Merge branch 'qemu-cvs'
[kvm-userspace.git] / qemu / cpu-all.h
blobe9517d6dc47ad618a08def65efe5556fbb0af38a
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24 #define WORDS_ALIGNED
25 #endif
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
40 #include "bswap.h"
41 #include "softfloat.h"
43 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
47 #ifdef BSWAP_NEEDED
49 static inline uint16_t tswap16(uint16_t s)
51 return bswap16(s);
54 static inline uint32_t tswap32(uint32_t s)
56 return bswap32(s);
59 static inline uint64_t tswap64(uint64_t s)
61 return bswap64(s);
64 static inline void tswap16s(uint16_t *s)
66 *s = bswap16(*s);
69 static inline void tswap32s(uint32_t *s)
71 *s = bswap32(*s);
74 static inline void tswap64s(uint64_t *s)
76 *s = bswap64(*s);
79 #else
81 static inline uint16_t tswap16(uint16_t s)
83 return s;
86 static inline uint32_t tswap32(uint32_t s)
88 return s;
91 static inline uint64_t tswap64(uint64_t s)
93 return s;
96 static inline void tswap16s(uint16_t *s)
100 static inline void tswap32s(uint32_t *s)
104 static inline void tswap64s(uint64_t *s)
108 #endif
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
120 typedef union {
121 float32 f;
122 uint32_t l;
123 } CPU_FloatU;
125 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 endian ! */
127 typedef union {
128 float64 d;
129 #if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131 struct {
132 uint32_t upper;
133 uint32_t lower;
134 } l;
135 #else
136 struct {
137 uint32_t lower;
138 uint32_t upper;
139 } l;
140 #endif
141 uint64_t ll;
142 } CPU_DoubleU;
144 #ifdef TARGET_SPARC
145 typedef union {
146 float128 q;
147 #if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 struct {
150 uint32_t upmost;
151 uint32_t upper;
152 uint32_t lower;
153 uint32_t lowest;
154 } l;
155 struct {
156 uint64_t upper;
157 uint64_t lower;
158 } ll;
159 #else
160 struct {
161 uint32_t lowest;
162 uint32_t lower;
163 uint32_t upper;
164 uint32_t upmost;
165 } l;
166 struct {
167 uint64_t lower;
168 uint64_t upper;
169 } ll;
170 #endif
171 } CPU_QuadU;
172 #endif
174 /* CPU memory access without any memory or io remapping */
177 * the generic syntax for the memory accesses is:
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
183 * type is:
184 * (empty): integer access
185 * f : float access
187 * sign is:
188 * (empty): for floats or 32 bit size
189 * u : unsigned
190 * s : signed
192 * size is:
193 * b: 8 bits
194 * w: 16 bits
195 * l: 32 bits
196 * q: 64 bits
198 * endian is:
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
204 * access_type is:
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
209 static inline int ldub_p(void *ptr)
211 return *(uint8_t *)ptr;
214 static inline int ldsb_p(void *ptr)
216 return *(int8_t *)ptr;
219 static inline void stb_p(void *ptr, int v)
221 *(uint8_t *)ptr = v;
224 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
227 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
229 /* conservative code for little endian unaligned accesses */
230 static inline int lduw_le_p(void *ptr)
232 #ifdef __powerpc__
233 int val;
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 return val;
236 #else
237 uint8_t *p = ptr;
238 return p[0] | (p[1] << 8);
239 #endif
242 static inline int ldsw_le_p(void *ptr)
244 #ifdef __powerpc__
245 int val;
246 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247 return (int16_t)val;
248 #else
249 uint8_t *p = ptr;
250 return (int16_t)(p[0] | (p[1] << 8));
251 #endif
254 static inline int ldl_le_p(void *ptr)
256 #ifdef __powerpc__
257 int val;
258 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259 return val;
260 #else
261 uint8_t *p = ptr;
262 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263 #endif
266 static inline uint64_t ldq_le_p(void *ptr)
268 uint8_t *p = ptr;
269 uint32_t v1, v2;
270 v1 = ldl_le_p(p);
271 v2 = ldl_le_p(p + 4);
272 return v1 | ((uint64_t)v2 << 32);
275 static inline void stw_le_p(void *ptr, int v)
277 #ifdef __powerpc__
278 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279 #else
280 uint8_t *p = ptr;
281 p[0] = v;
282 p[1] = v >> 8;
283 #endif
286 static inline void stl_le_p(void *ptr, int v)
288 #ifdef __powerpc__
289 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290 #else
291 uint8_t *p = ptr;
292 p[0] = v;
293 p[1] = v >> 8;
294 p[2] = v >> 16;
295 p[3] = v >> 24;
296 #endif
299 static inline void stq_le_p(void *ptr, uint64_t v)
301 uint8_t *p = ptr;
302 stl_le_p(p, (uint32_t)v);
303 stl_le_p(p + 4, v >> 32);
306 /* float access */
308 static inline float32 ldfl_le_p(void *ptr)
310 union {
311 float32 f;
312 uint32_t i;
313 } u;
314 u.i = ldl_le_p(ptr);
315 return u.f;
318 static inline void stfl_le_p(void *ptr, float32 v)
320 union {
321 float32 f;
322 uint32_t i;
323 } u;
324 u.f = v;
325 stl_le_p(ptr, u.i);
328 static inline float64 ldfq_le_p(void *ptr)
330 CPU_DoubleU u;
331 u.l.lower = ldl_le_p(ptr);
332 u.l.upper = ldl_le_p(ptr + 4);
333 return u.d;
336 static inline void stfq_le_p(void *ptr, float64 v)
338 CPU_DoubleU u;
339 u.d = v;
340 stl_le_p(ptr, u.l.lower);
341 stl_le_p(ptr + 4, u.l.upper);
344 #else
346 static inline int lduw_le_p(void *ptr)
348 return *(uint16_t *)ptr;
351 static inline int ldsw_le_p(void *ptr)
353 return *(int16_t *)ptr;
356 static inline int ldl_le_p(void *ptr)
358 return *(uint32_t *)ptr;
361 static inline uint64_t ldq_le_p(void *ptr)
363 return *(uint64_t *)ptr;
366 static inline void stw_le_p(void *ptr, int v)
368 *(uint16_t *)ptr = v;
371 static inline void stl_le_p(void *ptr, int v)
373 *(uint32_t *)ptr = v;
376 static inline void stq_le_p(void *ptr, uint64_t v)
378 *(uint64_t *)ptr = v;
381 /* float access */
383 static inline float32 ldfl_le_p(void *ptr)
385 return *(float32 *)ptr;
388 static inline float64 ldfq_le_p(void *ptr)
390 return *(float64 *)ptr;
393 static inline void stfl_le_p(void *ptr, float32 v)
395 *(float32 *)ptr = v;
398 static inline void stfq_le_p(void *ptr, float64 v)
400 *(float64 *)ptr = v;
402 #endif
404 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
406 static inline int lduw_be_p(void *ptr)
408 #if defined(__i386__)
409 int val;
410 asm volatile ("movzwl %1, %0\n"
411 "xchgb %b0, %h0\n"
412 : "=q" (val)
413 : "m" (*(uint16_t *)ptr));
414 return val;
415 #else
416 uint8_t *b = (uint8_t *) ptr;
417 return ((b[0] << 8) | b[1]);
418 #endif
421 static inline int ldsw_be_p(void *ptr)
423 #if defined(__i386__)
424 int val;
425 asm volatile ("movzwl %1, %0\n"
426 "xchgb %b0, %h0\n"
427 : "=q" (val)
428 : "m" (*(uint16_t *)ptr));
429 return (int16_t)val;
430 #else
431 uint8_t *b = (uint8_t *) ptr;
432 return (int16_t)((b[0] << 8) | b[1]);
433 #endif
436 static inline int ldl_be_p(void *ptr)
438 #if defined(__i386__) || defined(__x86_64__)
439 int val;
440 asm volatile ("movl %1, %0\n"
441 "bswap %0\n"
442 : "=r" (val)
443 : "m" (*(uint32_t *)ptr));
444 return val;
445 #else
446 uint8_t *b = (uint8_t *) ptr;
447 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448 #endif
451 static inline uint64_t ldq_be_p(void *ptr)
453 uint32_t a,b;
454 a = ldl_be_p(ptr);
455 b = ldl_be_p((uint8_t *)ptr + 4);
456 return (((uint64_t)a<<32)|b);
459 static inline void stw_be_p(void *ptr, int v)
461 #if defined(__i386__)
462 asm volatile ("xchgb %b0, %h0\n"
463 "movw %w0, %1\n"
464 : "=q" (v)
465 : "m" (*(uint16_t *)ptr), "0" (v));
466 #else
467 uint8_t *d = (uint8_t *) ptr;
468 d[0] = v >> 8;
469 d[1] = v;
470 #endif
473 static inline void stl_be_p(void *ptr, int v)
475 #if defined(__i386__) || defined(__x86_64__)
476 asm volatile ("bswap %0\n"
477 "movl %0, %1\n"
478 : "=r" (v)
479 : "m" (*(uint32_t *)ptr), "0" (v));
480 #else
481 uint8_t *d = (uint8_t *) ptr;
482 d[0] = v >> 24;
483 d[1] = v >> 16;
484 d[2] = v >> 8;
485 d[3] = v;
486 #endif
489 static inline void stq_be_p(void *ptr, uint64_t v)
491 stl_be_p(ptr, v >> 32);
492 stl_be_p((uint8_t *)ptr + 4, v);
495 /* float access */
497 static inline float32 ldfl_be_p(void *ptr)
499 union {
500 float32 f;
501 uint32_t i;
502 } u;
503 u.i = ldl_be_p(ptr);
504 return u.f;
507 static inline void stfl_be_p(void *ptr, float32 v)
509 union {
510 float32 f;
511 uint32_t i;
512 } u;
513 u.f = v;
514 stl_be_p(ptr, u.i);
517 static inline float64 ldfq_be_p(void *ptr)
519 CPU_DoubleU u;
520 u.l.upper = ldl_be_p(ptr);
521 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522 return u.d;
525 static inline void stfq_be_p(void *ptr, float64 v)
527 CPU_DoubleU u;
528 u.d = v;
529 stl_be_p(ptr, u.l.upper);
530 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
533 #else
535 static inline int lduw_be_p(void *ptr)
537 return *(uint16_t *)ptr;
540 static inline int ldsw_be_p(void *ptr)
542 return *(int16_t *)ptr;
545 static inline int ldl_be_p(void *ptr)
547 return *(uint32_t *)ptr;
550 static inline uint64_t ldq_be_p(void *ptr)
552 return *(uint64_t *)ptr;
555 static inline void stw_be_p(void *ptr, int v)
557 *(uint16_t *)ptr = v;
560 static inline void stl_be_p(void *ptr, int v)
562 *(uint32_t *)ptr = v;
565 static inline void stq_be_p(void *ptr, uint64_t v)
567 *(uint64_t *)ptr = v;
570 /* float access */
572 static inline float32 ldfl_be_p(void *ptr)
574 return *(float32 *)ptr;
577 static inline float64 ldfq_be_p(void *ptr)
579 return *(float64 *)ptr;
582 static inline void stfl_be_p(void *ptr, float32 v)
584 *(float32 *)ptr = v;
587 static inline void stfq_be_p(void *ptr, float64 v)
589 *(float64 *)ptr = v;
592 #endif
594 /* target CPU memory access functions */
595 #if defined(TARGET_WORDS_BIGENDIAN)
596 #define lduw_p(p) lduw_be_p(p)
597 #define ldsw_p(p) ldsw_be_p(p)
598 #define ldl_p(p) ldl_be_p(p)
599 #define ldq_p(p) ldq_be_p(p)
600 #define ldfl_p(p) ldfl_be_p(p)
601 #define ldfq_p(p) ldfq_be_p(p)
602 #define stw_p(p, v) stw_be_p(p, v)
603 #define stl_p(p, v) stl_be_p(p, v)
604 #define stq_p(p, v) stq_be_p(p, v)
605 #define stfl_p(p, v) stfl_be_p(p, v)
606 #define stfq_p(p, v) stfq_be_p(p, v)
607 #else
608 #define lduw_p(p) lduw_le_p(p)
609 #define ldsw_p(p) ldsw_le_p(p)
610 #define ldl_p(p) ldl_le_p(p)
611 #define ldq_p(p) ldq_le_p(p)
612 #define ldfl_p(p) ldfl_le_p(p)
613 #define ldfq_p(p) ldfq_le_p(p)
614 #define stw_p(p, v) stw_le_p(p, v)
615 #define stl_p(p, v) stl_le_p(p, v)
616 #define stq_p(p, v) stq_le_p(p, v)
617 #define stfl_p(p, v) stfl_le_p(p, v)
618 #define stfq_p(p, v) stfq_le_p(p, v)
619 #endif
621 /* MMU memory access macros */
623 #if defined(CONFIG_USER_ONLY)
624 /* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
627 //#define GUEST_BASE 0x20000000
628 #define GUEST_BASE 0
630 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
631 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
632 #define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
634 #define saddr(x) g2h(x)
635 #define laddr(x) g2h(x)
637 #else /* !CONFIG_USER_ONLY */
638 /* NOTE: we use double casts if pointers and target_ulong have
639 different sizes */
640 #define saddr(x) (uint8_t *)(long)(x)
641 #define laddr(x) (uint8_t *)(long)(x)
642 #endif
644 #define ldub_raw(p) ldub_p(laddr((p)))
645 #define ldsb_raw(p) ldsb_p(laddr((p)))
646 #define lduw_raw(p) lduw_p(laddr((p)))
647 #define ldsw_raw(p) ldsw_p(laddr((p)))
648 #define ldl_raw(p) ldl_p(laddr((p)))
649 #define ldq_raw(p) ldq_p(laddr((p)))
650 #define ldfl_raw(p) ldfl_p(laddr((p)))
651 #define ldfq_raw(p) ldfq_p(laddr((p)))
652 #define stb_raw(p, v) stb_p(saddr((p)), v)
653 #define stw_raw(p, v) stw_p(saddr((p)), v)
654 #define stl_raw(p, v) stl_p(saddr((p)), v)
655 #define stq_raw(p, v) stq_p(saddr((p)), v)
656 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
657 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
660 #if defined(CONFIG_USER_ONLY)
662 /* if user mode, no other memory access functions */
663 #define ldub(p) ldub_raw(p)
664 #define ldsb(p) ldsb_raw(p)
665 #define lduw(p) lduw_raw(p)
666 #define ldsw(p) ldsw_raw(p)
667 #define ldl(p) ldl_raw(p)
668 #define ldq(p) ldq_raw(p)
669 #define ldfl(p) ldfl_raw(p)
670 #define ldfq(p) ldfq_raw(p)
671 #define stb(p, v) stb_raw(p, v)
672 #define stw(p, v) stw_raw(p, v)
673 #define stl(p, v) stl_raw(p, v)
674 #define stq(p, v) stq_raw(p, v)
675 #define stfl(p, v) stfl_raw(p, v)
676 #define stfq(p, v) stfq_raw(p, v)
678 #define ldub_code(p) ldub_raw(p)
679 #define ldsb_code(p) ldsb_raw(p)
680 #define lduw_code(p) lduw_raw(p)
681 #define ldsw_code(p) ldsw_raw(p)
682 #define ldl_code(p) ldl_raw(p)
683 #define ldq_code(p) ldq_raw(p)
685 #define ldub_kernel(p) ldub_raw(p)
686 #define ldsb_kernel(p) ldsb_raw(p)
687 #define lduw_kernel(p) lduw_raw(p)
688 #define ldsw_kernel(p) ldsw_raw(p)
689 #define ldl_kernel(p) ldl_raw(p)
690 #define ldq_kernel(p) ldq_raw(p)
691 #define ldfl_kernel(p) ldfl_raw(p)
692 #define ldfq_kernel(p) ldfq_raw(p)
693 #define stb_kernel(p, v) stb_raw(p, v)
694 #define stw_kernel(p, v) stw_raw(p, v)
695 #define stl_kernel(p, v) stl_raw(p, v)
696 #define stq_kernel(p, v) stq_raw(p, v)
697 #define stfl_kernel(p, v) stfl_raw(p, v)
698 #define stfq_kernel(p, vt) stfq_raw(p, v)
700 #endif /* defined(CONFIG_USER_ONLY) */
702 /* page related stuff */
704 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
705 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
706 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
708 /* ??? These should be the larger of unsigned long and target_ulong. */
709 extern unsigned long qemu_real_host_page_size;
710 extern unsigned long qemu_host_page_bits;
711 extern unsigned long qemu_host_page_size;
712 extern unsigned long qemu_host_page_mask;
714 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
716 /* same as PROT_xxx */
717 #define PAGE_READ 0x0001
718 #define PAGE_WRITE 0x0002
719 #define PAGE_EXEC 0x0004
720 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
721 #define PAGE_VALID 0x0008
722 /* original state of the write flag (used when tracking self-modifying
723 code */
724 #define PAGE_WRITE_ORG 0x0010
725 #define PAGE_RESERVED 0x0020
727 void page_dump(FILE *f);
728 int page_get_flags(target_ulong address);
729 void page_set_flags(target_ulong start, target_ulong end, int flags);
730 int page_check_range(target_ulong start, target_ulong len, int flags);
732 void cpu_exec_init_all(unsigned long tb_size);
733 CPUState *cpu_copy(CPUState *env);
735 void cpu_dump_state(CPUState *env, FILE *f,
736 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
737 int flags);
738 void cpu_dump_statistics (CPUState *env, FILE *f,
739 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
740 int flags);
742 void cpu_abort(CPUState *env, const char *fmt, ...)
743 __attribute__ ((__format__ (__printf__, 2, 3)))
744 __attribute__ ((__noreturn__));
745 extern CPUState *first_cpu;
746 extern CPUState *cpu_single_env;
747 extern int64_t qemu_icount;
748 extern int use_icount;
750 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
751 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
752 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
753 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
754 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
755 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
756 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
757 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
758 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
759 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
761 void cpu_interrupt(CPUState *s, int mask);
762 void cpu_reset_interrupt(CPUState *env, int mask);
764 /* Breakpoint/watchpoint flags */
765 #define BP_MEM_READ 0x01
766 #define BP_MEM_WRITE 0x02
767 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
768 #define BP_STOP_BEFORE_ACCESS 0x04
769 #define BP_WATCHPOINT_HIT 0x08
770 #define BP_GDB 0x10
771 #define BP_CPU 0x20
773 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
774 CPUBreakpoint **breakpoint);
775 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
776 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
777 void cpu_breakpoint_remove_all(CPUState *env, int mask);
778 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
779 int flags, CPUWatchpoint **watchpoint);
780 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
781 target_ulong len, int flags);
782 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
783 void cpu_watchpoint_remove_all(CPUState *env, int mask);
785 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
786 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
787 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
789 void cpu_single_step(CPUState *env, int enabled);
790 void cpu_reset(CPUState *s);
792 /* Return the physical page corresponding to a virtual one. Use it
793 only for debugging because no protection checks are done. Return -1
794 if no page found. */
795 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
797 #define CPU_LOG_TB_OUT_ASM (1 << 0)
798 #define CPU_LOG_TB_IN_ASM (1 << 1)
799 #define CPU_LOG_TB_OP (1 << 2)
800 #define CPU_LOG_TB_OP_OPT (1 << 3)
801 #define CPU_LOG_INT (1 << 4)
802 #define CPU_LOG_EXEC (1 << 5)
803 #define CPU_LOG_PCALL (1 << 6)
804 #define CPU_LOG_IOPORT (1 << 7)
805 #define CPU_LOG_TB_CPU (1 << 8)
807 /* define log items */
808 typedef struct CPULogItem {
809 int mask;
810 const char *name;
811 const char *help;
812 } CPULogItem;
814 extern const CPULogItem cpu_log_items[];
816 void cpu_set_log(int log_flags);
817 void cpu_set_log_filename(const char *filename);
818 int cpu_str_to_log_mask(const char *str);
820 /* IO ports API */
822 /* NOTE: as these functions may be even used when there is an isa
823 brige on non x86 targets, we always defined them */
824 #ifndef NO_CPU_IO_DEFS
825 void cpu_outb(CPUState *env, int addr, int val);
826 void cpu_outw(CPUState *env, int addr, int val);
827 void cpu_outl(CPUState *env, int addr, int val);
828 int cpu_inb(CPUState *env, int addr);
829 int cpu_inw(CPUState *env, int addr);
830 int cpu_inl(CPUState *env, int addr);
831 #endif
833 /* address in the RAM (different from a physical address) */
834 #ifdef USE_KQEMU
835 typedef uint32_t ram_addr_t;
836 #else
837 typedef unsigned long ram_addr_t;
838 #endif
840 /* memory API */
842 extern ram_addr_t phys_ram_size;
843 extern int phys_ram_fd;
844 extern uint8_t *phys_ram_base;
845 extern uint8_t *phys_ram_dirty;
846 extern ram_addr_t ram_size;
847 extern uint8_t *bios_mem;
849 /* physical memory access */
851 /* MMIO pages are identified by a combination of an IO device index and
852 3 flags. The ROMD code stores the page ram offset in iotlb entry,
853 so only a limited number of ids are avaiable. */
855 #define IO_MEM_SHIFT 3
856 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
858 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
859 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
860 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
861 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
863 /* Acts like a ROM when read and like a device when written. */
864 #define IO_MEM_ROMD (1)
865 #define IO_MEM_SUBPAGE (2)
866 #define IO_MEM_SUBWIDTH (4)
868 /* Flags stored in the low bits of the TLB virtual address. These are
869 defined so that fast path ram access is all zeros. */
870 /* Zero if TLB entry is valid. */
871 #define TLB_INVALID_MASK (1 << 3)
872 /* Set if TLB entry references a clean RAM page. The iotlb entry will
873 contain the page physical address. */
874 #define TLB_NOTDIRTY (1 << 4)
875 /* Set if TLB entry is an IO callback. */
876 #define TLB_MMIO (1 << 5)
878 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
879 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
881 void cpu_register_physical_memory(target_phys_addr_t start_addr,
882 ram_addr_t size,
883 ram_addr_t phys_offset);
884 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
885 ram_addr_t qemu_ram_alloc(ram_addr_t);
886 void qemu_ram_free(ram_addr_t addr);
887 int cpu_register_io_memory(int io_index,
888 CPUReadMemoryFunc **mem_read,
889 CPUWriteMemoryFunc **mem_write,
890 void *opaque);
891 void cpu_unregister_io_memory(int table_address);
892 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
893 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
895 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
896 int len, int is_write);
897 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
898 uint8_t *buf, int len)
900 cpu_physical_memory_rw(addr, buf, len, 0);
902 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
903 const uint8_t *buf, int len)
905 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
907 uint32_t ldub_phys(target_phys_addr_t addr);
908 uint32_t lduw_phys(target_phys_addr_t addr);
909 uint32_t ldl_phys(target_phys_addr_t addr);
910 uint64_t ldq_phys(target_phys_addr_t addr);
911 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
912 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
913 void stb_phys(target_phys_addr_t addr, uint32_t val);
914 void stw_phys(target_phys_addr_t addr, uint32_t val);
915 void stl_phys(target_phys_addr_t addr, uint32_t val);
916 void stq_phys(target_phys_addr_t addr, uint64_t val);
918 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
919 const uint8_t *buf, int len);
920 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
921 uint8_t *buf, int len, int is_write);
923 #define VGA_DIRTY_FLAG 0x01
924 #define CODE_DIRTY_FLAG 0x02
925 #define KQEMU_DIRTY_FLAG 0x04
926 #define MIGRATION_DIRTY_FLAG 0x08
928 /* read dirty bit (return 0 or 1) */
929 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
931 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
934 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
935 int dirty_flags)
937 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
940 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
942 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
945 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
946 int dirty_flags);
947 void cpu_tlb_update_dirty(CPUState *env);
949 int cpu_physical_memory_set_dirty_tracking(int enable);
951 int cpu_physical_memory_get_dirty_tracking(void);
953 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
955 void dump_exec_info(FILE *f,
956 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
958 /*******************************************/
959 /* host CPU ticks (if available) */
961 #if defined(__powerpc__)
963 static inline uint32_t get_tbl(void)
965 uint32_t tbl;
966 asm volatile("mftb %0" : "=r" (tbl));
967 return tbl;
970 static inline uint32_t get_tbu(void)
972 uint32_t tbl;
973 asm volatile("mftbu %0" : "=r" (tbl));
974 return tbl;
977 static inline int64_t cpu_get_real_ticks(void)
979 uint32_t l, h, h1;
980 /* NOTE: we test if wrapping has occurred */
981 do {
982 h = get_tbu();
983 l = get_tbl();
984 h1 = get_tbu();
985 } while (h != h1);
986 return ((int64_t)h << 32) | l;
989 #elif defined(__i386__)
991 static inline int64_t cpu_get_real_ticks(void)
993 int64_t val;
994 asm volatile ("rdtsc" : "=A" (val));
995 return val;
998 #elif defined(__x86_64__)
1000 static inline int64_t cpu_get_real_ticks(void)
1002 uint32_t low,high;
1003 int64_t val;
1004 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1005 val = high;
1006 val <<= 32;
1007 val |= low;
1008 return val;
1011 #elif defined(__hppa__)
1013 static inline int64_t cpu_get_real_ticks(void)
1015 int val;
1016 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1017 return val;
1020 #elif defined(__ia64)
1022 static inline int64_t cpu_get_real_ticks(void)
1024 int64_t val;
1025 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1026 return val;
1029 #elif defined(__s390__)
1031 static inline int64_t cpu_get_real_ticks(void)
1033 int64_t val;
1034 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1035 return val;
1038 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1040 static inline int64_t cpu_get_real_ticks (void)
1042 #if defined(_LP64)
1043 uint64_t rval;
1044 asm volatile("rd %%tick,%0" : "=r"(rval));
1045 return rval;
1046 #else
1047 union {
1048 uint64_t i64;
1049 struct {
1050 uint32_t high;
1051 uint32_t low;
1052 } i32;
1053 } rval;
1054 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1055 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1056 return rval.i64;
1057 #endif
1060 #elif defined(__mips__)
1062 static inline int64_t cpu_get_real_ticks(void)
1064 #if __mips_isa_rev >= 2
1065 uint32_t count;
1066 static uint32_t cyc_per_count = 0;
1068 if (!cyc_per_count)
1069 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1071 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1072 return (int64_t)(count * cyc_per_count);
1073 #else
1074 /* FIXME */
1075 static int64_t ticks = 0;
1076 return ticks++;
1077 #endif
1080 #else
1081 /* The host CPU doesn't have an easily accessible cycle counter.
1082 Just return a monotonically increasing value. This will be
1083 totally wrong, but hopefully better than nothing. */
1084 static inline int64_t cpu_get_real_ticks (void)
1086 static int64_t ticks = 0;
1087 return ticks++;
1089 #endif
1091 /* profiling */
1092 #ifdef CONFIG_PROFILER
1093 static inline int64_t profile_getclock(void)
1095 return cpu_get_real_ticks();
1098 extern int64_t kqemu_time, kqemu_time_start;
1099 extern int64_t qemu_time, qemu_time_start;
1100 extern int64_t tlb_flush_time;
1101 extern int64_t kqemu_exec_count;
1102 extern int64_t dev_time;
1103 extern int64_t kqemu_ret_int_count;
1104 extern int64_t kqemu_ret_excp_count;
1105 extern int64_t kqemu_ret_intr_count;
1106 #endif
1108 #endif /* CPU_ALL_H */