Merge branch 'qemu-cvs'
[kvm-userspace.git] / qemu / hw / slavio_intctl.c
blob6a5d5050305e98e72746b56cf713a2f4b79e769f
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "console.h"
28 //#define DEBUG_IRQ_COUNT
29 //#define DEBUG_IRQ
31 #ifdef DEBUG_IRQ
32 #define DPRINTF(fmt, args...) \
33 do { printf("IRQ: " fmt , ##args); } while (0)
34 #else
35 #define DPRINTF(fmt, args...)
36 #endif
39 * Registers of interrupt controller in sun4m.
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * There is a system master controller and one for each cpu.
49 #define MAX_CPUS 16
50 #define MAX_PILS 16
52 typedef struct SLAVIO_INTCTLState {
53 uint32_t intreg_pending[MAX_CPUS];
54 uint32_t intregm_pending;
55 uint32_t intregm_disabled;
56 uint32_t target_cpu;
57 #ifdef DEBUG_IRQ_COUNT
58 uint64_t irq_count[32];
59 #endif
60 qemu_irq *cpu_irqs[MAX_CPUS];
61 const uint32_t *intbit_to_level;
62 uint32_t cputimer_lbit, cputimer_mbit;
63 uint32_t pil_out[MAX_CPUS];
64 } SLAVIO_INTCTLState;
66 #define INTCTL_MAXADDR 0xf
67 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68 #define INTCTLM_MAXADDR 0x13
69 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70 #define INTCTLM_MASK 0x1f
71 #define MASTER_IRQ_MASK ~0x0fa2007f
72 #define MASTER_DISABLE 0x80000000
73 #define CPU_SOFTIRQ_MASK 0xfffe0000
74 #define CPU_HARDIRQ_MASK 0x0000fffe
75 #define CPU_IRQ_INT15_IN 0x0004000
76 #define CPU_IRQ_INT15_MASK 0x80000000
78 static void slavio_check_interrupts(void *opaque);
80 // per-cpu interrupt controller
81 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
83 SLAVIO_INTCTLState *s = opaque;
84 uint32_t saddr, ret;
85 int cpu;
87 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
88 saddr = (addr & INTCTL_MAXADDR) >> 2;
89 switch (saddr) {
90 case 0:
91 ret = s->intreg_pending[cpu];
92 break;
93 default:
94 ret = 0;
95 break;
97 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
99 return ret;
102 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
103 uint32_t val)
105 SLAVIO_INTCTLState *s = opaque;
106 uint32_t saddr;
107 int cpu;
109 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
110 saddr = (addr & INTCTL_MAXADDR) >> 2;
111 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
112 switch (saddr) {
113 case 1: // clear pending softints
114 if (val & CPU_IRQ_INT15_IN)
115 val |= CPU_IRQ_INT15_MASK;
116 val &= CPU_SOFTIRQ_MASK;
117 s->intreg_pending[cpu] &= ~val;
118 slavio_check_interrupts(s);
119 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val,
120 s->intreg_pending[cpu]);
121 break;
122 case 2: // set softint
123 val &= CPU_SOFTIRQ_MASK;
124 s->intreg_pending[cpu] |= val;
125 slavio_check_interrupts(s);
126 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val,
127 s->intreg_pending[cpu]);
128 break;
129 default:
130 break;
134 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
135 NULL,
136 NULL,
137 slavio_intctl_mem_readl,
140 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
141 NULL,
142 NULL,
143 slavio_intctl_mem_writel,
146 // master system interrupt controller
147 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
149 SLAVIO_INTCTLState *s = opaque;
150 uint32_t saddr, ret;
152 saddr = (addr & INTCTLM_MASK) >> 2;
153 switch (saddr) {
154 case 0:
155 ret = s->intregm_pending & ~MASTER_DISABLE;
156 break;
157 case 1:
158 ret = s->intregm_disabled & MASTER_IRQ_MASK;
159 break;
160 case 4:
161 ret = s->target_cpu;
162 break;
163 default:
164 ret = 0;
165 break;
167 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
169 return ret;
172 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
173 uint32_t val)
175 SLAVIO_INTCTLState *s = opaque;
176 uint32_t saddr;
178 saddr = (addr & INTCTLM_MASK) >> 2;
179 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
180 switch (saddr) {
181 case 2: // clear (enable)
182 // Force clear unused bits
183 val &= MASTER_IRQ_MASK;
184 s->intregm_disabled &= ~val;
185 DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
186 s->intregm_disabled);
187 slavio_check_interrupts(s);
188 break;
189 case 3: // set (disable, clear pending)
190 // Force clear unused bits
191 val &= MASTER_IRQ_MASK;
192 s->intregm_disabled |= val;
193 s->intregm_pending &= ~val;
194 slavio_check_interrupts(s);
195 DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
196 s->intregm_disabled);
197 break;
198 case 4:
199 s->target_cpu = val & (MAX_CPUS - 1);
200 slavio_check_interrupts(s);
201 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
202 break;
203 default:
204 break;
208 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
209 NULL,
210 NULL,
211 slavio_intctlm_mem_readl,
214 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
215 NULL,
216 NULL,
217 slavio_intctlm_mem_writel,
220 void slavio_pic_info(void *opaque)
222 SLAVIO_INTCTLState *s = opaque;
223 int i;
225 for (i = 0; i < MAX_CPUS; i++) {
226 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
228 term_printf("master: pending 0x%08x, disabled 0x%08x\n",
229 s->intregm_pending, s->intregm_disabled);
232 void slavio_irq_info(void *opaque)
234 #ifndef DEBUG_IRQ_COUNT
235 term_printf("irq statistic code not compiled.\n");
236 #else
237 SLAVIO_INTCTLState *s = opaque;
238 int i;
239 int64_t count;
241 term_printf("IRQ statistics:\n");
242 for (i = 0; i < 32; i++) {
243 count = s->irq_count[i];
244 if (count > 0)
245 term_printf("%2d: %" PRId64 "\n", i, count);
247 #endif
250 static void slavio_check_interrupts(void *opaque)
252 SLAVIO_INTCTLState *s = opaque;
253 uint32_t pending = s->intregm_pending, pil_pending;
254 unsigned int i, j;
256 pending &= ~s->intregm_disabled;
258 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
259 for (i = 0; i < MAX_CPUS; i++) {
260 pil_pending = 0;
261 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
262 (i == s->target_cpu)) {
263 for (j = 0; j < 32; j++) {
264 if (pending & (1 << j))
265 pil_pending |= 1 << s->intbit_to_level[j];
268 pil_pending |= (s->intreg_pending[i] & CPU_SOFTIRQ_MASK) >> 16;
270 for (j = 0; j < MAX_PILS; j++) {
271 if (pil_pending & (1 << j)) {
272 if (!(s->pil_out[i] & (1 << j)))
273 qemu_irq_raise(s->cpu_irqs[i][j]);
274 } else {
275 if (s->pil_out[i] & (1 << j))
276 qemu_irq_lower(s->cpu_irqs[i][j]);
279 s->pil_out[i] = pil_pending;
284 * "irq" here is the bit number in the system interrupt register to
285 * separate serial and keyboard interrupts sharing a level.
287 static void slavio_set_irq(void *opaque, int irq, int level)
289 SLAVIO_INTCTLState *s = opaque;
290 uint32_t mask = 1 << irq;
291 uint32_t pil = s->intbit_to_level[irq];
293 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
294 level);
295 if (pil > 0) {
296 if (level) {
297 #ifdef DEBUG_IRQ_COUNT
298 s->irq_count[pil]++;
299 #endif
300 s->intregm_pending |= mask;
301 s->intreg_pending[s->target_cpu] |= 1 << pil;
302 } else {
303 s->intregm_pending &= ~mask;
304 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
306 slavio_check_interrupts(s);
310 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
312 SLAVIO_INTCTLState *s = opaque;
314 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
316 if (level) {
317 s->intregm_pending |= s->cputimer_mbit;
318 s->intreg_pending[cpu] |= s->cputimer_lbit;
319 } else {
320 s->intregm_pending &= ~s->cputimer_mbit;
321 s->intreg_pending[cpu] &= ~s->cputimer_lbit;
324 slavio_check_interrupts(s);
327 static void slavio_intctl_save(QEMUFile *f, void *opaque)
329 SLAVIO_INTCTLState *s = opaque;
330 int i;
332 for (i = 0; i < MAX_CPUS; i++) {
333 qemu_put_be32s(f, &s->intreg_pending[i]);
335 qemu_put_be32s(f, &s->intregm_pending);
336 qemu_put_be32s(f, &s->intregm_disabled);
337 qemu_put_be32s(f, &s->target_cpu);
340 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
342 SLAVIO_INTCTLState *s = opaque;
343 int i;
345 if (version_id != 1)
346 return -EINVAL;
348 for (i = 0; i < MAX_CPUS; i++) {
349 qemu_get_be32s(f, &s->intreg_pending[i]);
351 qemu_get_be32s(f, &s->intregm_pending);
352 qemu_get_be32s(f, &s->intregm_disabled);
353 qemu_get_be32s(f, &s->target_cpu);
354 slavio_check_interrupts(s);
355 return 0;
358 static void slavio_intctl_reset(void *opaque)
360 SLAVIO_INTCTLState *s = opaque;
361 int i;
363 for (i = 0; i < MAX_CPUS; i++) {
364 s->intreg_pending[i] = 0;
366 s->intregm_disabled = ~MASTER_IRQ_MASK;
367 s->intregm_pending = 0;
368 s->target_cpu = 0;
369 slavio_check_interrupts(s);
372 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
373 const uint32_t *intbit_to_level,
374 qemu_irq **irq, qemu_irq **cpu_irq,
375 qemu_irq **parent_irq, unsigned int cputimer)
377 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
378 SLAVIO_INTCTLState *s;
380 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
381 if (!s)
382 return NULL;
384 s->intbit_to_level = intbit_to_level;
385 for (i = 0; i < MAX_CPUS; i++) {
386 slavio_intctl_io_memory = cpu_register_io_memory(0,
387 slavio_intctl_mem_read,
388 slavio_intctl_mem_write,
390 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
391 slavio_intctl_io_memory);
392 s->cpu_irqs[i] = parent_irq[i];
395 slavio_intctlm_io_memory = cpu_register_io_memory(0,
396 slavio_intctlm_mem_read,
397 slavio_intctlm_mem_write,
399 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
401 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
402 slavio_intctl_load, s);
403 qemu_register_reset(slavio_intctl_reset, s);
404 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
406 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
407 s->cputimer_mbit = 1 << cputimer;
408 s->cputimer_lbit = 1 << intbit_to_level[cputimer];
409 slavio_intctl_reset(s);
410 return s;