2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__)
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
48 static inline uint16_t tswap16(uint16_t s
)
53 static inline uint32_t tswap32(uint32_t s
)
58 static inline uint64_t tswap64(uint64_t s
)
63 static inline void tswap16s(uint16_t *s
)
68 static inline void tswap32s(uint32_t *s
)
73 static inline void tswap64s(uint64_t *s
)
80 static inline uint16_t tswap16(uint16_t s
)
85 static inline uint32_t tswap32(uint32_t s
)
90 static inline uint64_t tswap64(uint64_t s
)
95 static inline void tswap16s(uint16_t *s
)
99 static inline void tswap32s(uint32_t *s
)
103 static inline void tswap64s(uint64_t *s
)
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
119 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 #if defined(WORDS_BIGENDIAN) \
124 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
141 #if defined(WORDS_BIGENDIAN) \
142 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
168 /* CPU memory access without any memory or io remapping */
171 * the generic syntax for the memory accesses is:
173 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
175 * store: st{type}{size}{endian}_{access_type}(ptr, val)
178 * (empty): integer access
182 * (empty): for floats or 32 bit size
193 * (empty): target cpu endianness or 8 bit access
194 * r : reversed target cpu endianness (not implemented yet)
195 * be : big endian (not implemented yet)
196 * le : little endian (not implemented yet)
199 * raw : host memory access
200 * user : user mode access using soft MMU
201 * kernel : kernel mode access using soft MMU
203 static inline int ldub_p(void *ptr
)
205 return *(uint8_t *)ptr
;
208 static inline int ldsb_p(void *ptr
)
210 return *(int8_t *)ptr
;
213 static inline void stb_p(void *ptr
, int v
)
218 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
219 kernel handles unaligned load/stores may give better results, but
220 it is a system wide setting : bad */
221 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
223 /* conservative code for little endian unaligned accesses */
224 static inline int lduw_le_p(void *ptr
)
228 __asm__
__volatile__ ("lhbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
232 return p
[0] | (p
[1] << 8);
236 static inline int ldsw_le_p(void *ptr
)
240 __asm__
__volatile__ ("lhbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
244 return (int16_t)(p
[0] | (p
[1] << 8));
248 static inline int ldl_le_p(void *ptr
)
252 __asm__
__volatile__ ("lwbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
256 return p
[0] | (p
[1] << 8) | (p
[2] << 16) | (p
[3] << 24);
260 static inline uint64_t ldq_le_p(void *ptr
)
265 v2
= ldl_le_p(p
+ 4);
266 return v1
| ((uint64_t)v2
<< 32);
269 static inline void stw_le_p(void *ptr
, int v
)
272 __asm__
__volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr
) : "r" (v
), "r" (ptr
));
280 static inline void stl_le_p(void *ptr
, int v
)
283 __asm__
__volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr
) : "r" (v
), "r" (ptr
));
293 static inline void stq_le_p(void *ptr
, uint64_t v
)
296 stl_le_p(p
, (uint32_t)v
);
297 stl_le_p(p
+ 4, v
>> 32);
302 static inline float32
ldfl_le_p(void *ptr
)
312 static inline void stfl_le_p(void *ptr
, float32 v
)
322 static inline float64
ldfq_le_p(void *ptr
)
325 u
.l
.lower
= ldl_le_p(ptr
);
326 u
.l
.upper
= ldl_le_p(ptr
+ 4);
330 static inline void stfq_le_p(void *ptr
, float64 v
)
334 stl_le_p(ptr
, u
.l
.lower
);
335 stl_le_p(ptr
+ 4, u
.l
.upper
);
340 static inline int lduw_le_p(void *ptr
)
342 return *(uint16_t *)ptr
;
345 static inline int ldsw_le_p(void *ptr
)
347 return *(int16_t *)ptr
;
350 static inline int ldl_le_p(void *ptr
)
352 return *(uint32_t *)ptr
;
355 static inline uint64_t ldq_le_p(void *ptr
)
357 return *(uint64_t *)ptr
;
360 static inline void stw_le_p(void *ptr
, int v
)
362 *(uint16_t *)ptr
= v
;
365 static inline void stl_le_p(void *ptr
, int v
)
367 *(uint32_t *)ptr
= v
;
370 static inline void stq_le_p(void *ptr
, uint64_t v
)
372 *(uint64_t *)ptr
= v
;
377 static inline float32
ldfl_le_p(void *ptr
)
379 return *(float32
*)ptr
;
382 static inline float64
ldfq_le_p(void *ptr
)
384 return *(float64
*)ptr
;
387 static inline void stfl_le_p(void *ptr
, float32 v
)
392 static inline void stfq_le_p(void *ptr
, float64 v
)
398 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
400 static inline int lduw_be_p(void *ptr
)
402 #if defined(__i386__)
404 asm volatile ("movzwl %1, %0\n"
407 : "m" (*(uint16_t *)ptr
));
410 uint8_t *b
= (uint8_t *) ptr
;
411 return ((b
[0] << 8) | b
[1]);
415 static inline int ldsw_be_p(void *ptr
)
417 #if defined(__i386__)
419 asm volatile ("movzwl %1, %0\n"
422 : "m" (*(uint16_t *)ptr
));
425 uint8_t *b
= (uint8_t *) ptr
;
426 return (int16_t)((b
[0] << 8) | b
[1]);
430 static inline int ldl_be_p(void *ptr
)
432 #if defined(__i386__) || defined(__x86_64__)
434 asm volatile ("movl %1, %0\n"
437 : "m" (*(uint32_t *)ptr
));
440 uint8_t *b
= (uint8_t *) ptr
;
441 return (b
[0] << 24) | (b
[1] << 16) | (b
[2] << 8) | b
[3];
445 static inline uint64_t ldq_be_p(void *ptr
)
450 return (((uint64_t)a
<<32)|b
);
453 static inline void stw_be_p(void *ptr
, int v
)
455 #if defined(__i386__)
456 asm volatile ("xchgb %b0, %h0\n"
459 : "m" (*(uint16_t *)ptr
), "0" (v
));
461 uint8_t *d
= (uint8_t *) ptr
;
467 static inline void stl_be_p(void *ptr
, int v
)
469 #if defined(__i386__) || defined(__x86_64__)
470 asm volatile ("bswap %0\n"
473 : "m" (*(uint32_t *)ptr
), "0" (v
));
475 uint8_t *d
= (uint8_t *) ptr
;
483 static inline void stq_be_p(void *ptr
, uint64_t v
)
485 stl_be_p(ptr
, v
>> 32);
486 stl_be_p(ptr
+ 4, v
);
491 static inline float32
ldfl_be_p(void *ptr
)
501 static inline void stfl_be_p(void *ptr
, float32 v
)
511 static inline float64
ldfq_be_p(void *ptr
)
514 u
.l
.upper
= ldl_be_p(ptr
);
515 u
.l
.lower
= ldl_be_p(ptr
+ 4);
519 static inline void stfq_be_p(void *ptr
, float64 v
)
523 stl_be_p(ptr
, u
.l
.upper
);
524 stl_be_p(ptr
+ 4, u
.l
.lower
);
529 static inline int lduw_be_p(void *ptr
)
531 return *(uint16_t *)ptr
;
534 static inline int ldsw_be_p(void *ptr
)
536 return *(int16_t *)ptr
;
539 static inline int ldl_be_p(void *ptr
)
541 return *(uint32_t *)ptr
;
544 static inline uint64_t ldq_be_p(void *ptr
)
546 return *(uint64_t *)ptr
;
549 static inline void stw_be_p(void *ptr
, int v
)
551 *(uint16_t *)ptr
= v
;
554 static inline void stl_be_p(void *ptr
, int v
)
556 *(uint32_t *)ptr
= v
;
559 static inline void stq_be_p(void *ptr
, uint64_t v
)
561 *(uint64_t *)ptr
= v
;
566 static inline float32
ldfl_be_p(void *ptr
)
568 return *(float32
*)ptr
;
571 static inline float64
ldfq_be_p(void *ptr
)
573 return *(float64
*)ptr
;
576 static inline void stfl_be_p(void *ptr
, float32 v
)
581 static inline void stfq_be_p(void *ptr
, float64 v
)
588 /* target CPU memory access functions */
589 #if defined(TARGET_WORDS_BIGENDIAN)
590 #define lduw_p(p) lduw_be_p(p)
591 #define ldsw_p(p) ldsw_be_p(p)
592 #define ldl_p(p) ldl_be_p(p)
593 #define ldq_p(p) ldq_be_p(p)
594 #define ldfl_p(p) ldfl_be_p(p)
595 #define ldfq_p(p) ldfq_be_p(p)
596 #define stw_p(p, v) stw_be_p(p, v)
597 #define stl_p(p, v) stl_be_p(p, v)
598 #define stq_p(p, v) stq_be_p(p, v)
599 #define stfl_p(p, v) stfl_be_p(p, v)
600 #define stfq_p(p, v) stfq_be_p(p, v)
602 #define lduw_p(p) lduw_le_p(p)
603 #define ldsw_p(p) ldsw_le_p(p)
604 #define ldl_p(p) ldl_le_p(p)
605 #define ldq_p(p) ldq_le_p(p)
606 #define ldfl_p(p) ldfl_le_p(p)
607 #define ldfq_p(p) ldfq_le_p(p)
608 #define stw_p(p, v) stw_le_p(p, v)
609 #define stl_p(p, v) stl_le_p(p, v)
610 #define stq_p(p, v) stq_le_p(p, v)
611 #define stfl_p(p, v) stfl_le_p(p, v)
612 #define stfq_p(p, v) stfq_le_p(p, v)
615 /* MMU memory access macros */
617 #if defined(CONFIG_USER_ONLY)
618 /* On some host systems the guest address space is reserved on the host.
619 * This allows the guest address space to be offset to a convenient location.
621 //#define GUEST_BASE 0x20000000
624 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
625 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
626 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
628 #define saddr(x) g2h(x)
629 #define laddr(x) g2h(x)
631 #else /* !CONFIG_USER_ONLY */
632 /* NOTE: we use double casts if pointers and target_ulong have
634 #define saddr(x) (uint8_t *)(long)(x)
635 #define laddr(x) (uint8_t *)(long)(x)
638 #define ldub_raw(p) ldub_p(laddr((p)))
639 #define ldsb_raw(p) ldsb_p(laddr((p)))
640 #define lduw_raw(p) lduw_p(laddr((p)))
641 #define ldsw_raw(p) ldsw_p(laddr((p)))
642 #define ldl_raw(p) ldl_p(laddr((p)))
643 #define ldq_raw(p) ldq_p(laddr((p)))
644 #define ldfl_raw(p) ldfl_p(laddr((p)))
645 #define ldfq_raw(p) ldfq_p(laddr((p)))
646 #define stb_raw(p, v) stb_p(saddr((p)), v)
647 #define stw_raw(p, v) stw_p(saddr((p)), v)
648 #define stl_raw(p, v) stl_p(saddr((p)), v)
649 #define stq_raw(p, v) stq_p(saddr((p)), v)
650 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
651 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
654 #if defined(CONFIG_USER_ONLY)
656 /* if user mode, no other memory access functions */
657 #define ldub(p) ldub_raw(p)
658 #define ldsb(p) ldsb_raw(p)
659 #define lduw(p) lduw_raw(p)
660 #define ldsw(p) ldsw_raw(p)
661 #define ldl(p) ldl_raw(p)
662 #define ldq(p) ldq_raw(p)
663 #define ldfl(p) ldfl_raw(p)
664 #define ldfq(p) ldfq_raw(p)
665 #define stb(p, v) stb_raw(p, v)
666 #define stw(p, v) stw_raw(p, v)
667 #define stl(p, v) stl_raw(p, v)
668 #define stq(p, v) stq_raw(p, v)
669 #define stfl(p, v) stfl_raw(p, v)
670 #define stfq(p, v) stfq_raw(p, v)
672 #define ldub_code(p) ldub_raw(p)
673 #define ldsb_code(p) ldsb_raw(p)
674 #define lduw_code(p) lduw_raw(p)
675 #define ldsw_code(p) ldsw_raw(p)
676 #define ldl_code(p) ldl_raw(p)
677 #define ldq_code(p) ldq_raw(p)
679 #define ldub_kernel(p) ldub_raw(p)
680 #define ldsb_kernel(p) ldsb_raw(p)
681 #define lduw_kernel(p) lduw_raw(p)
682 #define ldsw_kernel(p) ldsw_raw(p)
683 #define ldl_kernel(p) ldl_raw(p)
684 #define ldq_kernel(p) ldq_raw(p)
685 #define ldfl_kernel(p) ldfl_raw(p)
686 #define ldfq_kernel(p) ldfq_raw(p)
687 #define stb_kernel(p, v) stb_raw(p, v)
688 #define stw_kernel(p, v) stw_raw(p, v)
689 #define stl_kernel(p, v) stl_raw(p, v)
690 #define stq_kernel(p, v) stq_raw(p, v)
691 #define stfl_kernel(p, v) stfl_raw(p, v)
692 #define stfq_kernel(p, vt) stfq_raw(p, v)
694 #endif /* defined(CONFIG_USER_ONLY) */
696 /* page related stuff */
698 #define TARGET_PAGE_SIZE (1ul << TARGET_PAGE_BITS)
699 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
700 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
702 /* ??? These should be the larger of unsigned long and target_ulong. */
703 extern unsigned long qemu_real_host_page_size
;
704 extern unsigned long qemu_host_page_bits
;
705 extern unsigned long qemu_host_page_size
;
706 extern unsigned long qemu_host_page_mask
;
708 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
710 /* same as PROT_xxx */
711 #define PAGE_READ 0x0001
712 #define PAGE_WRITE 0x0002
713 #define PAGE_EXEC 0x0004
714 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
715 #define PAGE_VALID 0x0008
716 /* original state of the write flag (used when tracking self-modifying
718 #define PAGE_WRITE_ORG 0x0010
719 #define PAGE_RESERVED 0x0020
721 void page_dump(FILE *f
);
722 int page_get_flags(target_ulong address
);
723 void page_set_flags(target_ulong start
, target_ulong end
, int flags
);
724 int page_check_range(target_ulong start
, target_ulong len
, int flags
);
726 CPUState
*cpu_copy(CPUState
*env
);
728 void cpu_dump_state(CPUState
*env
, FILE *f
,
729 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...),
731 void cpu_dump_statistics (CPUState
*env
, FILE *f
,
732 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...),
735 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
736 __attribute__ ((__format__ (__printf__
, 2, 3)))
737 __attribute__ ((__noreturn__
));
738 extern CPUState
*first_cpu
;
739 extern CPUState
*cpu_single_env
;
740 extern int code_copy_enabled
;
742 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
743 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
744 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
745 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
746 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
747 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
748 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
749 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
750 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
752 void cpu_interrupt(CPUState
*s
, int mask
);
753 void cpu_reset_interrupt(CPUState
*env
, int mask
);
755 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
);
756 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
);
757 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
);
758 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
);
759 void cpu_single_step(CPUState
*env
, int enabled
);
760 void cpu_reset(CPUState
*s
);
762 /* Return the physical page corresponding to a virtual one. Use it
763 only for debugging because no protection checks are done. Return -1
765 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
);
767 #define CPU_LOG_TB_OUT_ASM (1 << 0)
768 #define CPU_LOG_TB_IN_ASM (1 << 1)
769 #define CPU_LOG_TB_OP (1 << 2)
770 #define CPU_LOG_TB_OP_OPT (1 << 3)
771 #define CPU_LOG_INT (1 << 4)
772 #define CPU_LOG_EXEC (1 << 5)
773 #define CPU_LOG_PCALL (1 << 6)
774 #define CPU_LOG_IOPORT (1 << 7)
775 #define CPU_LOG_TB_CPU (1 << 8)
777 /* define log items */
778 typedef struct CPULogItem
{
784 extern CPULogItem cpu_log_items
[];
786 void cpu_set_log(int log_flags
);
787 void cpu_set_log_filename(const char *filename
);
788 int cpu_str_to_log_mask(const char *str
);
792 /* NOTE: as these functions may be even used when there is an isa
793 brige on non x86 targets, we always defined them */
794 #ifndef NO_CPU_IO_DEFS
795 void cpu_outb(CPUState
*env
, int addr
, int val
);
796 void cpu_outw(CPUState
*env
, int addr
, int val
);
797 void cpu_outl(CPUState
*env
, int addr
, int val
);
798 int cpu_inb(CPUState
*env
, int addr
);
799 int cpu_inw(CPUState
*env
, int addr
);
800 int cpu_inl(CPUState
*env
, int addr
);
805 extern ram_addr_t phys_ram_size
;
806 extern int phys_ram_fd
;
807 extern uint8_t *phys_ram_base
;
808 extern uint8_t *phys_ram_dirty
;
809 extern uint8_t *bios_mem
;
811 /* physical memory access */
812 #define TLB_INVALID_MASK (1 << 3)
813 #define IO_MEM_SHIFT 4
814 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
816 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
817 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
818 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
819 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
820 /* acts like a ROM when read and like a device when written. As an
821 exception, the write memory callback gets the ram offset instead of
822 the physical address */
823 #define IO_MEM_ROMD (1)
824 #define IO_MEM_SUBPAGE (2)
825 #define IO_MEM_SUBWIDTH (4)
827 typedef void CPUWriteMemoryFunc(void *opaque
, target_phys_addr_t addr
, uint32_t value
);
828 typedef uint32_t CPUReadMemoryFunc(void *opaque
, target_phys_addr_t addr
);
830 void cpu_register_physical_memory(target_phys_addr_t start_addr
,
832 unsigned long phys_offset
);
833 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr
);
834 ram_addr_t
qemu_ram_alloc(unsigned long size
);
835 void qemu_ram_free(ram_addr_t addr
);
836 int cpu_register_io_memory(int io_index
,
837 CPUReadMemoryFunc
**mem_read
,
838 CPUWriteMemoryFunc
**mem_write
,
840 void cpu_unregister_io_memory(int table_address
);
841 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
);
842 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
);
844 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
845 int len
, int is_write
);
846 static inline void cpu_physical_memory_read(target_phys_addr_t addr
,
847 uint8_t *buf
, int len
)
849 cpu_physical_memory_rw(addr
, buf
, len
, 0);
851 static inline void cpu_physical_memory_write(target_phys_addr_t addr
,
852 const uint8_t *buf
, int len
)
854 cpu_physical_memory_rw(addr
, (uint8_t *)buf
, len
, 1);
856 uint32_t ldub_phys(target_phys_addr_t addr
);
857 uint32_t lduw_phys(target_phys_addr_t addr
);
858 uint32_t ldl_phys(target_phys_addr_t addr
);
859 uint64_t ldq_phys(target_phys_addr_t addr
);
860 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
);
861 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
);
862 void stb_phys(target_phys_addr_t addr
, uint32_t val
);
863 void stw_phys(target_phys_addr_t addr
, uint32_t val
);
864 void stl_phys(target_phys_addr_t addr
, uint32_t val
);
865 void stq_phys(target_phys_addr_t addr
, uint64_t val
);
867 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
868 const uint8_t *buf
, int len
);
869 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
870 uint8_t *buf
, int len
, int is_write
);
872 #define VGA_DIRTY_FLAG 0x01
873 #define CODE_DIRTY_FLAG 0x02
874 #define MIGRATION_DIRTY_FLAG 0x08
876 /* read dirty bit (return 0 or 1) */
877 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr
)
879 return phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] == 0xff;
882 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr
,
885 return phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] & dirty_flags
;
888 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr
)
890 phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] = 0xff;
893 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
895 void cpu_tlb_update_dirty(CPUState
*env
);
897 int cpu_physical_memory_set_dirty_tracking(int enable
);
899 int cpu_physical_memory_get_dirty_tracking(void);
901 void dump_exec_info(FILE *f
,
902 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...));
904 /*******************************************/
905 /* host CPU ticks (if available) */
907 #if defined(__powerpc__)
909 static inline uint32_t get_tbl(void)
912 asm volatile("mftb %0" : "=r" (tbl
));
916 static inline uint32_t get_tbu(void)
919 asm volatile("mftbu %0" : "=r" (tbl
));
923 static inline int64_t cpu_get_real_ticks(void)
926 /* NOTE: we test if wrapping has occurred */
932 return ((int64_t)h
<< 32) | l
;
935 #elif defined(__i386__)
937 static inline int64_t cpu_get_real_ticks(void)
940 asm volatile ("rdtsc" : "=A" (val
));
944 #elif defined(__x86_64__)
946 static inline int64_t cpu_get_real_ticks(void)
950 asm volatile("rdtsc" : "=a" (low
), "=d" (high
));
957 #elif defined(__ia64)
959 static inline int64_t cpu_get_real_ticks(void)
962 asm volatile ("mov %0 = ar.itc" : "=r"(val
) :: "memory");
966 #elif defined(__s390__)
968 static inline int64_t cpu_get_real_ticks(void)
971 asm volatile("stck 0(%1)" : "=m" (val
) : "a" (&val
) : "cc");
975 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
977 static inline int64_t cpu_get_real_ticks (void)
981 asm volatile("rd %%tick,%0" : "=r"(rval
));
991 asm volatile("rd %%tick,%1; srlx %1,32,%0"
992 : "=r"(rval
.i32
.high
), "=r"(rval
.i32
.low
));
997 #elif defined(__mips__)
999 static inline int64_t cpu_get_real_ticks(void)
1001 #if __mips_isa_rev >= 2
1003 static uint32_t cyc_per_count
= 0;
1006 __asm__
__volatile__("rdhwr %0, $3" : "=r" (cyc_per_count
));
1008 __asm__
__volatile__("rdhwr %1, $2" : "=r" (count
));
1009 return (int64_t)(count
* cyc_per_count
);
1012 static int64_t ticks
= 0;
1018 /* The host CPU doesn't have an easily accessible cycle counter.
1019 Just return a monotonically increasing value. This will be
1020 totally wrong, but hopefully better than nothing. */
1021 static inline int64_t cpu_get_real_ticks (void)
1023 static int64_t ticks
= 0;
1029 #ifdef CONFIG_PROFILER
1030 static inline int64_t profile_getclock(void)
1032 return cpu_get_real_ticks();
1035 extern int64_t kqemu_time
, kqemu_time_start
;
1036 extern int64_t qemu_time
, qemu_time_start
;
1037 extern int64_t tlb_flush_time
;
1038 extern int64_t kqemu_exec_count
;
1039 extern int64_t dev_time
;
1040 extern int64_t kqemu_ret_int_count
;
1041 extern int64_t kqemu_ret_excp_count
;
1042 extern int64_t kqemu_ret_intr_count
;
1044 extern int64_t dyngen_tb_count1
;
1045 extern int64_t dyngen_tb_count
;
1046 extern int64_t dyngen_op_count
;
1047 extern int64_t dyngen_old_op_count
;
1048 extern int64_t dyngen_tcg_del_op_count
;
1049 extern int dyngen_op_count_max
;
1050 extern int64_t dyngen_code_in_len
;
1051 extern int64_t dyngen_code_out_len
;
1052 extern int64_t dyngen_interm_time
;
1053 extern int64_t dyngen_code_time
;
1054 extern int64_t dyngen_restore_count
;
1055 extern int64_t dyngen_restore_time
;
1058 #endif /* CPU_ALL_H */