2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
40 #if !defined(TARGET_IA64)
48 #if defined(CONFIG_USER_ONLY)
52 //#define DEBUG_TB_INVALIDATE
55 //#define DEBUG_UNASSIGNED
57 /* make various TB consistency checks */
58 //#define DEBUG_TB_CHECK
59 //#define DEBUG_TLB_CHECK
61 //#define DEBUG_IOPORT
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* TB consistency checks only implemented for usermode emulation. */
69 #define SMC_BITMAP_USE_THRESHOLD 10
71 #define MMAP_AREA_START 0x00000000
72 #define MMAP_AREA_END 0xa8000000
74 #if defined(TARGET_SPARC64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 41
76 #elif defined(TARGET_SPARC)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #elif defined(TARGET_ALPHA)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #define TARGET_VIRT_ADDR_SPACE_BITS 42
81 #elif defined(TARGET_PPC64)
82 #define TARGET_PHYS_ADDR_SPACE_BITS 42
83 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
84 #define TARGET_PHYS_ADDR_SPACE_BITS 42
85 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
86 #define TARGET_PHYS_ADDR_SPACE_BITS 36
87 #elif defined(TARGET_IA64)
88 #define TARGET_PHYS_ADDR_SPACE_BITS 36
90 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
91 #define TARGET_PHYS_ADDR_SPACE_BITS 32
94 static TranslationBlock
*tbs
;
95 int code_gen_max_blocks
;
96 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
98 /* any access to the tbs or the page table must use this lock */
99 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
101 #if defined(__arm__) || defined(__sparc_v9__)
102 /* The prologue must be reachable with a direct jump. ARM and Sparc64
103 have limited branch ranges (possibly also PPC) so place it in a
104 section close to code segment. */
105 #define code_gen_section \
106 __attribute__((__section__(".gen_code"))) \
107 __attribute__((aligned (32)))
109 #define code_gen_section \
110 __attribute__((aligned (32)))
113 uint8_t code_gen_prologue
[1024] code_gen_section
;
114 static uint8_t *code_gen_buffer
;
115 static unsigned long code_gen_buffer_size
;
116 /* threshold to flush the translated code buffer */
117 static unsigned long code_gen_buffer_max_size
;
118 uint8_t *code_gen_ptr
;
120 #if !defined(CONFIG_USER_ONLY)
121 ram_addr_t phys_ram_size
;
123 uint8_t *phys_ram_base
;
124 uint8_t *phys_ram_dirty
;
126 static int in_migration
;
127 static ram_addr_t phys_ram_alloc_offset
= 0;
131 /* current CPU in the current thread. It is only valid inside
133 CPUState
*cpu_single_env
;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
142 typedef struct PageDesc
{
143 /* list of TBs intersecting this ram page */
144 TranslationBlock
*first_tb
;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count
;
148 uint8_t *code_bitmap
;
149 #if defined(CONFIG_USER_ONLY)
154 typedef struct PhysPageDesc
{
155 /* offset in host memory of the page + io_index in the low bits */
156 ram_addr_t phys_offset
;
157 ram_addr_t region_offset
;
161 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162 /* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
166 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
171 #define L1_SIZE (1 << L1_BITS)
172 #define L2_SIZE (1 << L2_BITS)
174 unsigned long qemu_real_host_page_size
;
175 unsigned long qemu_host_page_bits
;
176 unsigned long qemu_host_page_size
;
177 unsigned long qemu_host_page_mask
;
179 /* XXX: for system emulation, it could just be an array */
180 static PageDesc
*l1_map
[L1_SIZE
];
181 static PhysPageDesc
**l1_phys_map
;
183 #if !defined(CONFIG_USER_ONLY)
184 static void io_mem_init(void);
186 /* io memory support */
187 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
188 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
189 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
190 char io_mem_used
[IO_MEM_NB_ENTRIES
];
191 static int io_mem_watch
;
195 static const char *logfilename
= "/tmp/qemu.log";
198 static int log_append
= 0;
201 static int tlb_flush_count
;
202 static int tb_flush_count
;
203 static int tb_phys_invalidate_count
;
205 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
206 typedef struct subpage_t
{
207 target_phys_addr_t base
;
208 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
209 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
210 void *opaque
[TARGET_PAGE_SIZE
][2][4];
211 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
215 static void map_exec(void *addr
, long size
)
218 VirtualProtect(addr
, size
,
219 PAGE_EXECUTE_READWRITE
, &old_protect
);
223 static void map_exec(void *addr
, long size
)
225 unsigned long start
, end
, page_size
;
227 page_size
= getpagesize();
228 start
= (unsigned long)addr
;
229 start
&= ~(page_size
- 1);
231 end
= (unsigned long)addr
+ size
;
232 end
+= page_size
- 1;
233 end
&= ~(page_size
- 1);
235 mprotect((void *)start
, end
- start
,
236 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
240 static void page_init(void)
242 /* NOTE: we can always suppose that qemu_host_page_size >=
246 SYSTEM_INFO system_info
;
248 GetSystemInfo(&system_info
);
249 qemu_real_host_page_size
= system_info
.dwPageSize
;
252 qemu_real_host_page_size
= getpagesize();
254 if (qemu_host_page_size
== 0)
255 qemu_host_page_size
= qemu_real_host_page_size
;
256 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
257 qemu_host_page_size
= TARGET_PAGE_SIZE
;
258 qemu_host_page_bits
= 0;
259 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
260 qemu_host_page_bits
++;
261 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
262 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
263 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
265 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 long long startaddr
, endaddr
;
272 last_brk
= (unsigned long)sbrk(0);
273 f
= fopen("/proc/self/maps", "r");
276 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
278 startaddr
= MIN(startaddr
,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
280 endaddr
= MIN(endaddr
,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
282 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
283 TARGET_PAGE_ALIGN(endaddr
),
294 static inline PageDesc
**page_l1_map(target_ulong index
)
296 #if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
299 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
302 return &l1_map
[index
>> L2_BITS
];
305 static inline PageDesc
*page_find_alloc(target_ulong index
)
308 lp
= page_l1_map(index
);
314 /* allocate if not found */
315 #if defined(CONFIG_USER_ONLY)
316 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
317 /* Don't use qemu_malloc because it may recurse. */
318 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
319 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
322 unsigned long addr
= h2g(p
);
323 page_set_flags(addr
& TARGET_PAGE_MASK
,
324 TARGET_PAGE_ALIGN(addr
+ len
),
328 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
332 return p
+ (index
& (L2_SIZE
- 1));
335 static inline PageDesc
*page_find(target_ulong index
)
338 lp
= page_l1_map(index
);
345 return p
+ (index
& (L2_SIZE
- 1));
348 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
353 p
= (void **)l1_phys_map
;
354 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
356 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
357 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
362 /* allocate if not found */
365 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
366 memset(p
, 0, sizeof(void *) * L1_SIZE
);
370 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
374 /* allocate if not found */
377 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
379 for (i
= 0; i
< L2_SIZE
; i
++)
380 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
382 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
385 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
387 return phys_page_find_alloc(index
, 0);
390 #if !defined(CONFIG_USER_ONLY)
391 static void tlb_protect_code(ram_addr_t ram_addr
);
392 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
394 #define mmap_lock() do { } while(0)
395 #define mmap_unlock() do { } while(0)
398 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
400 #if defined(CONFIG_USER_ONLY)
401 /* Currently it is not recommanded to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403 #define USE_STATIC_CODE_GEN_BUFFER
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
410 static void code_gen_alloc(unsigned long tb_size
)
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer
= static_code_gen_buffer
;
417 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
418 map_exec(code_gen_buffer
, code_gen_buffer_size
);
420 code_gen_buffer_size
= tb_size
;
421 if (code_gen_buffer_size
== 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
426 /* XXX: needs ajustments */
427 code_gen_buffer_size
= (unsigned long)(phys_ram_size
/ 4);
430 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
431 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
439 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
440 #if defined(__x86_64__)
442 /* Cannot map more than that */
443 if (code_gen_buffer_size
> (800 * 1024 * 1024))
444 code_gen_buffer_size
= (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
448 start
= (void *) 0x60000000UL
;
449 if (code_gen_buffer_size
> (512 * 1024 * 1024))
450 code_gen_buffer_size
= (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
454 start
= (void *) 0x01000000UL
;
455 if (code_gen_buffer_size
> 16 * 1024 * 1024)
456 code_gen_buffer_size
= 16 * 1024 * 1024;
458 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
459 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
461 if (code_gen_buffer
== MAP_FAILED
) {
462 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
466 #elif defined(__FreeBSD__)
470 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
475 addr
= (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size
> (800 * 1024 * 1024))
478 code_gen_buffer_size
= (800 * 1024 * 1024);
480 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
481 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
483 if (code_gen_buffer
== MAP_FAILED
) {
484 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
489 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
490 if (!code_gen_buffer
) {
491 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
494 map_exec(code_gen_buffer
, code_gen_buffer_size
);
496 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
497 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
498 code_gen_buffer_max_size
= code_gen_buffer_size
-
499 code_gen_max_block_size();
500 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
501 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
504 /* Must be called before using the QEMU cpus. 'tb_size' is the size
505 (in bytes) allocated to the translation buffer. Zero means default
507 void cpu_exec_init_all(unsigned long tb_size
)
510 code_gen_alloc(tb_size
);
511 code_gen_ptr
= code_gen_buffer
;
513 #if !defined(CONFIG_USER_ONLY)
518 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
520 #define CPU_COMMON_SAVE_VERSION 1
522 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
524 CPUState
*env
= opaque
;
526 qemu_put_be32s(f
, &env
->halted
);
527 qemu_put_be32s(f
, &env
->interrupt_request
);
530 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
532 CPUState
*env
= opaque
;
534 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
537 qemu_get_be32s(f
, &env
->halted
);
538 qemu_get_be32s(f
, &env
->interrupt_request
);
545 void cpu_exec_init(CPUState
*env
)
550 env
->next_cpu
= NULL
;
553 while (*penv
!= NULL
) {
554 penv
= (CPUState
**)&(*penv
)->next_cpu
;
557 env
->cpu_index
= cpu_index
;
558 TAILQ_INIT(&env
->breakpoints
);
559 TAILQ_INIT(&env
->watchpoints
);
561 env
->thread_id
= GetCurrentProcessId();
563 env
->thread_id
= getpid();
566 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
567 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
568 cpu_common_save
, cpu_common_load
, env
);
569 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
570 cpu_save
, cpu_load
, env
);
574 static inline void invalidate_page_bitmap(PageDesc
*p
)
576 if (p
->code_bitmap
) {
577 qemu_free(p
->code_bitmap
);
578 p
->code_bitmap
= NULL
;
580 p
->code_write_count
= 0;
583 /* set to NULL all the 'first_tb' fields in all PageDescs */
584 static void page_flush_tb(void)
589 for(i
= 0; i
< L1_SIZE
; i
++) {
592 for(j
= 0; j
< L2_SIZE
; j
++) {
594 invalidate_page_bitmap(p
);
601 /* flush all the translation blocks */
602 /* XXX: tb_flush is currently not thread safe */
603 void tb_flush(CPUState
*env1
)
606 #if defined(DEBUG_FLUSH)
607 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
608 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
610 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
612 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
613 cpu_abort(env1
, "Internal error: code buffer overflow\n");
617 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
618 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
621 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
624 code_gen_ptr
= code_gen_buffer
;
625 /* XXX: flush processor icache at this point if cache flush is
630 #ifdef DEBUG_TB_CHECK
632 static void tb_invalidate_check(target_ulong address
)
634 TranslationBlock
*tb
;
636 address
&= TARGET_PAGE_MASK
;
637 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
638 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
639 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
640 address
>= tb
->pc
+ tb
->size
)) {
641 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
642 address
, (long)tb
->pc
, tb
->size
);
648 /* verify that all the pages have correct rights for code */
649 static void tb_page_check(void)
651 TranslationBlock
*tb
;
652 int i
, flags1
, flags2
;
654 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
655 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
656 flags1
= page_get_flags(tb
->pc
);
657 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
658 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
659 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
660 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
666 static void tb_jmp_check(TranslationBlock
*tb
)
668 TranslationBlock
*tb1
;
671 /* suppress any remaining jumps to this TB */
675 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
678 tb1
= tb1
->jmp_next
[n1
];
680 /* check end of list */
682 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
688 /* invalidate one TB */
689 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
692 TranslationBlock
*tb1
;
696 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
699 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
703 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
705 TranslationBlock
*tb1
;
711 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
713 *ptb
= tb1
->page_next
[n1
];
716 ptb
= &tb1
->page_next
[n1
];
720 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
722 TranslationBlock
*tb1
, **ptb
;
725 ptb
= &tb
->jmp_next
[n
];
728 /* find tb(n) in circular list */
732 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
733 if (n1
== n
&& tb1
== tb
)
736 ptb
= &tb1
->jmp_first
;
738 ptb
= &tb1
->jmp_next
[n1
];
741 /* now we can suppress tb(n) from the list */
742 *ptb
= tb
->jmp_next
[n
];
744 tb
->jmp_next
[n
] = NULL
;
748 /* reset the jump entry 'n' of a TB so that it is not chained to
750 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
752 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
755 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
760 target_phys_addr_t phys_pc
;
761 TranslationBlock
*tb1
, *tb2
;
763 /* remove the TB from the hash list */
764 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
765 h
= tb_phys_hash_func(phys_pc
);
766 tb_remove(&tb_phys_hash
[h
], tb
,
767 offsetof(TranslationBlock
, phys_hash_next
));
769 /* remove the TB from the page list */
770 if (tb
->page_addr
[0] != page_addr
) {
771 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
772 tb_page_remove(&p
->first_tb
, tb
);
773 invalidate_page_bitmap(p
);
775 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
776 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
777 tb_page_remove(&p
->first_tb
, tb
);
778 invalidate_page_bitmap(p
);
781 tb_invalidated_flag
= 1;
783 /* remove the TB from the hash list */
784 h
= tb_jmp_cache_hash_func(tb
->pc
);
785 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
786 if (env
->tb_jmp_cache
[h
] == tb
)
787 env
->tb_jmp_cache
[h
] = NULL
;
790 /* suppress this TB from the two jump lists */
791 tb_jmp_remove(tb
, 0);
792 tb_jmp_remove(tb
, 1);
794 /* suppress any remaining jumps to this TB */
800 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
801 tb2
= tb1
->jmp_next
[n1
];
802 tb_reset_jump(tb1
, n1
);
803 tb1
->jmp_next
[n1
] = NULL
;
806 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
808 tb_phys_invalidate_count
++;
811 static inline void set_bits(uint8_t *tab
, int start
, int len
)
817 mask
= 0xff << (start
& 7);
818 if ((start
& ~7) == (end
& ~7)) {
820 mask
&= ~(0xff << (end
& 7));
825 start
= (start
+ 8) & ~7;
827 while (start
< end1
) {
832 mask
= ~(0xff << (end
& 7));
838 static void build_page_bitmap(PageDesc
*p
)
840 int n
, tb_start
, tb_end
;
841 TranslationBlock
*tb
;
843 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
850 tb
= (TranslationBlock
*)((long)tb
& ~3);
851 /* NOTE: this is subtle as a TB may span two physical pages */
853 /* NOTE: tb_end may be after the end of the page, but
854 it is not a problem */
855 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
856 tb_end
= tb_start
+ tb
->size
;
857 if (tb_end
> TARGET_PAGE_SIZE
)
858 tb_end
= TARGET_PAGE_SIZE
;
861 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
863 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
864 tb
= tb
->page_next
[n
];
868 TranslationBlock
*tb_gen_code(CPUState
*env
,
869 target_ulong pc
, target_ulong cs_base
,
870 int flags
, int cflags
)
872 TranslationBlock
*tb
;
874 target_ulong phys_pc
, phys_page2
, virt_page2
;
877 phys_pc
= get_phys_addr_code(env
, pc
);
880 /* flush must be done */
882 /* cannot fail at this point */
884 /* Don't forget to invalidate previous TB info. */
885 tb_invalidated_flag
= 1;
887 tc_ptr
= code_gen_ptr
;
889 tb
->cs_base
= cs_base
;
892 cpu_gen_code(env
, tb
, &code_gen_size
);
893 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
895 /* check next page if needed */
896 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
898 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
899 phys_page2
= get_phys_addr_code(env
, virt_page2
);
901 tb_link_phys(tb
, phys_pc
, phys_page2
);
905 /* invalidate all TBs which intersect with the target physical page
906 starting in range [start;end[. NOTE: start and end must refer to
907 the same physical page. 'is_cpu_write_access' should be true if called
908 from a real cpu write access: the virtual CPU will exit the current
909 TB if code is modified inside this TB. */
910 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
911 int is_cpu_write_access
)
913 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
914 CPUState
*env
= cpu_single_env
;
915 target_ulong tb_start
, tb_end
;
918 #ifdef TARGET_HAS_PRECISE_SMC
919 int current_tb_not_found
= is_cpu_write_access
;
920 TranslationBlock
*current_tb
= NULL
;
921 int current_tb_modified
= 0;
922 target_ulong current_pc
= 0;
923 target_ulong current_cs_base
= 0;
924 int current_flags
= 0;
925 #endif /* TARGET_HAS_PRECISE_SMC */
927 p
= page_find(start
>> TARGET_PAGE_BITS
);
930 if (!p
->code_bitmap
&&
931 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
932 is_cpu_write_access
) {
933 /* build code bitmap */
934 build_page_bitmap(p
);
937 /* we remove all the TBs in the range [start, end[ */
938 /* XXX: see if in some cases it could be faster to invalidate all the code */
942 tb
= (TranslationBlock
*)((long)tb
& ~3);
943 tb_next
= tb
->page_next
[n
];
944 /* NOTE: this is subtle as a TB may span two physical pages */
946 /* NOTE: tb_end may be after the end of the page, but
947 it is not a problem */
948 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
949 tb_end
= tb_start
+ tb
->size
;
951 tb_start
= tb
->page_addr
[1];
952 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
954 if (!(tb_end
<= start
|| tb_start
>= end
)) {
955 #ifdef TARGET_HAS_PRECISE_SMC
956 if (current_tb_not_found
) {
957 current_tb_not_found
= 0;
959 if (env
->mem_io_pc
) {
960 /* now we have a real cpu fault */
961 current_tb
= tb_find_pc(env
->mem_io_pc
);
964 if (current_tb
== tb
&&
965 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
966 /* If we are modifying the current TB, we must stop
967 its execution. We could be more precise by checking
968 that the modification is after the current PC, but it
969 would require a specialized function to partially
970 restore the CPU state */
972 current_tb_modified
= 1;
973 cpu_restore_state(current_tb
, env
,
974 env
->mem_io_pc
, NULL
);
975 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
978 #endif /* TARGET_HAS_PRECISE_SMC */
979 /* we need to do that to handle the case where a signal
980 occurs while doing tb_phys_invalidate() */
983 saved_tb
= env
->current_tb
;
984 env
->current_tb
= NULL
;
986 tb_phys_invalidate(tb
, -1);
988 env
->current_tb
= saved_tb
;
989 if (env
->interrupt_request
&& env
->current_tb
)
990 cpu_interrupt(env
, env
->interrupt_request
);
995 #if !defined(CONFIG_USER_ONLY)
996 /* if no code remaining, no need to continue to use slow writes */
998 invalidate_page_bitmap(p
);
999 if (is_cpu_write_access
) {
1000 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1004 #ifdef TARGET_HAS_PRECISE_SMC
1005 if (current_tb_modified
) {
1006 /* we generate a block containing just the instruction
1007 modifying the memory. It will ensure that it cannot modify
1009 env
->current_tb
= NULL
;
1010 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1011 cpu_resume_from_signal(env
, NULL
);
1016 /* len must be <= 8 and start must be a multiple of len */
1017 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1024 fprintf(logfile
, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1025 cpu_single_env
->mem_io_vaddr
, len
,
1026 cpu_single_env
->eip
,
1027 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1031 p
= page_find(start
>> TARGET_PAGE_BITS
);
1034 if (p
->code_bitmap
) {
1035 offset
= start
& ~TARGET_PAGE_MASK
;
1036 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1037 if (b
& ((1 << len
) - 1))
1041 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1045 #if !defined(CONFIG_SOFTMMU)
1046 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1047 unsigned long pc
, void *puc
)
1049 TranslationBlock
*tb
;
1052 #ifdef TARGET_HAS_PRECISE_SMC
1053 TranslationBlock
*current_tb
= NULL
;
1054 CPUState
*env
= cpu_single_env
;
1055 int current_tb_modified
= 0;
1056 target_ulong current_pc
= 0;
1057 target_ulong current_cs_base
= 0;
1058 int current_flags
= 0;
1061 addr
&= TARGET_PAGE_MASK
;
1062 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1066 #ifdef TARGET_HAS_PRECISE_SMC
1067 if (tb
&& pc
!= 0) {
1068 current_tb
= tb_find_pc(pc
);
1071 while (tb
!= NULL
) {
1073 tb
= (TranslationBlock
*)((long)tb
& ~3);
1074 #ifdef TARGET_HAS_PRECISE_SMC
1075 if (current_tb
== tb
&&
1076 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1077 /* If we are modifying the current TB, we must stop
1078 its execution. We could be more precise by checking
1079 that the modification is after the current PC, but it
1080 would require a specialized function to partially
1081 restore the CPU state */
1083 current_tb_modified
= 1;
1084 cpu_restore_state(current_tb
, env
, pc
, puc
);
1085 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1088 #endif /* TARGET_HAS_PRECISE_SMC */
1089 tb_phys_invalidate(tb
, addr
);
1090 tb
= tb
->page_next
[n
];
1093 #ifdef TARGET_HAS_PRECISE_SMC
1094 if (current_tb_modified
) {
1095 /* we generate a block containing just the instruction
1096 modifying the memory. It will ensure that it cannot modify
1098 env
->current_tb
= NULL
;
1099 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1100 cpu_resume_from_signal(env
, puc
);
1106 /* add the tb in the target page and protect it if necessary */
1107 static inline void tb_alloc_page(TranslationBlock
*tb
,
1108 unsigned int n
, target_ulong page_addr
)
1111 TranslationBlock
*last_first_tb
;
1113 tb
->page_addr
[n
] = page_addr
;
1114 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1115 tb
->page_next
[n
] = p
->first_tb
;
1116 last_first_tb
= p
->first_tb
;
1117 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1118 invalidate_page_bitmap(p
);
1120 #if defined(TARGET_HAS_SMC) || 1
1122 #if defined(CONFIG_USER_ONLY)
1123 if (p
->flags
& PAGE_WRITE
) {
1128 /* force the host page as non writable (writes will have a
1129 page fault + mprotect overhead) */
1130 page_addr
&= qemu_host_page_mask
;
1132 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1133 addr
+= TARGET_PAGE_SIZE
) {
1135 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1139 p2
->flags
&= ~PAGE_WRITE
;
1140 page_get_flags(addr
);
1142 mprotect(g2h(page_addr
), qemu_host_page_size
,
1143 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1144 #ifdef DEBUG_TB_INVALIDATE
1145 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1150 /* if some code is already present, then the pages are already
1151 protected. So we handle the case where only the first TB is
1152 allocated in a physical page */
1153 if (!last_first_tb
) {
1154 tlb_protect_code(page_addr
);
1158 #endif /* TARGET_HAS_SMC */
1161 /* Allocate a new translation block. Flush the translation buffer if
1162 too many translation blocks or too much generated code. */
1163 TranslationBlock
*tb_alloc(target_ulong pc
)
1165 TranslationBlock
*tb
;
1167 if (nb_tbs
>= code_gen_max_blocks
||
1168 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1170 tb
= &tbs
[nb_tbs
++];
1176 void tb_free(TranslationBlock
*tb
)
1178 /* In practice this is mostly used for single use temporary TB
1179 Ignore the hard cases and just back up if this TB happens to
1180 be the last one generated. */
1181 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1182 code_gen_ptr
= tb
->tc_ptr
;
1187 /* add a new TB and link it to the physical page tables. phys_page2 is
1188 (-1) to indicate that only one page contains the TB. */
1189 void tb_link_phys(TranslationBlock
*tb
,
1190 target_ulong phys_pc
, target_ulong phys_page2
)
1193 TranslationBlock
**ptb
;
1195 /* Grab the mmap lock to stop another thread invalidating this TB
1196 before we are done. */
1198 /* add in the physical hash table */
1199 h
= tb_phys_hash_func(phys_pc
);
1200 ptb
= &tb_phys_hash
[h
];
1201 tb
->phys_hash_next
= *ptb
;
1204 /* add in the page list */
1205 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1206 if (phys_page2
!= -1)
1207 tb_alloc_page(tb
, 1, phys_page2
);
1209 tb
->page_addr
[1] = -1;
1211 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1212 tb
->jmp_next
[0] = NULL
;
1213 tb
->jmp_next
[1] = NULL
;
1215 /* init original jump addresses */
1216 if (tb
->tb_next_offset
[0] != 0xffff)
1217 tb_reset_jump(tb
, 0);
1218 if (tb
->tb_next_offset
[1] != 0xffff)
1219 tb_reset_jump(tb
, 1);
1221 #ifdef DEBUG_TB_CHECK
1227 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1228 tb[1].tc_ptr. Return NULL if not found */
1229 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1231 int m_min
, m_max
, m
;
1233 TranslationBlock
*tb
;
1237 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1238 tc_ptr
>= (unsigned long)code_gen_ptr
)
1240 /* binary search (cf Knuth) */
1243 while (m_min
<= m_max
) {
1244 m
= (m_min
+ m_max
) >> 1;
1246 v
= (unsigned long)tb
->tc_ptr
;
1249 else if (tc_ptr
< v
) {
1258 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1260 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1262 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1265 tb1
= tb
->jmp_next
[n
];
1267 /* find head of list */
1270 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1273 tb1
= tb1
->jmp_next
[n1
];
1275 /* we are now sure now that tb jumps to tb1 */
1278 /* remove tb from the jmp_first list */
1279 ptb
= &tb_next
->jmp_first
;
1283 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1284 if (n1
== n
&& tb1
== tb
)
1286 ptb
= &tb1
->jmp_next
[n1
];
1288 *ptb
= tb
->jmp_next
[n
];
1289 tb
->jmp_next
[n
] = NULL
;
1291 /* suppress the jump to next tb in generated code */
1292 tb_reset_jump(tb
, n
);
1294 /* suppress jumps in the tb on which we could have jumped */
1295 tb_reset_jump_recursive(tb_next
);
1299 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1301 tb_reset_jump_recursive2(tb
, 0);
1302 tb_reset_jump_recursive2(tb
, 1);
1305 #if defined(TARGET_HAS_ICE)
1306 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1308 target_phys_addr_t addr
;
1310 ram_addr_t ram_addr
;
1313 addr
= cpu_get_phys_page_debug(env
, pc
);
1314 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1316 pd
= IO_MEM_UNASSIGNED
;
1318 pd
= p
->phys_offset
;
1320 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1321 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1325 /* Add a watchpoint. */
1326 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1327 int flags
, CPUWatchpoint
**watchpoint
)
1329 target_ulong len_mask
= ~(len
- 1);
1332 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1333 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1334 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1335 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1338 wp
= qemu_malloc(sizeof(*wp
));
1343 wp
->len_mask
= len_mask
;
1346 /* keep all GDB-injected watchpoints in front */
1348 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1350 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1352 tlb_flush_page(env
, addr
);
1359 /* Remove a specific watchpoint. */
1360 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1363 target_ulong len_mask
= ~(len
- 1);
1366 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1367 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1368 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1369 cpu_watchpoint_remove_by_ref(env
, wp
);
1376 /* Remove a specific watchpoint by reference. */
1377 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1379 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1381 tlb_flush_page(env
, watchpoint
->vaddr
);
1383 qemu_free(watchpoint
);
1386 /* Remove all matching watchpoints. */
1387 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1389 CPUWatchpoint
*wp
, *next
;
1391 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1392 if (wp
->flags
& mask
)
1393 cpu_watchpoint_remove_by_ref(env
, wp
);
1397 /* Add a breakpoint. */
1398 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1399 CPUBreakpoint
**breakpoint
)
1401 #if defined(TARGET_HAS_ICE)
1404 bp
= qemu_malloc(sizeof(*bp
));
1411 /* keep all GDB-injected breakpoints in front */
1413 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1415 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1417 breakpoint_invalidate(env
, pc
);
1427 /* Remove a specific breakpoint. */
1428 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1430 #if defined(TARGET_HAS_ICE)
1433 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1434 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1435 cpu_breakpoint_remove_by_ref(env
, bp
);
1445 /* Remove a specific breakpoint by reference. */
1446 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1448 #if defined(TARGET_HAS_ICE)
1449 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1451 breakpoint_invalidate(env
, breakpoint
->pc
);
1453 qemu_free(breakpoint
);
1457 /* Remove all matching breakpoints. */
1458 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1460 #if defined(TARGET_HAS_ICE)
1461 CPUBreakpoint
*bp
, *next
;
1463 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1464 if (bp
->flags
& mask
)
1465 cpu_breakpoint_remove_by_ref(env
, bp
);
1470 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1471 CPU loop after each instruction */
1472 void cpu_single_step(CPUState
*env
, int enabled
)
1474 #if defined(TARGET_HAS_ICE)
1475 if (env
->singlestep_enabled
!= enabled
) {
1476 env
->singlestep_enabled
= enabled
;
1478 kvm_update_guest_debug(env
, 0);
1480 /* must flush all the translated code to avoid inconsistancies */
1481 /* XXX: only flush what is necessary */
1488 /* enable or disable low levels log */
1489 void cpu_set_log(int log_flags
)
1491 loglevel
= log_flags
;
1492 if (loglevel
&& !logfile
) {
1493 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1495 perror(logfilename
);
1498 #if !defined(CONFIG_SOFTMMU)
1499 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1501 static char logfile_buf
[4096];
1502 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1505 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1509 if (!loglevel
&& logfile
) {
1515 void cpu_set_log_filename(const char *filename
)
1517 logfilename
= strdup(filename
);
1522 cpu_set_log(loglevel
);
1525 /* mask must never be zero, except for A20 change call */
1526 void cpu_interrupt(CPUState
*env
, int mask
)
1528 #if !defined(USE_NPTL)
1529 TranslationBlock
*tb
;
1530 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1534 old_mask
= env
->interrupt_request
;
1535 /* FIXME: This is probably not threadsafe. A different thread could
1536 be in the middle of a read-modify-write operation. */
1537 env
->interrupt_request
|= mask
;
1538 if (kvm_enabled() && !qemu_kvm_irqchip_in_kernel())
1539 kvm_update_interrupt_request(env
);
1540 #if defined(USE_NPTL)
1541 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1542 problem and hope the cpu will stop of its own accord. For userspace
1543 emulation this often isn't actually as bad as it sounds. Often
1544 signals are used primarily to interrupt blocking syscalls. */
1547 env
->icount_decr
.u16
.high
= 0xffff;
1548 #ifndef CONFIG_USER_ONLY
1549 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1550 an async event happened and we need to process it. */
1552 && (mask
& ~(old_mask
| CPU_INTERRUPT_EXIT
)) != 0) {
1553 cpu_abort(env
, "Raised interrupt while not in I/O function");
1557 tb
= env
->current_tb
;
1558 /* if the cpu is currently executing code, we must unlink it and
1559 all the potentially executing TB */
1560 if (tb
&& !testandset(&interrupt_lock
)) {
1561 env
->current_tb
= NULL
;
1562 tb_reset_jump_recursive(tb
);
1563 resetlock(&interrupt_lock
);
1569 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1571 env
->interrupt_request
&= ~mask
;
1574 const CPULogItem cpu_log_items
[] = {
1575 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1576 "show generated host assembly code for each compiled TB" },
1577 { CPU_LOG_TB_IN_ASM
, "in_asm",
1578 "show target assembly code for each compiled TB" },
1579 { CPU_LOG_TB_OP
, "op",
1580 "show micro ops for each compiled TB" },
1581 { CPU_LOG_TB_OP_OPT
, "op_opt",
1584 "before eflags optimization and "
1586 "after liveness analysis" },
1587 { CPU_LOG_INT
, "int",
1588 "show interrupts/exceptions in short format" },
1589 { CPU_LOG_EXEC
, "exec",
1590 "show trace before each executed TB (lots of logs)" },
1591 { CPU_LOG_TB_CPU
, "cpu",
1592 "show CPU state before block translation" },
1594 { CPU_LOG_PCALL
, "pcall",
1595 "show protected mode far calls/returns/exceptions" },
1598 { CPU_LOG_IOPORT
, "ioport",
1599 "show all i/o ports accesses" },
1604 static int cmp1(const char *s1
, int n
, const char *s2
)
1606 if (strlen(s2
) != n
)
1608 return memcmp(s1
, s2
, n
) == 0;
1611 /* takes a comma separated list of log masks. Return 0 if error. */
1612 int cpu_str_to_log_mask(const char *str
)
1614 const CPULogItem
*item
;
1621 p1
= strchr(p
, ',');
1624 if(cmp1(p
,p1
-p
,"all")) {
1625 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1629 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1630 if (cmp1(p
, p1
- p
, item
->name
))
1644 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1651 fprintf(stderr
, "qemu: fatal: ");
1652 vfprintf(stderr
, fmt
, ap
);
1653 fprintf(stderr
, "\n");
1655 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1657 cpu_dump_state(env
, stderr
, fprintf
, 0);
1660 fprintf(logfile
, "qemu: fatal: ");
1661 vfprintf(logfile
, fmt
, ap2
);
1662 fprintf(logfile
, "\n");
1664 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1666 cpu_dump_state(env
, logfile
, fprintf
, 0);
1676 CPUState
*cpu_copy(CPUState
*env
)
1678 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1679 /* preserve chaining and index */
1680 CPUState
*next_cpu
= new_env
->next_cpu
;
1681 int cpu_index
= new_env
->cpu_index
;
1682 memcpy(new_env
, env
, sizeof(CPUState
));
1683 new_env
->next_cpu
= next_cpu
;
1684 new_env
->cpu_index
= cpu_index
;
1688 #if !defined(CONFIG_USER_ONLY)
1690 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1694 /* Discard jump cache entries for any tb which might potentially
1695 overlap the flushed page. */
1696 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1697 memset (&env
->tb_jmp_cache
[i
], 0,
1698 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1700 i
= tb_jmp_cache_hash_page(addr
);
1701 memset (&env
->tb_jmp_cache
[i
], 0,
1702 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1705 /* NOTE: if flush_global is true, also flush global entries (not
1707 void tlb_flush(CPUState
*env
, int flush_global
)
1711 #if defined(DEBUG_TLB)
1712 printf("tlb_flush:\n");
1714 /* must reset current TB so that interrupts cannot modify the
1715 links while we are modifying them */
1716 env
->current_tb
= NULL
;
1718 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1719 env
->tlb_table
[0][i
].addr_read
= -1;
1720 env
->tlb_table
[0][i
].addr_write
= -1;
1721 env
->tlb_table
[0][i
].addr_code
= -1;
1722 env
->tlb_table
[1][i
].addr_read
= -1;
1723 env
->tlb_table
[1][i
].addr_write
= -1;
1724 env
->tlb_table
[1][i
].addr_code
= -1;
1725 #if (NB_MMU_MODES >= 3)
1726 env
->tlb_table
[2][i
].addr_read
= -1;
1727 env
->tlb_table
[2][i
].addr_write
= -1;
1728 env
->tlb_table
[2][i
].addr_code
= -1;
1729 #if (NB_MMU_MODES == 4)
1730 env
->tlb_table
[3][i
].addr_read
= -1;
1731 env
->tlb_table
[3][i
].addr_write
= -1;
1732 env
->tlb_table
[3][i
].addr_code
= -1;
1737 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1740 if (env
->kqemu_enabled
) {
1741 kqemu_flush(env
, flush_global
);
1747 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1749 if (addr
== (tlb_entry
->addr_read
&
1750 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1751 addr
== (tlb_entry
->addr_write
&
1752 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1753 addr
== (tlb_entry
->addr_code
&
1754 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1755 tlb_entry
->addr_read
= -1;
1756 tlb_entry
->addr_write
= -1;
1757 tlb_entry
->addr_code
= -1;
1761 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1765 #if defined(DEBUG_TLB)
1766 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1768 /* must reset current TB so that interrupts cannot modify the
1769 links while we are modifying them */
1770 env
->current_tb
= NULL
;
1772 addr
&= TARGET_PAGE_MASK
;
1773 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1774 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1775 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1776 #if (NB_MMU_MODES >= 3)
1777 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1778 #if (NB_MMU_MODES == 4)
1779 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1783 tlb_flush_jmp_cache(env
, addr
);
1786 if (env
->kqemu_enabled
) {
1787 kqemu_flush_page(env
, addr
);
1792 /* update the TLBs so that writes to code in the virtual page 'addr'
1794 static void tlb_protect_code(ram_addr_t ram_addr
)
1796 cpu_physical_memory_reset_dirty(ram_addr
,
1797 ram_addr
+ TARGET_PAGE_SIZE
,
1801 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1802 tested for self modifying code */
1803 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1806 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1809 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1810 unsigned long start
, unsigned long length
)
1813 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1814 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1815 if ((addr
- start
) < length
) {
1816 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1821 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1825 unsigned long length
, start1
;
1829 start
&= TARGET_PAGE_MASK
;
1830 end
= TARGET_PAGE_ALIGN(end
);
1832 length
= end
- start
;
1835 len
= length
>> TARGET_PAGE_BITS
;
1837 /* XXX: should not depend on cpu context */
1839 if (env
->kqemu_enabled
) {
1842 for(i
= 0; i
< len
; i
++) {
1843 kqemu_set_notdirty(env
, addr
);
1844 addr
+= TARGET_PAGE_SIZE
;
1848 mask
= ~dirty_flags
;
1849 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1850 for(i
= 0; i
< len
; i
++)
1853 /* we modify the TLB cache so that the dirty bit will be set again
1854 when accessing the range */
1855 start1
= start
+ (unsigned long)phys_ram_base
;
1856 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1857 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1858 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1859 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1860 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1861 #if (NB_MMU_MODES >= 3)
1862 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1863 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1864 #if (NB_MMU_MODES == 4)
1865 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1866 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1872 int cpu_physical_memory_set_dirty_tracking(int enable
)
1877 r
= kvm_physical_memory_set_dirty_tracking(enable
);
1878 in_migration
= enable
;
1882 int cpu_physical_memory_get_dirty_tracking(void)
1884 return in_migration
;
1887 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1890 kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1893 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1895 ram_addr_t ram_addr
;
1897 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1898 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1899 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1900 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1901 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1906 /* update the TLB according to the current state of the dirty bits */
1907 void cpu_tlb_update_dirty(CPUState
*env
)
1910 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1911 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1912 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1913 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1914 #if (NB_MMU_MODES >= 3)
1915 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1916 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1917 #if (NB_MMU_MODES == 4)
1918 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1919 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1924 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1926 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1927 tlb_entry
->addr_write
= vaddr
;
1930 /* update the TLB corresponding to virtual page vaddr
1931 so that it is no longer dirty */
1932 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1936 vaddr
&= TARGET_PAGE_MASK
;
1937 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1938 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1939 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1940 #if (NB_MMU_MODES >= 3)
1941 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1942 #if (NB_MMU_MODES == 4)
1943 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1948 /* add a new TLB entry. At most one entry for a given virtual address
1949 is permitted. Return 0 if OK or 2 if the page could not be mapped
1950 (can only happen in non SOFTMMU mode for I/O pages or pages
1951 conflicting with the host address space). */
1952 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1953 target_phys_addr_t paddr
, int prot
,
1954 int mmu_idx
, int is_softmmu
)
1959 target_ulong address
;
1960 target_ulong code_address
;
1961 target_phys_addr_t addend
;
1965 target_phys_addr_t iotlb
;
1967 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1969 pd
= IO_MEM_UNASSIGNED
;
1971 pd
= p
->phys_offset
;
1973 #if defined(DEBUG_TLB)
1974 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1975 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1980 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1981 /* IO memory case (romd handled later) */
1982 address
|= TLB_MMIO
;
1984 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
1985 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1987 iotlb
= pd
& TARGET_PAGE_MASK
;
1988 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1989 iotlb
|= IO_MEM_NOTDIRTY
;
1991 iotlb
|= IO_MEM_ROM
;
1993 /* IO handlers are currently passed a phsical address.
1994 It would be nice to pass an offset from the base address
1995 of that region. This would avoid having to special case RAM,
1996 and avoid full address decoding in every device.
1997 We can't use the high bits of pd for this because
1998 IO_MEM_ROMD uses these as a ram address. */
1999 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2001 iotlb
+= p
->region_offset
;
2007 code_address
= address
;
2008 /* Make accesses to pages with watchpoints go via the
2009 watchpoint trap routines. */
2010 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2011 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2012 iotlb
= io_mem_watch
+ paddr
;
2013 /* TODO: The memory case can be optimized by not trapping
2014 reads of pages with a write breakpoint. */
2015 address
|= TLB_MMIO
;
2019 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2020 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2021 te
= &env
->tlb_table
[mmu_idx
][index
];
2022 te
->addend
= addend
- vaddr
;
2023 if (prot
& PAGE_READ
) {
2024 te
->addr_read
= address
;
2029 if (prot
& PAGE_EXEC
) {
2030 te
->addr_code
= code_address
;
2034 if (prot
& PAGE_WRITE
) {
2035 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2036 (pd
& IO_MEM_ROMD
)) {
2037 /* Write access calls the I/O callback. */
2038 te
->addr_write
= address
| TLB_MMIO
;
2039 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2040 !cpu_physical_memory_is_dirty(pd
)) {
2041 te
->addr_write
= address
| TLB_NOTDIRTY
;
2043 te
->addr_write
= address
;
2046 te
->addr_write
= -1;
2053 void tlb_flush(CPUState
*env
, int flush_global
)
2057 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2061 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2062 target_phys_addr_t paddr
, int prot
,
2063 int mmu_idx
, int is_softmmu
)
2068 /* dump memory mappings */
2069 void page_dump(FILE *f
)
2071 unsigned long start
, end
;
2072 int i
, j
, prot
, prot1
;
2075 fprintf(f
, "%-8s %-8s %-8s %s\n",
2076 "start", "end", "size", "prot");
2080 for(i
= 0; i
<= L1_SIZE
; i
++) {
2085 for(j
= 0;j
< L2_SIZE
; j
++) {
2090 if (prot1
!= prot
) {
2091 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2093 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2094 start
, end
, end
- start
,
2095 prot
& PAGE_READ
? 'r' : '-',
2096 prot
& PAGE_WRITE
? 'w' : '-',
2097 prot
& PAGE_EXEC
? 'x' : '-');
2111 int page_get_flags(target_ulong address
)
2115 p
= page_find(address
>> TARGET_PAGE_BITS
);
2121 /* modify the flags of a page and invalidate the code if
2122 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2123 depending on PAGE_WRITE */
2124 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2129 /* mmap_lock should already be held. */
2130 start
= start
& TARGET_PAGE_MASK
;
2131 end
= TARGET_PAGE_ALIGN(end
);
2132 if (flags
& PAGE_WRITE
)
2133 flags
|= PAGE_WRITE_ORG
;
2134 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2135 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2136 /* We may be called for host regions that are outside guest
2140 /* if the write protection is set, then we invalidate the code
2142 if (!(p
->flags
& PAGE_WRITE
) &&
2143 (flags
& PAGE_WRITE
) &&
2145 tb_invalidate_phys_page(addr
, 0, NULL
);
2151 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2157 if (start
+ len
< start
)
2158 /* we've wrapped around */
2161 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2162 start
= start
& TARGET_PAGE_MASK
;
2164 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2165 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2168 if( !(p
->flags
& PAGE_VALID
) )
2171 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2173 if (flags
& PAGE_WRITE
) {
2174 if (!(p
->flags
& PAGE_WRITE_ORG
))
2176 /* unprotect the page if it was put read-only because it
2177 contains translated code */
2178 if (!(p
->flags
& PAGE_WRITE
)) {
2179 if (!page_unprotect(addr
, 0, NULL
))
2188 /* called from signal handler: invalidate the code and unprotect the
2189 page. Return TRUE if the fault was succesfully handled. */
2190 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2192 unsigned int page_index
, prot
, pindex
;
2194 target_ulong host_start
, host_end
, addr
;
2196 /* Technically this isn't safe inside a signal handler. However we
2197 know this only ever happens in a synchronous SEGV handler, so in
2198 practice it seems to be ok. */
2201 host_start
= address
& qemu_host_page_mask
;
2202 page_index
= host_start
>> TARGET_PAGE_BITS
;
2203 p1
= page_find(page_index
);
2208 host_end
= host_start
+ qemu_host_page_size
;
2211 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2215 /* if the page was really writable, then we change its
2216 protection back to writable */
2217 if (prot
& PAGE_WRITE_ORG
) {
2218 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2219 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2220 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2221 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2222 p1
[pindex
].flags
|= PAGE_WRITE
;
2223 /* and since the content will be modified, we must invalidate
2224 the corresponding translated code. */
2225 tb_invalidate_phys_page(address
, pc
, puc
);
2226 #ifdef DEBUG_TB_CHECK
2227 tb_invalidate_check(address
);
2237 static inline void tlb_set_dirty(CPUState
*env
,
2238 unsigned long addr
, target_ulong vaddr
)
2241 #endif /* defined(CONFIG_USER_ONLY) */
2243 #if !defined(CONFIG_USER_ONLY)
2245 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2246 ram_addr_t memory
, ram_addr_t region_offset
);
2247 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2248 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2249 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2252 if (addr > start_addr) \
2255 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2256 if (start_addr2 > 0) \
2260 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2261 end_addr2 = TARGET_PAGE_SIZE - 1; \
2263 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2264 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2269 /* register physical memory. 'size' must be a multiple of the target
2270 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2271 io memory page. The address used when calling the IO function is
2272 the offset from the start of the region, plus region_offset. Both
2273 start_region and regon_offset are rounded down to a page boundary
2274 before calculating this offset. This should not be a problem unless
2275 the low bits of start_addr and region_offset differ. */
2276 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2278 ram_addr_t phys_offset
,
2279 ram_addr_t region_offset
)
2281 target_phys_addr_t addr
, end_addr
;
2284 ram_addr_t orig_size
= size
;
2288 /* XXX: should not depend on cpu context */
2290 if (env
->kqemu_enabled
) {
2291 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2295 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2297 region_offset
&= TARGET_PAGE_MASK
;
2298 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2299 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2300 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2301 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2302 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2303 ram_addr_t orig_memory
= p
->phys_offset
;
2304 target_phys_addr_t start_addr2
, end_addr2
;
2305 int need_subpage
= 0;
2307 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2309 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2310 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2311 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2312 &p
->phys_offset
, orig_memory
,
2315 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2318 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2320 p
->region_offset
= 0;
2322 p
->phys_offset
= phys_offset
;
2323 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2324 (phys_offset
& IO_MEM_ROMD
))
2325 phys_offset
+= TARGET_PAGE_SIZE
;
2328 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2329 p
->phys_offset
= phys_offset
;
2330 p
->region_offset
= region_offset
;
2331 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2332 (phys_offset
& IO_MEM_ROMD
)) {
2333 phys_offset
+= TARGET_PAGE_SIZE
;
2335 target_phys_addr_t start_addr2
, end_addr2
;
2336 int need_subpage
= 0;
2338 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2339 end_addr2
, need_subpage
);
2341 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2342 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2343 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2345 subpage_register(subpage
, start_addr2
, end_addr2
,
2346 phys_offset
, region_offset
);
2347 p
->region_offset
= 0;
2351 region_offset
+= TARGET_PAGE_SIZE
;
2354 /* since each CPU stores ram addresses in its TLB cache, we must
2355 reset the modified entries */
2357 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2362 /* XXX: temporary until new memory mapping API */
2363 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2367 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2369 return IO_MEM_UNASSIGNED
;
2370 return p
->phys_offset
;
2373 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2376 kvm_coalesce_mmio_region(addr
, size
);
2379 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2382 kvm_uncoalesce_mmio_region(addr
, size
);
2385 /* XXX: better than nothing */
2386 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2389 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2390 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2391 (uint64_t)size
, (uint64_t)phys_ram_size
);
2394 addr
= phys_ram_alloc_offset
;
2395 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2399 void qemu_ram_free(ram_addr_t addr
)
2403 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2405 #ifdef DEBUG_UNASSIGNED
2406 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2408 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2409 do_unassigned_access(addr
, 0, 0, 0, 1);
2414 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2416 #ifdef DEBUG_UNASSIGNED
2417 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2419 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2420 do_unassigned_access(addr
, 0, 0, 0, 2);
2425 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2427 #ifdef DEBUG_UNASSIGNED
2428 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2430 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2431 do_unassigned_access(addr
, 0, 0, 0, 4);
2436 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2438 #ifdef DEBUG_UNASSIGNED
2439 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2441 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2442 do_unassigned_access(addr
, 1, 0, 0, 1);
2446 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2448 #ifdef DEBUG_UNASSIGNED
2449 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2451 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2452 do_unassigned_access(addr
, 1, 0, 0, 2);
2456 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2458 #ifdef DEBUG_UNASSIGNED
2459 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2461 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2462 do_unassigned_access(addr
, 1, 0, 0, 4);
2466 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2467 unassigned_mem_readb
,
2468 unassigned_mem_readw
,
2469 unassigned_mem_readl
,
2472 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2473 unassigned_mem_writeb
,
2474 unassigned_mem_writew
,
2475 unassigned_mem_writel
,
2478 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2482 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2483 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2484 #if !defined(CONFIG_USER_ONLY)
2485 tb_invalidate_phys_page_fast(ram_addr
, 1);
2486 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2489 stb_p(phys_ram_base
+ ram_addr
, val
);
2491 if (cpu_single_env
->kqemu_enabled
&&
2492 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2493 kqemu_modify_page(cpu_single_env
, ram_addr
);
2495 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2496 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2497 /* we remove the notdirty callback only if the code has been
2499 if (dirty_flags
== 0xff)
2500 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2503 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2507 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2508 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2509 #if !defined(CONFIG_USER_ONLY)
2510 tb_invalidate_phys_page_fast(ram_addr
, 2);
2511 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2514 stw_p(phys_ram_base
+ ram_addr
, val
);
2516 if (cpu_single_env
->kqemu_enabled
&&
2517 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2518 kqemu_modify_page(cpu_single_env
, ram_addr
);
2520 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2521 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2522 /* we remove the notdirty callback only if the code has been
2524 if (dirty_flags
== 0xff)
2525 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2528 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2532 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2533 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2534 #if !defined(CONFIG_USER_ONLY)
2535 tb_invalidate_phys_page_fast(ram_addr
, 4);
2536 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2539 stl_p(phys_ram_base
+ ram_addr
, val
);
2541 if (cpu_single_env
->kqemu_enabled
&&
2542 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2543 kqemu_modify_page(cpu_single_env
, ram_addr
);
2545 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2546 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2547 /* we remove the notdirty callback only if the code has been
2549 if (dirty_flags
== 0xff)
2550 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2553 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2554 NULL
, /* never used */
2555 NULL
, /* never used */
2556 NULL
, /* never used */
2559 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2560 notdirty_mem_writeb
,
2561 notdirty_mem_writew
,
2562 notdirty_mem_writel
,
2565 /* Generate a debug exception if a watchpoint has been hit. */
2566 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2568 CPUState
*env
= cpu_single_env
;
2569 target_ulong pc
, cs_base
;
2570 TranslationBlock
*tb
;
2575 if (env
->watchpoint_hit
) {
2576 /* We re-entered the check after replacing the TB. Now raise
2577 * the debug interrupt so that is will trigger after the
2578 * current instruction. */
2579 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2582 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2583 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2584 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2585 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2586 wp
->flags
|= BP_WATCHPOINT_HIT
;
2587 if (!env
->watchpoint_hit
) {
2588 env
->watchpoint_hit
= wp
;
2589 tb
= tb_find_pc(env
->mem_io_pc
);
2591 cpu_abort(env
, "check_watchpoint: could not find TB for "
2592 "pc=%p", (void *)env
->mem_io_pc
);
2594 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2595 tb_phys_invalidate(tb
, -1);
2596 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2597 env
->exception_index
= EXCP_DEBUG
;
2599 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2600 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2602 cpu_resume_from_signal(env
, NULL
);
2605 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2610 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2611 so these check for a hit then pass through to the normal out-of-line
2613 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2615 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2616 return ldub_phys(addr
);
2619 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2621 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2622 return lduw_phys(addr
);
2625 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2627 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2628 return ldl_phys(addr
);
2631 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2634 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2635 stb_phys(addr
, val
);
2638 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2641 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2642 stw_phys(addr
, val
);
2645 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2648 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2649 stl_phys(addr
, val
);
2652 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2658 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2664 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2670 idx
= SUBPAGE_IDX(addr
);
2671 #if defined(DEBUG_SUBPAGE)
2672 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2673 mmio
, len
, addr
, idx
);
2675 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2676 addr
+ mmio
->region_offset
[idx
][0][len
]);
2681 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2682 uint32_t value
, unsigned int len
)
2686 idx
= SUBPAGE_IDX(addr
);
2687 #if defined(DEBUG_SUBPAGE)
2688 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2689 mmio
, len
, addr
, idx
, value
);
2691 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2692 addr
+ mmio
->region_offset
[idx
][1][len
],
2696 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2698 #if defined(DEBUG_SUBPAGE)
2699 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2702 return subpage_readlen(opaque
, addr
, 0);
2705 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2708 #if defined(DEBUG_SUBPAGE)
2709 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2711 subpage_writelen(opaque
, addr
, value
, 0);
2714 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2716 #if defined(DEBUG_SUBPAGE)
2717 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2720 return subpage_readlen(opaque
, addr
, 1);
2723 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2726 #if defined(DEBUG_SUBPAGE)
2727 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2729 subpage_writelen(opaque
, addr
, value
, 1);
2732 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2734 #if defined(DEBUG_SUBPAGE)
2735 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2738 return subpage_readlen(opaque
, addr
, 2);
2741 static void subpage_writel (void *opaque
,
2742 target_phys_addr_t addr
, uint32_t value
)
2744 #if defined(DEBUG_SUBPAGE)
2745 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2747 subpage_writelen(opaque
, addr
, value
, 2);
2750 static CPUReadMemoryFunc
*subpage_read
[] = {
2756 static CPUWriteMemoryFunc
*subpage_write
[] = {
2762 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2763 ram_addr_t memory
, ram_addr_t region_offset
)
2768 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2770 idx
= SUBPAGE_IDX(start
);
2771 eidx
= SUBPAGE_IDX(end
);
2772 #if defined(DEBUG_SUBPAGE)
2773 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2774 mmio
, start
, end
, idx
, eidx
, memory
);
2776 memory
>>= IO_MEM_SHIFT
;
2777 for (; idx
<= eidx
; idx
++) {
2778 for (i
= 0; i
< 4; i
++) {
2779 if (io_mem_read
[memory
][i
]) {
2780 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2781 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2782 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2784 if (io_mem_write
[memory
][i
]) {
2785 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2786 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2787 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2795 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2796 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2801 mmio
= qemu_mallocz(sizeof(subpage_t
));
2804 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2805 #if defined(DEBUG_SUBPAGE)
2806 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2807 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2809 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2810 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2817 static int get_free_io_mem_idx(void)
2821 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2822 if (!io_mem_used
[i
]) {
2830 static void io_mem_init(void)
2834 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2835 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2836 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2840 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2841 watch_mem_write
, NULL
);
2842 /* alloc dirty bits array */
2843 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2844 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2847 /* mem_read and mem_write are arrays of functions containing the
2848 function to access byte (index 0), word (index 1) and dword (index
2849 2). Functions can be omitted with a NULL function pointer. The
2850 registered functions may be modified dynamically later.
2851 If io_index is non zero, the corresponding io zone is
2852 modified. If it is zero, a new io zone is allocated. The return
2853 value can be used with cpu_register_physical_memory(). (-1) is
2854 returned if error. */
2855 int cpu_register_io_memory(int io_index
,
2856 CPUReadMemoryFunc
**mem_read
,
2857 CPUWriteMemoryFunc
**mem_write
,
2860 int i
, subwidth
= 0;
2862 if (io_index
<= 0) {
2863 io_index
= get_free_io_mem_idx();
2867 if (io_index
>= IO_MEM_NB_ENTRIES
)
2871 for(i
= 0;i
< 3; i
++) {
2872 if (!mem_read
[i
] || !mem_write
[i
])
2873 subwidth
= IO_MEM_SUBWIDTH
;
2874 io_mem_read
[io_index
][i
] = mem_read
[i
];
2875 io_mem_write
[io_index
][i
] = mem_write
[i
];
2877 io_mem_opaque
[io_index
] = opaque
;
2878 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2881 void cpu_unregister_io_memory(int io_table_address
)
2884 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
2886 for (i
=0;i
< 3; i
++) {
2887 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
2888 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
2890 io_mem_opaque
[io_index
] = NULL
;
2891 io_mem_used
[io_index
] = 0;
2894 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2896 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2899 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2901 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2904 #endif /* !defined(CONFIG_USER_ONLY) */
2906 /* physical memory access (slow version, mainly for debug) */
2907 #if defined(CONFIG_USER_ONLY)
2908 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2909 int len
, int is_write
)
2916 page
= addr
& TARGET_PAGE_MASK
;
2917 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2920 flags
= page_get_flags(page
);
2921 if (!(flags
& PAGE_VALID
))
2924 if (!(flags
& PAGE_WRITE
))
2926 /* XXX: this code should not depend on lock_user */
2927 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2928 /* FIXME - should this return an error rather than just fail? */
2931 unlock_user(p
, addr
, l
);
2933 if (!(flags
& PAGE_READ
))
2935 /* XXX: this code should not depend on lock_user */
2936 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2937 /* FIXME - should this return an error rather than just fail? */
2940 unlock_user(p
, addr
, 0);
2949 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2950 int len
, int is_write
)
2955 target_phys_addr_t page
;
2960 page
= addr
& TARGET_PAGE_MASK
;
2961 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2964 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2966 pd
= IO_MEM_UNASSIGNED
;
2968 pd
= p
->phys_offset
;
2972 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2973 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2975 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
2976 /* XXX: could force cpu_single_env to NULL to avoid
2978 if (l
>= 4 && ((addr
& 3) == 0)) {
2979 /* 32 bit write access */
2981 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2983 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2984 /* 16 bit write access */
2986 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
2989 /* 8 bit write access */
2991 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr
, val
);
2995 unsigned long addr1
;
2996 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2998 ptr
= phys_ram_base
+ addr1
;
2999 memcpy(ptr
, buf
, l
);
3000 if (!cpu_physical_memory_is_dirty(addr1
)) {
3001 /* invalidate code */
3002 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3004 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3005 (0xff & ~CODE_DIRTY_FLAG
);
3007 /* qemu doesn't execute guest code directly, but kvm does
3008 therefore fluch instruction caches */
3010 flush_icache_range((unsigned long)ptr
,
3011 ((unsigned long)ptr
)+l
);
3014 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3015 !(pd
& IO_MEM_ROMD
)) {
3017 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3019 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3020 if (l
>= 4 && ((addr
& 3) == 0)) {
3021 /* 32 bit read access */
3022 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3025 } else if (l
>= 2 && ((addr
& 1) == 0)) {
3026 /* 16 bit read access */
3027 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
3031 /* 8 bit read access */
3032 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr
);
3038 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3039 (addr
& ~TARGET_PAGE_MASK
);
3040 memcpy(buf
, ptr
, l
);
3049 /* used for ROM loading : can write in RAM and ROM */
3050 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3051 const uint8_t *buf
, int len
)
3055 target_phys_addr_t page
;
3060 page
= addr
& TARGET_PAGE_MASK
;
3061 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3064 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3066 pd
= IO_MEM_UNASSIGNED
;
3068 pd
= p
->phys_offset
;
3071 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3072 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3073 !(pd
& IO_MEM_ROMD
)) {
3076 unsigned long addr1
;
3077 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3079 ptr
= phys_ram_base
+ addr1
;
3080 memcpy(ptr
, buf
, l
);
3089 /* warning: addr must be aligned */
3090 uint32_t ldl_phys(target_phys_addr_t addr
)
3098 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3100 pd
= IO_MEM_UNASSIGNED
;
3102 pd
= p
->phys_offset
;
3105 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3106 !(pd
& IO_MEM_ROMD
)) {
3108 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3110 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3111 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3114 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3115 (addr
& ~TARGET_PAGE_MASK
);
3121 /* warning: addr must be aligned */
3122 uint64_t ldq_phys(target_phys_addr_t addr
)
3130 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3132 pd
= IO_MEM_UNASSIGNED
;
3134 pd
= p
->phys_offset
;
3137 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3138 !(pd
& IO_MEM_ROMD
)) {
3140 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3142 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3143 #ifdef TARGET_WORDS_BIGENDIAN
3144 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3145 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3147 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3148 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3152 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3153 (addr
& ~TARGET_PAGE_MASK
);
3160 uint32_t ldub_phys(target_phys_addr_t addr
)
3163 cpu_physical_memory_read(addr
, &val
, 1);
3168 uint32_t lduw_phys(target_phys_addr_t addr
)
3171 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3172 return tswap16(val
);
3176 #define likely(x) __builtin_expect(!!(x), 1)
3177 #define unlikely(x) __builtin_expect(!!(x), 0)
3180 #define unlikely(x) x
3183 /* warning: addr must be aligned. The ram page is not masked as dirty
3184 and the code inside is not invalidated. It is useful if the dirty
3185 bits are used to track modified PTEs */
3186 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3193 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3195 pd
= IO_MEM_UNASSIGNED
;
3197 pd
= p
->phys_offset
;
3200 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3201 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3203 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3204 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3206 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3207 ptr
= phys_ram_base
+ addr1
;
3210 if (unlikely(in_migration
)) {
3211 if (!cpu_physical_memory_is_dirty(addr1
)) {
3212 /* invalidate code */
3213 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3215 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3216 (0xff & ~CODE_DIRTY_FLAG
);
3222 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3229 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3231 pd
= IO_MEM_UNASSIGNED
;
3233 pd
= p
->phys_offset
;
3236 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3237 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3239 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3240 #ifdef TARGET_WORDS_BIGENDIAN
3241 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3242 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3244 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3245 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3248 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3249 (addr
& ~TARGET_PAGE_MASK
);
3254 /* warning: addr must be aligned */
3255 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3262 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3264 pd
= IO_MEM_UNASSIGNED
;
3266 pd
= p
->phys_offset
;
3269 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3270 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3272 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3273 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3275 unsigned long addr1
;
3276 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3278 ptr
= phys_ram_base
+ addr1
;
3280 if (!cpu_physical_memory_is_dirty(addr1
)) {
3281 /* invalidate code */
3282 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3284 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3285 (0xff & ~CODE_DIRTY_FLAG
);
3291 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3294 cpu_physical_memory_write(addr
, &v
, 1);
3298 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3300 uint16_t v
= tswap16(val
);
3301 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3305 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3308 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3313 /* virtual memory access for debug */
3314 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3315 uint8_t *buf
, int len
, int is_write
)
3318 target_phys_addr_t phys_addr
;
3322 page
= addr
& TARGET_PAGE_MASK
;
3323 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3324 /* if no physical page mapped, return an error */
3325 if (phys_addr
== -1)
3327 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3330 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3339 /* in deterministic execution mode, instructions doing device I/Os
3340 must be at the end of the TB */
3341 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3343 TranslationBlock
*tb
;
3345 target_ulong pc
, cs_base
;
3348 tb
= tb_find_pc((unsigned long)retaddr
);
3350 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3353 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3354 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3355 /* Calculate how many instructions had been executed before the fault
3357 n
= n
- env
->icount_decr
.u16
.low
;
3358 /* Generate a new TB ending on the I/O insn. */
3360 /* On MIPS and SH, delay slot instructions can only be restarted if
3361 they were already the first instruction in the TB. If this is not
3362 the first instruction in a TB then re-execute the preceding
3364 #if defined(TARGET_MIPS)
3365 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3366 env
->active_tc
.PC
-= 4;
3367 env
->icount_decr
.u16
.low
++;
3368 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3370 #elif defined(TARGET_SH4)
3371 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3374 env
->icount_decr
.u16
.low
++;
3375 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3378 /* This should never happen. */
3379 if (n
> CF_COUNT_MASK
)
3380 cpu_abort(env
, "TB too big during recompile");
3382 cflags
= n
| CF_LAST_IO
;
3384 cs_base
= tb
->cs_base
;
3386 tb_phys_invalidate(tb
, -1);
3387 /* FIXME: In theory this could raise an exception. In practice
3388 we have already translated the block once so it's probably ok. */
3389 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3390 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3391 the first in the TB) then we end up generating a whole new TB and
3392 repeating the fault, which is horribly inefficient.
3393 Better would be to execute just this insn uncached, or generate a
3395 cpu_resume_from_signal(env
, NULL
);
3398 void dump_exec_info(FILE *f
,
3399 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3401 int i
, target_code_size
, max_target_code_size
;
3402 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3403 TranslationBlock
*tb
;
3405 target_code_size
= 0;
3406 max_target_code_size
= 0;
3408 direct_jmp_count
= 0;
3409 direct_jmp2_count
= 0;
3410 for(i
= 0; i
< nb_tbs
; i
++) {
3412 target_code_size
+= tb
->size
;
3413 if (tb
->size
> max_target_code_size
)
3414 max_target_code_size
= tb
->size
;
3415 if (tb
->page_addr
[1] != -1)
3417 if (tb
->tb_next_offset
[0] != 0xffff) {
3419 if (tb
->tb_next_offset
[1] != 0xffff) {
3420 direct_jmp2_count
++;
3424 /* XXX: avoid using doubles ? */
3425 cpu_fprintf(f
, "Translation buffer state:\n");
3426 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3427 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3428 cpu_fprintf(f
, "TB count %d/%d\n",
3429 nb_tbs
, code_gen_max_blocks
);
3430 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3431 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3432 max_target_code_size
);
3433 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3434 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3435 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3436 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3438 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3439 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3441 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3443 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3444 cpu_fprintf(f
, "\nStatistics:\n");
3445 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3446 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3447 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3448 tcg_dump_info(f
, cpu_fprintf
);
3451 #if !defined(CONFIG_USER_ONLY)
3453 #define MMUSUFFIX _cmmu
3454 #define GETPC() NULL
3455 #define env cpu_single_env
3456 #define SOFTMMU_CODE_ACCESS
3459 #include "softmmu_template.h"
3462 #include "softmmu_template.h"
3465 #include "softmmu_template.h"
3468 #include "softmmu_template.h"