (nrLim
< 0) // TODO: BIG FAT PROBLEM
685 if (limTable
[k
-1] != 0)
687 nOctaves
= REAL_CONST(log((float)limTable
[k
]/(float)limTable
[k
-1])/log(2.0));
690 nOctaves
= DIV_R((limTable
[k
]<<REAL_BITS
),limTable
[k
-1]);
692 nOctaves
= (real_t
)limTable
[k
]/(real_t
)limTable
[k
-1];
699 if ((MUL_R(nOctaves
,limBands
)) < REAL_CONST(0.49))
701 if (nOctaves
< limiterBandsCompare
[s
- 1])
705 if (limTable
[k
] != limTable
[k
-1])
707 uint8_t found
= 0, found2
= 0;
708 for (i
= 0; i
<= sbr
->noPatches
; i
++)
710 if (limTable
[k
] == patchBorders
[i
])
716 for (i
= 0; i
<= sbr
->noPatches
; i
++)
718 if (limTable
[k
-1] == patchBorders
[i
])
726 /* remove (k-1)th element */
727 limTable
[k
-1] = sbr
->f_table_res
[LO_RES
][sbr
->N_low
];
728 qsort(limTable
, sbr
->noPatches
+ sbr
->N_low
, sizeof(limTable
[0]), longcmp
);
734 /* remove kth element */
735 limTable
[k
] = sbr
->f_table_res
[LO_RES
][sbr
->N_low
];
736 qsort(limTable
, nrLim
, sizeof(limTable
[0]), longcmp
);
746 for (k
= 0; k
<= nrLim
; k
++)
748 sbr
->f_table_lim
[s
][k
] = limTable
[k
] - sbr
->kx
;
752 printf("f_table_lim[%d][%d]: ", s
, sbr
->N_L
[s
]);
753 for (k
= 0; k
<= sbr
->N_L
[s
]; k
++)
755 printf("%d ", sbr
->f_table_lim
[s
][k
]);