kvm: configure: if all else fails, infer kernel version from .config
[kvm-userspace.git] / qemu / qemu-kvm.c
blob01c265bc534f64ce08a8c691c7d10738ebbc0f08
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 int kvm_allowed = 1;
12 int kvm_irqchip = 1;
13 int kvm_pit = 1;
14 int kvm_nested = 0;
16 #include <assert.h>
17 #include <string.h>
18 #include "hw/hw.h"
19 #include "sysemu.h"
20 #include "qemu-common.h"
21 #include "console.h"
22 #include "block.h"
23 #include "compatfd.h"
24 #include "gdbstub.h"
26 #include "qemu-kvm.h"
27 #include <libkvm.h>
28 #include <pthread.h>
29 #include <sys/utsname.h>
30 #include <sys/syscall.h>
31 #include <sys/mman.h>
33 #define false 0
34 #define true 1
36 extern void perror(const char *s);
38 kvm_context_t kvm_context;
40 extern int smp_cpus;
42 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
43 pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
44 pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
45 pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
46 pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
47 __thread struct CPUState *current_env;
49 static int qemu_system_ready;
51 #define SIG_IPI (SIGRTMIN+4)
53 pthread_t io_thread;
54 static int io_thread_fd = -1;
55 static int io_thread_sigfd = -1;
57 static CPUState *kvm_debug_cpu_requested;
59 /* The list of ioperm_data */
60 static LIST_HEAD(, ioperm_data) ioperm_head;
62 static inline unsigned long kvm_get_thread_id(void)
64 return syscall(SYS_gettid);
67 static void qemu_cond_wait(pthread_cond_t *cond)
69 CPUState *env = cpu_single_env;
70 static const struct timespec ts = {
71 .tv_sec = 0,
72 .tv_nsec = 100000,
75 pthread_cond_timedwait(cond, &qemu_mutex, &ts);
76 cpu_single_env = env;
79 static void sig_ipi_handler(int n)
83 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
85 struct qemu_work_item wi;
87 if (env == current_env) {
88 func(data);
89 return;
92 wi.func = func;
93 wi.data = data;
94 if (!env->kvm_cpu_state.queued_work_first)
95 env->kvm_cpu_state.queued_work_first = &wi;
96 else
97 env->kvm_cpu_state.queued_work_last->next = &wi;
98 env->kvm_cpu_state.queued_work_last = &wi;
99 wi.next = NULL;
100 wi.done = false;
102 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
103 while (!wi.done)
104 qemu_cond_wait(&qemu_work_cond);
107 static void inject_interrupt(void *data)
109 cpu_interrupt(current_env, (int)data);
112 void kvm_inject_interrupt(CPUState *env, int mask)
114 on_vcpu(env, inject_interrupt, (void *)mask);
117 void kvm_update_interrupt_request(CPUState *env)
119 int signal = 0;
121 if (env) {
122 if (!current_env || !current_env->kvm_cpu_state.created)
123 signal = 1;
125 * Testing for created here is really redundant
127 if (current_env && current_env->kvm_cpu_state.created &&
128 env != current_env && !env->kvm_cpu_state.signalled)
129 signal = 1;
131 if (signal) {
132 env->kvm_cpu_state.signalled = 1;
133 if (env->kvm_cpu_state.thread)
134 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
139 void kvm_update_after_sipi(CPUState *env)
141 env->kvm_cpu_state.sipi_needed = 1;
142 kvm_update_interrupt_request(env);
145 void kvm_apic_init(CPUState *env)
147 if (env->cpu_index != 0)
148 env->kvm_cpu_state.init = 1;
149 kvm_update_interrupt_request(env);
152 #include <signal.h>
154 static int try_push_interrupts(void *opaque)
156 return kvm_arch_try_push_interrupts(opaque);
159 static void post_kvm_run(void *opaque, void *data)
161 CPUState *env = (CPUState *)data;
163 pthread_mutex_lock(&qemu_mutex);
164 kvm_arch_post_kvm_run(opaque, env);
167 static int pre_kvm_run(void *opaque, void *data)
169 CPUState *env = (CPUState *)data;
171 kvm_arch_pre_kvm_run(opaque, env);
173 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
174 return 1;
175 pthread_mutex_unlock(&qemu_mutex);
176 return 0;
179 static void kvm_do_load_registers(void *_env)
181 CPUState *env = _env;
183 kvm_arch_load_regs(env);
186 void kvm_load_registers(CPUState *env)
188 if (kvm_enabled() && qemu_system_ready)
189 on_vcpu(env, kvm_do_load_registers, env);
192 static void kvm_do_save_registers(void *_env)
194 CPUState *env = _env;
196 kvm_arch_save_regs(env);
199 void kvm_save_registers(CPUState *env)
201 if (kvm_enabled())
202 on_vcpu(env, kvm_do_save_registers, env);
205 int kvm_cpu_exec(CPUState *env)
207 int r;
209 r = kvm_run(kvm_context, env->cpu_index, env);
210 if (r < 0) {
211 printf("kvm_run returned %d\n", r);
212 exit(1);
215 return 0;
218 extern int vm_running;
220 static int has_work(CPUState *env)
222 if (!vm_running || (env && env->kvm_cpu_state.stopped))
223 return 0;
224 if (!env->halted)
225 return 1;
226 return kvm_arch_has_work(env);
229 static void flush_queued_work(CPUState *env)
231 struct qemu_work_item *wi;
233 if (!env->kvm_cpu_state.queued_work_first)
234 return;
236 while ((wi = env->kvm_cpu_state.queued_work_first)) {
237 env->kvm_cpu_state.queued_work_first = wi->next;
238 wi->func(wi->data);
239 wi->done = true;
241 env->kvm_cpu_state.queued_work_last = NULL;
242 pthread_cond_broadcast(&qemu_work_cond);
245 static void kvm_main_loop_wait(CPUState *env, int timeout)
247 struct timespec ts;
248 int r, e;
249 siginfo_t siginfo;
250 sigset_t waitset;
252 pthread_mutex_unlock(&qemu_mutex);
254 ts.tv_sec = timeout / 1000;
255 ts.tv_nsec = (timeout % 1000) * 1000000;
256 sigemptyset(&waitset);
257 sigaddset(&waitset, SIG_IPI);
259 r = sigtimedwait(&waitset, &siginfo, &ts);
260 e = errno;
262 pthread_mutex_lock(&qemu_mutex);
264 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
265 printf("sigtimedwait: %s\n", strerror(e));
266 exit(1);
269 cpu_single_env = env;
270 flush_queued_work(env);
272 if (env->kvm_cpu_state.stop) {
273 env->kvm_cpu_state.stop = 0;
274 env->kvm_cpu_state.stopped = 1;
275 pthread_cond_signal(&qemu_pause_cond);
278 env->kvm_cpu_state.signalled = 0;
281 static int all_threads_paused(void)
283 CPUState *penv = first_cpu;
285 while (penv) {
286 if (penv->kvm_cpu_state.stop)
287 return 0;
288 penv = (CPUState *)penv->next_cpu;
291 return 1;
294 static void pause_all_threads(void)
296 CPUState *penv = first_cpu;
298 assert(!cpu_single_env);
300 while (penv) {
301 penv->kvm_cpu_state.stop = 1;
302 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
303 penv = (CPUState *)penv->next_cpu;
306 while (!all_threads_paused())
307 qemu_cond_wait(&qemu_pause_cond);
310 static void resume_all_threads(void)
312 CPUState *penv = first_cpu;
314 assert(!cpu_single_env);
316 while (penv) {
317 penv->kvm_cpu_state.stop = 0;
318 penv->kvm_cpu_state.stopped = 0;
319 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
320 penv = (CPUState *)penv->next_cpu;
324 static void kvm_vm_state_change_handler(void *context, int running)
326 if (running)
327 resume_all_threads();
328 else
329 pause_all_threads();
332 static void update_regs_for_sipi(CPUState *env)
334 kvm_arch_update_regs_for_sipi(env);
335 env->kvm_cpu_state.sipi_needed = 0;
338 static void update_regs_for_init(CPUState *env)
340 #ifdef TARGET_I386
341 SegmentCache cs = env->segs[R_CS];
342 #endif
344 cpu_reset(env);
346 #ifdef TARGET_I386
347 /* restore SIPI vector */
348 if(env->kvm_cpu_state.sipi_needed)
349 env->segs[R_CS] = cs;
350 #endif
352 env->kvm_cpu_state.init = 0;
353 kvm_arch_load_regs(env);
356 static void setup_kernel_sigmask(CPUState *env)
358 sigset_t set;
360 sigemptyset(&set);
361 sigaddset(&set, SIGUSR2);
362 sigaddset(&set, SIGIO);
363 sigaddset(&set, SIGALRM);
364 sigprocmask(SIG_BLOCK, &set, NULL);
366 sigprocmask(SIG_BLOCK, NULL, &set);
367 sigdelset(&set, SIG_IPI);
369 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
372 void qemu_kvm_system_reset(void)
374 CPUState *penv = first_cpu;
376 pause_all_threads();
378 qemu_system_reset();
380 while (penv) {
381 kvm_arch_cpu_reset(penv);
382 penv = (CPUState *)penv->next_cpu;
385 resume_all_threads();
388 static int kvm_main_loop_cpu(CPUState *env)
390 setup_kernel_sigmask(env);
392 pthread_mutex_lock(&qemu_mutex);
393 if (kvm_irqchip_in_kernel(kvm_context))
394 env->halted = 0;
396 kvm_qemu_init_env(env);
397 #ifdef TARGET_I386
398 kvm_tpr_vcpu_start(env);
399 #endif
401 cpu_single_env = env;
402 kvm_load_registers(env);
404 while (1) {
405 while (!has_work(env))
406 kvm_main_loop_wait(env, 1000);
407 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
408 env->halted = 0;
409 if (!kvm_irqchip_in_kernel(kvm_context)) {
410 if (env->kvm_cpu_state.init)
411 update_regs_for_init(env);
412 if (env->kvm_cpu_state.sipi_needed)
413 update_regs_for_sipi(env);
415 if (!env->halted && !env->kvm_cpu_state.init)
416 kvm_cpu_exec(env);
417 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
418 kvm_main_loop_wait(env, 0);
420 pthread_mutex_unlock(&qemu_mutex);
421 return 0;
424 static void *ap_main_loop(void *_env)
426 CPUState *env = _env;
427 sigset_t signals;
428 struct ioperm_data *data = NULL;
430 current_env = env;
431 env->thread_id = kvm_get_thread_id();
432 sigfillset(&signals);
433 sigprocmask(SIG_BLOCK, &signals, NULL);
434 kvm_create_vcpu(kvm_context, env->cpu_index);
435 kvm_qemu_init_env(env);
437 #ifdef USE_KVM_DEVICE_ASSIGNMENT
438 /* do ioperm for io ports of assigned devices */
439 LIST_FOREACH(data, &ioperm_head, entries)
440 on_vcpu(env, kvm_arch_do_ioperm, data);
441 #endif
443 /* signal VCPU creation */
444 pthread_mutex_lock(&qemu_mutex);
445 current_env->kvm_cpu_state.created = 1;
446 pthread_cond_signal(&qemu_vcpu_cond);
448 /* and wait for machine initialization */
449 while (!qemu_system_ready)
450 qemu_cond_wait(&qemu_system_cond);
451 pthread_mutex_unlock(&qemu_mutex);
453 kvm_main_loop_cpu(env);
454 return NULL;
457 void kvm_init_vcpu(CPUState *env)
459 int cpu = env->cpu_index;
460 pthread_create(&env->kvm_cpu_state.thread, NULL, ap_main_loop, env);
462 while (env->kvm_cpu_state.created == 0)
463 qemu_cond_wait(&qemu_vcpu_cond);
466 int kvm_init_ap(void)
468 #ifdef TARGET_I386
469 kvm_tpr_opt_setup();
470 #endif
471 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
473 signal(SIG_IPI, sig_ipi_handler);
474 return 0;
477 void qemu_kvm_notify_work(void)
479 uint64_t value = 1;
480 char buffer[8];
481 size_t offset = 0;
483 if (io_thread_fd == -1)
484 return;
486 memcpy(buffer, &value, sizeof(value));
488 while (offset < 8) {
489 ssize_t len;
491 len = write(io_thread_fd, buffer + offset, 8 - offset);
492 if (len == -1 && errno == EINTR)
493 continue;
495 if (len <= 0)
496 break;
498 offset += len;
501 if (offset != 8)
502 fprintf(stderr, "failed to notify io thread\n");
505 /* If we have signalfd, we mask out the signals we want to handle and then
506 * use signalfd to listen for them. We rely on whatever the current signal
507 * handler is to dispatch the signals when we receive them.
510 static void sigfd_handler(void *opaque)
512 int fd = (unsigned long)opaque;
513 struct qemu_signalfd_siginfo info;
514 struct sigaction action;
515 ssize_t len;
517 while (1) {
518 do {
519 len = read(fd, &info, sizeof(info));
520 } while (len == -1 && errno == EINTR);
522 if (len == -1 && errno == EAGAIN)
523 break;
525 if (len != sizeof(info)) {
526 printf("read from sigfd returned %ld: %m\n", len);
527 return;
530 sigaction(info.ssi_signo, NULL, &action);
531 if (action.sa_handler)
532 action.sa_handler(info.ssi_signo);
537 /* Used to break IO thread out of select */
538 static void io_thread_wakeup(void *opaque)
540 int fd = (unsigned long)opaque;
541 char buffer[8];
542 size_t offset = 0;
544 while (offset < 8) {
545 ssize_t len;
547 len = read(fd, buffer + offset, 8 - offset);
548 if (len == -1 && errno == EINTR)
549 continue;
551 if (len <= 0)
552 break;
554 offset += len;
558 int kvm_main_loop(void)
560 int fds[2];
561 sigset_t mask;
562 int sigfd;
564 io_thread = pthread_self();
565 qemu_system_ready = 1;
567 if (qemu_eventfd(fds) == -1) {
568 fprintf(stderr, "failed to create eventfd\n");
569 return -errno;
572 qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
573 (void *)(unsigned long)fds[0]);
575 io_thread_fd = fds[1];
577 sigemptyset(&mask);
578 sigaddset(&mask, SIGIO);
579 sigaddset(&mask, SIGALRM);
580 sigprocmask(SIG_BLOCK, &mask, NULL);
582 sigfd = qemu_signalfd(&mask);
583 if (sigfd == -1) {
584 fprintf(stderr, "failed to create signalfd\n");
585 return -errno;
588 fcntl(sigfd, F_SETFL, O_NONBLOCK);
590 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
591 (void *)(unsigned long)sigfd);
593 pthread_cond_broadcast(&qemu_system_cond);
595 io_thread_sigfd = sigfd;
596 cpu_single_env = NULL;
598 while (1) {
599 main_loop_wait(1000);
600 if (qemu_shutdown_requested())
601 break;
602 else if (qemu_powerdown_requested())
603 qemu_system_powerdown();
604 else if (qemu_reset_requested())
605 qemu_kvm_system_reset();
606 #ifdef CONFIG_GDBSTUB
607 else if (kvm_debug_cpu_requested) {
608 gdb_set_stop_cpu(kvm_debug_cpu_requested);
609 vm_stop(EXCP_DEBUG);
610 kvm_debug_cpu_requested = NULL;
612 #endif
615 pause_all_threads();
616 pthread_mutex_unlock(&qemu_mutex);
618 return 0;
621 #ifdef KVM_CAP_SET_GUEST_DEBUG
622 int kvm_debug(void *opaque, void *data, struct kvm_debug_exit_arch *arch_info)
624 int handle = kvm_arch_debug(arch_info);
625 struct CPUState *env = data;
627 if (handle) {
628 kvm_debug_cpu_requested = env;
629 env->kvm_cpu_state.stopped = 1;
631 return handle;
633 #endif
635 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
637 *data = cpu_inb(0, addr);
638 return 0;
641 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
643 *data = cpu_inw(0, addr);
644 return 0;
647 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
649 *data = cpu_inl(0, addr);
650 return 0;
653 #define PM_IO_BASE 0xb000
655 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
657 if (addr == 0xb2) {
658 switch (data) {
659 case 0: {
660 cpu_outb(0, 0xb3, 0);
661 break;
663 case 0xf0: {
664 unsigned x;
666 /* enable acpi */
667 x = cpu_inw(0, PM_IO_BASE + 4);
668 x &= ~1;
669 cpu_outw(0, PM_IO_BASE + 4, x);
670 break;
672 case 0xf1: {
673 unsigned x;
675 /* enable acpi */
676 x = cpu_inw(0, PM_IO_BASE + 4);
677 x |= 1;
678 cpu_outw(0, PM_IO_BASE + 4, x);
679 break;
681 default:
682 break;
684 return 0;
686 cpu_outb(0, addr, data);
687 return 0;
690 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
692 cpu_outw(0, addr, data);
693 return 0;
696 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
698 cpu_outl(0, addr, data);
699 return 0;
702 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
704 cpu_physical_memory_rw(addr, data, len, 0);
705 return 0;
708 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
710 cpu_physical_memory_rw(addr, data, len, 1);
711 return 0;
714 static int kvm_io_window(void *opaque)
716 return 1;
720 static int kvm_halt(void *opaque, int vcpu)
722 return kvm_arch_halt(opaque, vcpu);
725 static int kvm_shutdown(void *opaque, void *data)
727 struct CPUState *env = (struct CPUState *)data;
729 /* stop the current vcpu from going back to guest mode */
730 env->kvm_cpu_state.stopped = 1;
732 qemu_system_reset_request();
733 return 1;
736 static struct kvm_callbacks qemu_kvm_ops = {
737 #ifdef KVM_CAP_SET_GUEST_DEBUG
738 .debug = kvm_debug,
739 #endif
740 .inb = kvm_inb,
741 .inw = kvm_inw,
742 .inl = kvm_inl,
743 .outb = kvm_outb,
744 .outw = kvm_outw,
745 .outl = kvm_outl,
746 .mmio_read = kvm_mmio_read,
747 .mmio_write = kvm_mmio_write,
748 .halt = kvm_halt,
749 .shutdown = kvm_shutdown,
750 .io_window = kvm_io_window,
751 .try_push_interrupts = try_push_interrupts,
752 #ifdef KVM_CAP_USER_NMI
753 .push_nmi = kvm_arch_push_nmi,
754 #endif
755 .post_kvm_run = post_kvm_run,
756 .pre_kvm_run = pre_kvm_run,
757 #ifdef TARGET_I386
758 .tpr_access = handle_tpr_access,
759 #endif
760 #ifdef TARGET_PPC
761 .powerpc_dcr_read = handle_powerpc_dcr_read,
762 .powerpc_dcr_write = handle_powerpc_dcr_write,
763 #endif
766 int kvm_qemu_init()
768 /* Try to initialize kvm */
769 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
770 if (!kvm_context) {
771 return -1;
773 pthread_mutex_lock(&qemu_mutex);
775 return 0;
778 #ifdef TARGET_I386
779 static int destroy_region_works = 0;
780 #endif
782 int kvm_qemu_create_context(void)
784 int r;
785 if (!kvm_irqchip) {
786 kvm_disable_irqchip_creation(kvm_context);
788 if (!kvm_pit) {
789 kvm_disable_pit_creation(kvm_context);
791 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
792 kvm_qemu_destroy();
793 return -1;
795 r = kvm_arch_qemu_create_context();
796 if(r <0)
797 kvm_qemu_destroy();
798 #ifdef TARGET_I386
799 destroy_region_works = kvm_destroy_memory_region_works(kvm_context);
800 #endif
801 return 0;
804 void kvm_qemu_destroy(void)
806 kvm_finalize(kvm_context);
809 #ifdef TARGET_I386
810 static int must_use_aliases_source(target_phys_addr_t addr)
812 if (destroy_region_works)
813 return false;
814 if (addr == 0xa0000 || addr == 0xa8000)
815 return true;
816 return false;
819 static int must_use_aliases_target(target_phys_addr_t addr)
821 if (destroy_region_works)
822 return false;
823 if (addr >= 0xe0000000 && addr < 0x100000000ull)
824 return true;
825 return false;
828 static struct mapping {
829 target_phys_addr_t phys;
830 ram_addr_t ram;
831 ram_addr_t len;
832 } mappings[50];
833 static int nr_mappings;
835 static struct mapping *find_ram_mapping(ram_addr_t ram_addr)
837 struct mapping *p;
839 for (p = mappings; p < mappings + nr_mappings; ++p) {
840 if (p->ram <= ram_addr && ram_addr < p->ram + p->len) {
841 return p;
844 return NULL;
847 static struct mapping *find_mapping(target_phys_addr_t start_addr)
849 struct mapping *p;
851 for (p = mappings; p < mappings + nr_mappings; ++p) {
852 if (p->phys <= start_addr && start_addr < p->phys + p->len) {
853 return p;
856 return NULL;
859 static void drop_mapping(target_phys_addr_t start_addr)
861 struct mapping *p = find_mapping(start_addr);
863 if (p)
864 *p = mappings[--nr_mappings];
866 #endif
868 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
869 unsigned long size,
870 unsigned long phys_offset)
872 int r = 0;
873 unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;
874 #ifdef TARGET_I386
875 struct mapping *p;
876 #endif
878 phys_offset &= ~IO_MEM_ROM;
880 if (area_flags == IO_MEM_UNASSIGNED) {
881 #ifdef TARGET_I386
882 if (must_use_aliases_source(start_addr)) {
883 kvm_destroy_memory_alias(kvm_context, start_addr);
884 return;
886 if (must_use_aliases_target(start_addr))
887 return;
888 #endif
889 kvm_unregister_memory_area(kvm_context, start_addr, size);
890 return;
893 r = kvm_is_containing_region(kvm_context, start_addr, size);
894 if (r)
895 return;
897 if (area_flags >= TLB_MMIO)
898 return;
900 #ifdef TARGET_I386
901 if (must_use_aliases_source(start_addr)) {
902 p = find_ram_mapping(phys_offset);
903 if (p) {
904 kvm_create_memory_alias(kvm_context, start_addr, size,
905 p->phys + (phys_offset - p->ram));
907 return;
909 #endif
911 r = kvm_register_phys_mem(kvm_context, start_addr,
912 phys_ram_base + phys_offset,
913 size, 0);
914 if (r < 0) {
915 printf("kvm_cpu_register_physical_memory: failed\n");
916 exit(1);
919 #ifdef TARGET_I386
920 drop_mapping(start_addr);
921 p = &mappings[nr_mappings++];
922 p->phys = start_addr;
923 p->ram = phys_offset;
924 p->len = size;
925 #endif
927 return;
930 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
931 target_phys_addr_t size,
932 unsigned long phys_offset)
934 kvm_unregister_memory_area(kvm_context, start_addr, size);
937 int kvm_setup_guest_memory(void *area, unsigned long size)
939 int ret = 0;
941 #ifdef MADV_DONTFORK
942 if (kvm_enabled() && !kvm_has_sync_mmu())
943 ret = madvise(area, size, MADV_DONTFORK);
944 #endif
946 if (ret)
947 perror ("madvise");
949 return ret;
952 int kvm_qemu_check_extension(int ext)
954 return kvm_check_extension(kvm_context, ext);
957 int kvm_qemu_init_env(CPUState *cenv)
959 return kvm_arch_qemu_init_env(cenv);
962 #ifdef KVM_CAP_SET_GUEST_DEBUG
963 struct kvm_sw_breakpoint_head kvm_sw_breakpoints =
964 TAILQ_HEAD_INITIALIZER(kvm_sw_breakpoints);
966 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(target_ulong pc)
968 struct kvm_sw_breakpoint *bp;
970 TAILQ_FOREACH(bp, &kvm_sw_breakpoints, entry) {
971 if (bp->pc == pc)
972 return bp;
974 return NULL;
977 struct kvm_set_guest_debug_data {
978 struct kvm_guest_debug dbg;
979 int err;
982 void kvm_invoke_set_guest_debug(void *data)
984 struct kvm_set_guest_debug_data *dbg_data = data;
986 dbg_data->err = kvm_set_guest_debug(kvm_context, cpu_single_env->cpu_index,
987 &dbg_data->dbg);
990 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
992 struct kvm_set_guest_debug_data data;
994 data.dbg.control = 0;
995 if (env->singlestep_enabled)
996 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
998 kvm_arch_update_guest_debug(env, &data.dbg);
999 data.dbg.control |= reinject_trap;
1001 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1002 return data.err;
1005 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1006 target_ulong len, int type)
1008 struct kvm_sw_breakpoint *bp;
1009 CPUState *env;
1010 int err;
1012 if (type == GDB_BREAKPOINT_SW) {
1013 bp = kvm_find_sw_breakpoint(addr);
1014 if (bp) {
1015 bp->use_count++;
1016 return 0;
1019 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1020 if (!bp)
1021 return -ENOMEM;
1023 bp->pc = addr;
1024 bp->use_count = 1;
1025 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1026 if (err) {
1027 free(bp);
1028 return err;
1031 TAILQ_INSERT_HEAD(&kvm_sw_breakpoints, bp, entry);
1032 } else {
1033 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1034 if (err)
1035 return err;
1038 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1039 err = kvm_update_guest_debug(env, 0);
1040 if (err)
1041 return err;
1043 return 0;
1046 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1047 target_ulong len, int type)
1049 struct kvm_sw_breakpoint *bp;
1050 CPUState *env;
1051 int err;
1053 if (type == GDB_BREAKPOINT_SW) {
1054 bp = kvm_find_sw_breakpoint(addr);
1055 if (!bp)
1056 return -ENOENT;
1058 if (bp->use_count > 1) {
1059 bp->use_count--;
1060 return 0;
1063 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1064 if (err)
1065 return err;
1067 TAILQ_REMOVE(&kvm_sw_breakpoints, bp, entry);
1068 qemu_free(bp);
1069 } else {
1070 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1071 if (err)
1072 return err;
1075 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1076 err = kvm_update_guest_debug(env, 0);
1077 if (err)
1078 return err;
1080 return 0;
1083 void kvm_remove_all_breakpoints(CPUState *current_env)
1085 struct kvm_sw_breakpoint *bp, *next;
1086 CPUState *env;
1088 TAILQ_FOREACH_SAFE(bp, &kvm_sw_breakpoints, entry, next) {
1089 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1090 /* Try harder to find a CPU that currently sees the breakpoint. */
1091 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1092 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1093 break;
1097 kvm_arch_remove_all_hw_breakpoints();
1099 for (env = first_cpu; env != NULL; env = env->next_cpu)
1100 kvm_update_guest_debug(env, 0);
1103 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1105 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1107 return -EINVAL;
1110 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1111 target_ulong len, int type)
1113 return -EINVAL;
1116 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1117 target_ulong len, int type)
1119 return -EINVAL;
1122 void kvm_remove_all_breakpoints(CPUState *current_env)
1125 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1128 * dirty pages logging
1130 /* FIXME: use unsigned long pointer instead of unsigned char */
1131 unsigned char *kvm_dirty_bitmap = NULL;
1132 int kvm_physical_memory_set_dirty_tracking(int enable)
1134 int r = 0;
1136 if (!kvm_enabled())
1137 return 0;
1139 if (enable) {
1140 if (!kvm_dirty_bitmap) {
1141 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
1142 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
1143 if (kvm_dirty_bitmap == NULL) {
1144 perror("Failed to allocate dirty pages bitmap");
1145 r=-1;
1147 else {
1148 r = kvm_dirty_pages_log_enable_all(kvm_context);
1152 else {
1153 if (kvm_dirty_bitmap) {
1154 r = kvm_dirty_pages_log_reset(kvm_context);
1155 qemu_free(kvm_dirty_bitmap);
1156 kvm_dirty_bitmap = NULL;
1159 return r;
1162 /* get kvm's dirty pages bitmap and update qemu's */
1163 int kvm_get_dirty_pages_log_range(unsigned long start_addr,
1164 unsigned char *bitmap,
1165 unsigned int offset,
1166 unsigned long mem_size)
1168 unsigned int i, j, n=0;
1169 unsigned char c;
1170 unsigned long page_number, addr, addr1;
1171 ram_addr_t ram_addr;
1172 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
1175 * bitmap-traveling is faster than memory-traveling (for addr...)
1176 * especially when most of the memory is not dirty.
1178 for (i=0; i<len; i++) {
1179 c = bitmap[i];
1180 while (c>0) {
1181 j = ffsl(c) - 1;
1182 c &= ~(1u<<j);
1183 page_number = i * 8 + j;
1184 addr1 = page_number * TARGET_PAGE_SIZE;
1185 addr = offset + addr1;
1186 ram_addr = cpu_get_physical_page_desc(addr);
1187 cpu_physical_memory_set_dirty(ram_addr);
1188 n++;
1191 return 0;
1193 int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
1194 void *bitmap, void *opaque)
1196 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
1200 * get kvm's dirty pages bitmap and update qemu's
1201 * we only care about physical ram, which resides in slots 0 and 3
1203 int kvm_update_dirty_pages_log(void)
1205 int r = 0;
1208 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
1209 kvm_dirty_bitmap, NULL,
1210 kvm_get_dirty_bitmap_cb);
1211 return r;
1214 void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
1215 int log)
1217 if (log)
1218 kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
1219 else {
1220 #ifdef TARGET_I386
1221 if (must_use_aliases_target(start))
1222 return;
1223 #endif
1224 kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
1228 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
1230 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
1231 unsigned int brsize = BITMAP_SIZE(ram_size);
1232 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
1233 unsigned int extra_bytes = (extra_pages +7)/8;
1234 unsigned int hole_start = BITMAP_SIZE(0xa0000);
1235 unsigned int hole_end = BITMAP_SIZE(0xc0000);
1237 memset(bitmap, 0xFF, brsize + extra_bytes);
1238 memset(bitmap + hole_start, 0, hole_end - hole_start);
1239 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
1241 return 0;
1244 #ifdef KVM_CAP_IRQCHIP
1246 int kvm_set_irq(int irq, int level)
1248 return kvm_set_irq_level(kvm_context, irq, level);
1251 #endif
1253 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
1255 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
1258 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
1259 unsigned long size, int log, int writable)
1261 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
1264 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
1265 unsigned long size)
1267 kvm_destroy_phys_mem(kvm_context, start_addr, size);
1270 void kvm_mutex_unlock(void)
1272 assert(!cpu_single_env);
1273 pthread_mutex_unlock(&qemu_mutex);
1276 void kvm_mutex_lock(void)
1278 pthread_mutex_lock(&qemu_mutex);
1279 cpu_single_env = NULL;
1282 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
1284 return kvm_register_coalesced_mmio(kvm_context, addr, size);
1287 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
1288 unsigned int size)
1290 return kvm_unregister_coalesced_mmio(kvm_context, addr, size);
1293 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
1295 return kvm_register_coalesced_mmio(kvm_context, start, size);
1298 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
1300 return kvm_unregister_coalesced_mmio(kvm_context, start, size);
1303 #ifdef USE_KVM_DEVICE_ASSIGNMENT
1304 void kvm_add_ioperm_data(struct ioperm_data *data)
1306 LIST_INSERT_HEAD(&ioperm_head, data, entries);
1309 void kvm_ioperm(CPUState *env, void *data)
1311 if (kvm_enabled() && qemu_system_ready)
1312 on_vcpu(env, kvm_arch_do_ioperm, data);
1315 #endif
1317 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1319 #ifndef TARGET_IA64
1320 void *buf;
1322 #ifdef TARGET_I386
1323 if (must_use_aliases_source(start_addr))
1324 return;
1325 #endif
1327 buf = qemu_malloc((end_addr - start_addr) / 8 + 2);
1328 kvm_get_dirty_pages_range(kvm_context, start_addr, end_addr - start_addr,
1329 buf, NULL, kvm_get_dirty_bitmap_cb);
1330 qemu_free(buf);
1331 #endif
1334 int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t len)
1336 #ifdef TARGET_I386
1337 if (must_use_aliases_source(phys_addr))
1338 return 0;
1339 #endif
1340 kvm_qemu_log_memory(phys_addr, len, 1);
1341 return 0;
1344 int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t len)
1346 #ifdef TARGET_I386
1347 if (must_use_aliases_source(phys_addr))
1348 return 0;
1349 #endif
1350 kvm_qemu_log_memory(phys_addr, len, 0);
1351 return 0;
1354 /* hack: both libkvm and upstream qemu define kvm_has_sync_mmu(), differently */
1355 #undef kvm_has_sync_mmu
1356 int qemu_kvm_has_sync_mmu(void)
1358 return kvm_has_sync_mmu(kvm_context);