Merge branch 'qemu-cvs'
[kvm-userspace.git] / qemu / hw / i8254.c
blob69eb889c1e80f7b676cd12f075453623ac55ece5
1 /*
2 * QEMU 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pc.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
28 #include "i8254.h"
30 //#define DEBUG_PIT
32 static PITState pit_state;
34 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
36 static int pit_get_count(PITChannelState *s)
38 uint64_t d;
39 int counter;
41 d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
42 switch(s->mode) {
43 case 0:
44 case 1:
45 case 4:
46 case 5:
47 counter = (s->count - d) & 0xffff;
48 break;
49 case 3:
50 /* XXX: may be incorrect for odd counts */
51 counter = s->count - ((2 * d) % s->count);
52 break;
53 default:
54 counter = s->count - (d % s->count);
55 break;
57 return counter;
60 /* get pit output bit */
61 static int pit_get_out1(PITChannelState *s, int64_t current_time)
63 uint64_t d;
64 int out;
66 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
67 switch(s->mode) {
68 default:
69 case 0:
70 out = (d >= s->count);
71 break;
72 case 1:
73 out = (d < s->count);
74 break;
75 case 2:
76 if ((d % s->count) == 0 && d != 0)
77 out = 1;
78 else
79 out = 0;
80 break;
81 case 3:
82 out = (d % s->count) < ((s->count + 1) >> 1);
83 break;
84 case 4:
85 case 5:
86 out = (d == s->count);
87 break;
89 return out;
92 int pit_get_out(PITState *pit, int channel, int64_t current_time)
94 PITChannelState *s = &pit->channels[channel];
95 return pit_get_out1(s, current_time);
98 /* return -1 if no transition will occur. */
99 static int64_t pit_get_next_transition_time(PITChannelState *s,
100 int64_t current_time)
102 uint64_t d, next_time, base;
103 int period2;
105 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
106 switch(s->mode) {
107 default:
108 case 0:
109 case 1:
110 if (d < s->count)
111 next_time = s->count;
112 else
113 return -1;
114 break;
115 case 2:
116 base = (d / s->count) * s->count;
117 if ((d - base) == 0 && d != 0)
118 next_time = base + s->count;
119 else
120 next_time = base + s->count + 1;
121 break;
122 case 3:
123 base = (d / s->count) * s->count;
124 period2 = ((s->count + 1) >> 1);
125 if ((d - base) < period2)
126 next_time = base + period2;
127 else
128 next_time = base + s->count;
129 break;
130 case 4:
131 case 5:
132 if (d < s->count)
133 next_time = s->count;
134 else if (d == s->count)
135 next_time = s->count + 1;
136 else
137 return -1;
138 break;
140 /* convert to timer units */
141 next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
142 /* fix potential rounding problems */
143 /* XXX: better solution: use a clock at PIT_FREQ Hz */
144 if (next_time <= current_time)
145 next_time = current_time + 1;
146 return next_time;
149 /* val must be 0 or 1 */
150 void pit_set_gate(PITState *pit, int channel, int val)
152 PITChannelState *s = &pit->channels[channel];
154 switch(s->mode) {
155 default:
156 case 0:
157 case 4:
158 /* XXX: just disable/enable counting */
159 break;
160 case 1:
161 case 5:
162 if (s->gate < val) {
163 /* restart counting on rising edge */
164 s->count_load_time = qemu_get_clock(vm_clock);
165 pit_irq_timer_update(s, s->count_load_time);
167 break;
168 case 2:
169 case 3:
170 if (s->gate < val) {
171 /* restart counting on rising edge */
172 s->count_load_time = qemu_get_clock(vm_clock);
173 pit_irq_timer_update(s, s->count_load_time);
175 /* XXX: disable/enable counting */
176 break;
178 s->gate = val;
181 int pit_get_gate(PITState *pit, int channel)
183 PITChannelState *s = &pit->channels[channel];
184 return s->gate;
187 int pit_get_initial_count(PITState *pit, int channel)
189 PITChannelState *s = &pit->channels[channel];
190 return s->count;
193 int pit_get_mode(PITState *pit, int channel)
195 PITChannelState *s = &pit->channels[channel];
196 return s->mode;
199 static inline void pit_load_count(PITChannelState *s, int val)
201 if (val == 0)
202 val = 0x10000;
203 s->count_load_time = qemu_get_clock(vm_clock);
204 s->count = val;
205 pit_irq_timer_update(s, s->count_load_time);
208 /* if already latched, do not latch again */
209 static void pit_latch_count(PITChannelState *s)
211 if (!s->count_latched) {
212 s->latched_count = pit_get_count(s);
213 s->count_latched = s->rw_mode;
217 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
219 PITState *pit = opaque;
220 int channel, access;
221 PITChannelState *s;
223 addr &= 3;
224 if (addr == 3) {
225 channel = val >> 6;
226 if (channel == 3) {
227 /* read back command */
228 for(channel = 0; channel < 3; channel++) {
229 s = &pit->channels[channel];
230 if (val & (2 << channel)) {
231 if (!(val & 0x20)) {
232 pit_latch_count(s);
234 if (!(val & 0x10) && !s->status_latched) {
235 /* status latch */
236 /* XXX: add BCD and null count */
237 s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
238 (s->rw_mode << 4) |
239 (s->mode << 1) |
240 s->bcd;
241 s->status_latched = 1;
245 } else {
246 s = &pit->channels[channel];
247 access = (val >> 4) & 3;
248 if (access == 0) {
249 pit_latch_count(s);
250 } else {
251 s->rw_mode = access;
252 s->read_state = access;
253 s->write_state = access;
255 s->mode = (val >> 1) & 7;
256 s->bcd = val & 1;
257 /* XXX: update irq timer ? */
260 } else {
261 s = &pit->channels[addr];
262 switch(s->write_state) {
263 default:
264 case RW_STATE_LSB:
265 pit_load_count(s, val);
266 break;
267 case RW_STATE_MSB:
268 pit_load_count(s, val << 8);
269 break;
270 case RW_STATE_WORD0:
271 s->write_latch = val;
272 s->write_state = RW_STATE_WORD1;
273 break;
274 case RW_STATE_WORD1:
275 pit_load_count(s, s->write_latch | (val << 8));
276 s->write_state = RW_STATE_WORD0;
277 break;
282 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
284 PITState *pit = opaque;
285 int ret, count;
286 PITChannelState *s;
288 addr &= 3;
289 s = &pit->channels[addr];
290 if (s->status_latched) {
291 s->status_latched = 0;
292 ret = s->status;
293 } else if (s->count_latched) {
294 switch(s->count_latched) {
295 default:
296 case RW_STATE_LSB:
297 ret = s->latched_count & 0xff;
298 s->count_latched = 0;
299 break;
300 case RW_STATE_MSB:
301 ret = s->latched_count >> 8;
302 s->count_latched = 0;
303 break;
304 case RW_STATE_WORD0:
305 ret = s->latched_count & 0xff;
306 s->count_latched = RW_STATE_MSB;
307 break;
309 } else {
310 switch(s->read_state) {
311 default:
312 case RW_STATE_LSB:
313 count = pit_get_count(s);
314 ret = count & 0xff;
315 break;
316 case RW_STATE_MSB:
317 count = pit_get_count(s);
318 ret = (count >> 8) & 0xff;
319 break;
320 case RW_STATE_WORD0:
321 count = pit_get_count(s);
322 ret = count & 0xff;
323 s->read_state = RW_STATE_WORD1;
324 break;
325 case RW_STATE_WORD1:
326 count = pit_get_count(s);
327 ret = (count >> 8) & 0xff;
328 s->read_state = RW_STATE_WORD0;
329 break;
332 return ret;
335 /* global counters for time-drift fix */
336 int64_t timer_acks=0, timer_interrupts=0, timer_ints_to_push=0;
338 extern int time_drift_fix;
340 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
342 int64_t expire_time;
343 int irq_level;
345 if (!s->irq_timer)
346 return;
347 expire_time = pit_get_next_transition_time(s, current_time);
348 irq_level = pit_get_out1(s, current_time);
349 qemu_set_irq(s->irq, irq_level);
350 if (time_drift_fix && irq_level==1) {
351 /* FIXME: fine tune timer_max_fix (max fix per tick).
352 * Should it be 1 (double time), 2 , 4, 10 ?
353 * Currently setting it to 5% of PIT-ticks-per-second (per PIT-tick)
355 const long pit_ticks_per_sec = (s->count>0) ? (PIT_FREQ/s->count) : 0;
356 const long timer_max_fix = pit_ticks_per_sec/20;
357 const long delta = timer_interrupts - timer_acks;
358 const long max_delta = pit_ticks_per_sec * 60; /* one minute */
359 if ((delta > max_delta) && (pit_ticks_per_sec > 0)) {
360 printf("time drift is too long, %ld seconds were lost\n", delta/pit_ticks_per_sec);
361 timer_acks = timer_interrupts;
362 timer_ints_to_push = 0;
363 } else if (delta > 0) {
364 timer_ints_to_push = MIN(delta, timer_max_fix);
366 timer_interrupts++;
368 #ifdef DEBUG_PIT
369 printf("irq_level=%d next_delay=%f\n",
370 irq_level,
371 (double)(expire_time - current_time) / ticks_per_sec);
372 #endif
373 s->next_transition_time = expire_time;
374 if (expire_time != -1)
375 qemu_mod_timer(s->irq_timer, expire_time);
376 else
377 qemu_del_timer(s->irq_timer);
380 static void pit_irq_timer(void *opaque)
382 PITChannelState *s = opaque;
384 pit_irq_timer_update(s, s->next_transition_time);
387 void pit_save(QEMUFile *f, void *opaque)
389 PITState *pit = opaque;
390 PITChannelState *s;
391 int i;
393 for(i = 0; i < 3; i++) {
394 s = &pit->channels[i];
395 qemu_put_be32(f, s->count);
396 qemu_put_be16s(f, &s->latched_count);
397 qemu_put_8s(f, &s->count_latched);
398 qemu_put_8s(f, &s->status_latched);
399 qemu_put_8s(f, &s->status);
400 qemu_put_8s(f, &s->read_state);
401 qemu_put_8s(f, &s->write_state);
402 qemu_put_8s(f, &s->write_latch);
403 qemu_put_8s(f, &s->rw_mode);
404 qemu_put_8s(f, &s->mode);
405 qemu_put_8s(f, &s->bcd);
406 qemu_put_8s(f, &s->gate);
407 qemu_put_be64(f, s->count_load_time);
408 if (s->irq_timer) {
409 qemu_put_be64(f, s->next_transition_time);
410 qemu_put_timer(f, s->irq_timer);
415 int pit_load(QEMUFile *f, void *opaque, int version_id)
417 PITState *pit = opaque;
418 PITChannelState *s;
419 int i;
421 if (version_id != 1)
422 return -EINVAL;
424 for(i = 0; i < 3; i++) {
425 s = &pit->channels[i];
426 s->count=qemu_get_be32(f);
427 qemu_get_be16s(f, &s->latched_count);
428 qemu_get_8s(f, &s->count_latched);
429 qemu_get_8s(f, &s->status_latched);
430 qemu_get_8s(f, &s->status);
431 qemu_get_8s(f, &s->read_state);
432 qemu_get_8s(f, &s->write_state);
433 qemu_get_8s(f, &s->write_latch);
434 qemu_get_8s(f, &s->rw_mode);
435 qemu_get_8s(f, &s->mode);
436 qemu_get_8s(f, &s->bcd);
437 qemu_get_8s(f, &s->gate);
438 s->count_load_time=qemu_get_be64(f);
439 if (s->irq_timer) {
440 s->next_transition_time=qemu_get_be64(f);
441 qemu_get_timer(f, s->irq_timer);
445 return 0;
448 void pit_reset(void *opaque)
450 PITState *pit = opaque;
451 PITChannelState *s;
452 int i;
454 for(i = 0;i < 3; i++) {
455 s = &pit->channels[i];
456 s->mode = 3;
457 s->gate = (i != 2);
458 pit_load_count(s, 0);
462 PITState *pit_init(int base, qemu_irq irq)
464 PITState *pit = &pit_state;
465 PITChannelState *s;
467 s = &pit->channels[0];
468 /* the timer 0 is connected to an IRQ */
469 s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
470 s->irq = irq;
472 register_savevm(PIT_SAVEVM_NAME, base, PIT_SAVEVM_VERSION,
473 pit_save, pit_load, pit);
475 qemu_register_reset(pit_reset, pit);
476 register_ioport_write(base, 4, 1, pit_ioport_write, pit);
477 register_ioport_read(base, 3, 1, pit_ioport_read, pit);
479 pit_reset(pit);
481 return pit;