2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
15 #include "scsi-disk.h"
16 #include "block_int.h"
19 //#define DEBUG_LSI_REG
22 #define DPRINTF(fmt, args...) \
23 do { printf("lsi_scsi: " fmt , ##args); } while (0)
24 #define BADF(fmt, args...) \
25 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
27 #define DPRINTF(fmt, args...) do {} while(0)
28 #define BADF(fmt, args...) \
29 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
32 #define LSI_SCNTL0_TRG 0x01
33 #define LSI_SCNTL0_AAP 0x02
34 #define LSI_SCNTL0_EPC 0x08
35 #define LSI_SCNTL0_WATN 0x10
36 #define LSI_SCNTL0_START 0x20
38 #define LSI_SCNTL1_SST 0x01
39 #define LSI_SCNTL1_IARB 0x02
40 #define LSI_SCNTL1_AESP 0x04
41 #define LSI_SCNTL1_RST 0x08
42 #define LSI_SCNTL1_CON 0x10
43 #define LSI_SCNTL1_DHP 0x20
44 #define LSI_SCNTL1_ADB 0x40
45 #define LSI_SCNTL1_EXC 0x80
47 #define LSI_SCNTL2_WSR 0x01
48 #define LSI_SCNTL2_VUE0 0x02
49 #define LSI_SCNTL2_VUE1 0x04
50 #define LSI_SCNTL2_WSS 0x08
51 #define LSI_SCNTL2_SLPHBEN 0x10
52 #define LSI_SCNTL2_SLPMD 0x20
53 #define LSI_SCNTL2_CHM 0x40
54 #define LSI_SCNTL2_SDU 0x80
56 #define LSI_ISTAT0_DIP 0x01
57 #define LSI_ISTAT0_SIP 0x02
58 #define LSI_ISTAT0_INTF 0x04
59 #define LSI_ISTAT0_CON 0x08
60 #define LSI_ISTAT0_SEM 0x10
61 #define LSI_ISTAT0_SIGP 0x20
62 #define LSI_ISTAT0_SRST 0x40
63 #define LSI_ISTAT0_ABRT 0x80
65 #define LSI_ISTAT1_SI 0x01
66 #define LSI_ISTAT1_SRUN 0x02
67 #define LSI_ISTAT1_FLSH 0x04
69 #define LSI_SSTAT0_SDP0 0x01
70 #define LSI_SSTAT0_RST 0x02
71 #define LSI_SSTAT0_WOA 0x04
72 #define LSI_SSTAT0_LOA 0x08
73 #define LSI_SSTAT0_AIP 0x10
74 #define LSI_SSTAT0_OLF 0x20
75 #define LSI_SSTAT0_ORF 0x40
76 #define LSI_SSTAT0_ILF 0x80
78 #define LSI_SIST0_PAR 0x01
79 #define LSI_SIST0_RST 0x02
80 #define LSI_SIST0_UDC 0x04
81 #define LSI_SIST0_SGE 0x08
82 #define LSI_SIST0_RSL 0x10
83 #define LSI_SIST0_SEL 0x20
84 #define LSI_SIST0_CMP 0x40
85 #define LSI_SIST0_MA 0x80
87 #define LSI_SIST1_HTH 0x01
88 #define LSI_SIST1_GEN 0x02
89 #define LSI_SIST1_STO 0x04
90 #define LSI_SIST1_SBMC 0x10
92 #define LSI_SOCL_IO 0x01
93 #define LSI_SOCL_CD 0x02
94 #define LSI_SOCL_MSG 0x04
95 #define LSI_SOCL_ATN 0x08
96 #define LSI_SOCL_SEL 0x10
97 #define LSI_SOCL_BSY 0x20
98 #define LSI_SOCL_ACK 0x40
99 #define LSI_SOCL_REQ 0x80
101 #define LSI_DSTAT_IID 0x01
102 #define LSI_DSTAT_SIR 0x04
103 #define LSI_DSTAT_SSI 0x08
104 #define LSI_DSTAT_ABRT 0x10
105 #define LSI_DSTAT_BF 0x20
106 #define LSI_DSTAT_MDPE 0x40
107 #define LSI_DSTAT_DFE 0x80
109 #define LSI_DCNTL_COM 0x01
110 #define LSI_DCNTL_IRQD 0x02
111 #define LSI_DCNTL_STD 0x04
112 #define LSI_DCNTL_IRQM 0x08
113 #define LSI_DCNTL_SSM 0x10
114 #define LSI_DCNTL_PFEN 0x20
115 #define LSI_DCNTL_PFF 0x40
116 #define LSI_DCNTL_CLSE 0x80
118 #define LSI_DMODE_MAN 0x01
119 #define LSI_DMODE_BOF 0x02
120 #define LSI_DMODE_ERMP 0x04
121 #define LSI_DMODE_ERL 0x08
122 #define LSI_DMODE_DIOM 0x10
123 #define LSI_DMODE_SIOM 0x20
125 #define LSI_CTEST2_DACK 0x01
126 #define LSI_CTEST2_DREQ 0x02
127 #define LSI_CTEST2_TEOP 0x04
128 #define LSI_CTEST2_PCICIE 0x08
129 #define LSI_CTEST2_CM 0x10
130 #define LSI_CTEST2_CIO 0x20
131 #define LSI_CTEST2_SIGP 0x40
132 #define LSI_CTEST2_DDIR 0x80
134 #define LSI_CTEST5_BL2 0x04
135 #define LSI_CTEST5_DDIR 0x08
136 #define LSI_CTEST5_MASR 0x10
137 #define LSI_CTEST5_DFSN 0x20
138 #define LSI_CTEST5_BBCK 0x40
139 #define LSI_CTEST5_ADCK 0x80
141 #define LSI_CCNTL0_DILS 0x01
142 #define LSI_CCNTL0_DISFC 0x10
143 #define LSI_CCNTL0_ENNDJ 0x20
144 #define LSI_CCNTL0_PMJCTL 0x40
145 #define LSI_CCNTL0_ENPMJ 0x80
147 #define LSI_CCNTL1_EN64DBMV 0x01
148 #define LSI_CCNTL1_EN64TIBMV 0x02
149 #define LSI_CCNTL1_64TIMOD 0x04
150 #define LSI_CCNTL1_DDAC 0x08
151 #define LSI_CCNTL1_ZMOD 0x80
153 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
163 /* Maximum length of MSG IN data. */
164 #define LSI_MAX_MSGIN_LEN 8
166 /* Flag set if this is a tagged command. */
167 #define LSI_TAG_VALID (1 << 16)
179 uint32_t script_ram_base
;
181 int carry
; /* ??? Should this be an a visible register somewhere? */
183 /* Action to take at the end of a MSG IN phase.
184 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
187 uint8_t msg
[LSI_MAX_MSGIN_LEN
];
188 /* 0 if SCRIPTS are running or stopped.
189 * 1 if a Wait Reselect instruction has been issued.
190 * 2 if processing DMA from lsi_execute_script.
191 * 3 if a DMA operation is in progress. */
193 SCSIDevice
*scsi_dev
[LSI_MAX_DEVS
];
194 SCSIDevice
*current_dev
;
196 /* The tag is a combination of the device ID and the SCSI tag. */
197 uint32_t current_tag
;
198 uint32_t current_dma_len
;
199 int command_complete
;
264 uint32_t scratch
[18]; /* SCRATCHA-SCRATCHR */
266 /* Script ram is stored as 32-bit words in host byteorder. */
267 uint32_t script_ram
[2048];
270 static void lsi_soft_reset(LSIState
*s
)
280 memset(s
->scratch
, 0, sizeof(s
->scratch
));
335 static int lsi_dma_40bit(LSIState
*s
)
337 if ((s
->ccntl1
& LSI_CCNTL1_40BIT
) == LSI_CCNTL1_40BIT
)
342 static int lsi_dma_ti64bit(LSIState
*s
)
344 if ((s
->ccntl1
& LSI_CCNTL1_EN64TIBMV
) == LSI_CCNTL1_EN64TIBMV
)
349 static int lsi_dma_64bit(LSIState
*s
)
351 if ((s
->ccntl1
& LSI_CCNTL1_EN64DBMV
) == LSI_CCNTL1_EN64DBMV
)
356 static uint8_t lsi_reg_readb(LSIState
*s
, int offset
);
357 static void lsi_reg_writeb(LSIState
*s
, int offset
, uint8_t val
);
358 static void lsi_execute_script(LSIState
*s
);
360 static inline uint32_t read_dword(LSIState
*s
, uint32_t addr
)
364 /* Optimize reading from SCRIPTS RAM. */
365 if ((addr
& 0xffffe000) == s
->script_ram_base
) {
366 return s
->script_ram
[(addr
& 0x1fff) >> 2];
368 cpu_physical_memory_read(addr
, (uint8_t *)&buf
, 4);
369 return cpu_to_le32(buf
);
372 static void lsi_stop_script(LSIState
*s
)
374 s
->istat1
&= ~LSI_ISTAT1_SRUN
;
377 static void lsi_update_irq(LSIState
*s
)
380 static int last_level
;
382 /* It's unclear whether the DIP/SIP bits should be cleared when the
383 Interrupt Status Registers are cleared or when istat0 is read.
384 We currently do the formwer, which seems to work. */
387 if (s
->dstat
& s
->dien
)
389 s
->istat0
|= LSI_ISTAT0_DIP
;
391 s
->istat0
&= ~LSI_ISTAT0_DIP
;
394 if (s
->sist0
|| s
->sist1
) {
395 if ((s
->sist0
& s
->sien0
) || (s
->sist1
& s
->sien1
))
397 s
->istat0
|= LSI_ISTAT0_SIP
;
399 s
->istat0
&= ~LSI_ISTAT0_SIP
;
401 if (s
->istat0
& LSI_ISTAT0_INTF
)
404 if (level
!= last_level
) {
405 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
406 level
, s
->dstat
, s
->sist1
, s
->sist0
);
409 qemu_set_irq(s
->pci_dev
.irq
[0], level
);
412 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
413 static void lsi_script_scsi_interrupt(LSIState
*s
, int stat0
, int stat1
)
418 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
419 stat1
, stat0
, s
->sist1
, s
->sist0
);
422 /* Stop processor on fatal or unmasked interrupt. As a special hack
423 we don't stop processing when raising STO. Instead continue
424 execution and stop at the next insn that accesses the SCSI bus. */
425 mask0
= s
->sien0
| ~(LSI_SIST0_CMP
| LSI_SIST0_SEL
| LSI_SIST0_RSL
);
426 mask1
= s
->sien1
| ~(LSI_SIST1_GEN
| LSI_SIST1_HTH
);
427 mask1
&= ~LSI_SIST1_STO
;
428 if (s
->sist0
& mask0
|| s
->sist1
& mask1
) {
434 /* Stop SCRIPTS execution and raise a DMA interrupt. */
435 static void lsi_script_dma_interrupt(LSIState
*s
, int stat
)
437 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat
, s
->dstat
);
443 static inline void lsi_set_phase(LSIState
*s
, int phase
)
445 s
->sstat1
= (s
->sstat1
& ~PHASE_MASK
) | phase
;
448 static void lsi_bad_phase(LSIState
*s
, int out
, int new_phase
)
450 /* Trigger a phase mismatch. */
451 if (s
->ccntl0
& LSI_CCNTL0_ENPMJ
) {
452 if ((s
->ccntl0
& LSI_CCNTL0_PMJCTL
) || out
) {
457 DPRINTF("Data phase mismatch jump to %08x\n", s
->dsp
);
459 DPRINTF("Phase mismatch interrupt\n");
460 lsi_script_scsi_interrupt(s
, LSI_SIST0_MA
, 0);
463 lsi_set_phase(s
, new_phase
);
467 /* Resume SCRIPTS execution after a DMA operation. */
468 static void lsi_resume_script(LSIState
*s
)
470 if (s
->waiting
!= 2) {
472 lsi_execute_script(s
);
478 /* Initiate a SCSI layer data transfer. */
479 static void lsi_do_dma(LSIState
*s
, int out
)
482 target_phys_addr_t addr
;
484 if (!s
->current_dma_len
) {
485 /* Wait until data is available. */
486 DPRINTF("DMA no data available\n");
491 if (count
> s
->current_dma_len
)
492 count
= s
->current_dma_len
;
495 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
496 if (lsi_dma_40bit(s
) || lsi_dma_ti64bit(s
))
497 addr
|= ((uint64_t)s
->dnad64
<< 32);
499 addr
|= ((uint64_t)s
->dbms
<< 32);
501 addr
|= ((uint64_t)s
->sbms
<< 32);
503 DPRINTF("DMA addr=0x" TARGET_FMT_plx
" len=%d\n", addr
, count
);
508 if (s
->dma_buf
== NULL
) {
509 s
->dma_buf
= s
->current_dev
->get_buf(s
->current_dev
,
513 /* ??? Set SFBR to first data byte. */
515 cpu_physical_memory_read(addr
, s
->dma_buf
, count
);
517 cpu_physical_memory_write(addr
, s
->dma_buf
, count
);
519 s
->current_dma_len
-= count
;
520 if (s
->current_dma_len
== 0) {
523 /* Write the data. */
524 s
->current_dev
->write_data(s
->current_dev
, s
->current_tag
);
526 /* Request any remaining data. */
527 s
->current_dev
->read_data(s
->current_dev
, s
->current_tag
);
531 lsi_resume_script(s
);
536 /* Add a command to the queue. */
537 static void lsi_queue_command(LSIState
*s
)
541 DPRINTF("Queueing tag=0x%x\n", s
->current_tag
);
542 if (s
->queue_len
== s
->active_commands
) {
544 s
->queue
= qemu_realloc(s
->queue
, s
->queue_len
* sizeof(lsi_queue
));
546 p
= &s
->queue
[s
->active_commands
++];
547 p
->tag
= s
->current_tag
;
549 p
->out
= (s
->sstat1
& PHASE_MASK
) == PHASE_DO
;
552 /* Queue a byte for a MSG IN phase. */
553 static void lsi_add_msg_byte(LSIState
*s
, uint8_t data
)
555 if (s
->msg_len
>= LSI_MAX_MSGIN_LEN
) {
556 BADF("MSG IN data too long\n");
558 DPRINTF("MSG IN 0x%02x\n", data
);
559 s
->msg
[s
->msg_len
++] = data
;
563 /* Perform reselection to continue a command. */
564 static void lsi_reselect(LSIState
*s
, uint32_t tag
)
571 for (n
= 0; n
< s
->active_commands
; n
++) {
576 if (n
== s
->active_commands
) {
577 BADF("Reselected non-existant command tag=0x%x\n", tag
);
580 id
= (tag
>> 8) & 0xf;
582 DPRINTF("Reselected target %d\n", id
);
583 s
->current_dev
= s
->scsi_dev
[id
];
584 s
->current_tag
= tag
;
585 s
->scntl1
|= LSI_SCNTL1_CON
;
586 lsi_set_phase(s
, PHASE_MI
);
587 s
->msg_action
= p
->out
? 2 : 3;
588 s
->current_dma_len
= p
->pending
;
590 lsi_add_msg_byte(s
, 0x80);
591 if (s
->current_tag
& LSI_TAG_VALID
) {
592 lsi_add_msg_byte(s
, 0x20);
593 lsi_add_msg_byte(s
, tag
& 0xff);
596 s
->active_commands
--;
597 if (n
!= s
->active_commands
) {
598 s
->queue
[n
] = s
->queue
[s
->active_commands
];
602 /* Record that data is available for a queued command. Returns zero if
603 the device was reselected, nonzero if the IO is deferred. */
604 static int lsi_queue_tag(LSIState
*s
, uint32_t tag
, uint32_t arg
)
608 for (i
= 0; i
< s
->active_commands
; i
++) {
612 BADF("Multiple IO pending for tag %d\n", tag
);
615 if (s
->waiting
== 1) {
616 /* Reselect device. */
617 lsi_reselect(s
, tag
);
620 DPRINTF("Queueing IO tag=0x%x\n", tag
);
626 BADF("IO with unknown tag %d\n", tag
);
630 /* Callback to indicate that the SCSI layer has completed a transfer. */
631 static void lsi_command_complete(void *opaque
, int reason
, uint32_t tag
,
634 LSIState
*s
= (LSIState
*)opaque
;
637 out
= (s
->sstat1
& PHASE_MASK
) == PHASE_DO
;
638 if (reason
== SCSI_REASON_DONE
) {
639 DPRINTF("Command complete sense=%d\n", (int)arg
);
641 s
->command_complete
= 2;
642 if (s
->waiting
&& s
->dbc
!= 0) {
643 /* Raise phase mismatch for short transfers. */
644 lsi_bad_phase(s
, out
, PHASE_ST
);
646 lsi_set_phase(s
, PHASE_ST
);
648 lsi_resume_script(s
);
652 if (s
->waiting
== 1 || tag
!= s
->current_tag
) {
653 if (lsi_queue_tag(s
, tag
, arg
))
656 DPRINTF("Data ready tag=0x%x len=%d\n", tag
, arg
);
657 s
->current_dma_len
= arg
;
658 s
->command_complete
= 1;
661 if (s
->waiting
== 1 || s
->dbc
== 0) {
662 lsi_resume_script(s
);
668 static void lsi_do_command(LSIState
*s
)
673 DPRINTF("Send command len=%d\n", s
->dbc
);
676 cpu_physical_memory_read(s
->dnad
, buf
, s
->dbc
);
678 s
->command_complete
= 0;
679 n
= s
->current_dev
->send_command(s
->current_dev
, s
->current_tag
, buf
,
682 lsi_set_phase(s
, PHASE_DI
);
683 s
->current_dev
->read_data(s
->current_dev
, s
->current_tag
);
685 lsi_set_phase(s
, PHASE_DO
);
686 s
->current_dev
->write_data(s
->current_dev
, s
->current_tag
);
689 if (!s
->command_complete
) {
691 /* Command did not complete immediately so disconnect. */
692 lsi_add_msg_byte(s
, 2); /* SAVE DATA POINTER */
693 lsi_add_msg_byte(s
, 4); /* DISCONNECT */
695 lsi_set_phase(s
, PHASE_MI
);
697 lsi_queue_command(s
);
699 /* wait command complete */
700 lsi_set_phase(s
, PHASE_DI
);
705 static void lsi_do_status(LSIState
*s
)
708 DPRINTF("Get status len=%d sense=%d\n", s
->dbc
, s
->sense
);
710 BADF("Bad Status move\n");
714 cpu_physical_memory_write(s
->dnad
, &sense
, 1);
715 lsi_set_phase(s
, PHASE_MI
);
717 lsi_add_msg_byte(s
, 0); /* COMMAND COMPLETE */
720 static void lsi_disconnect(LSIState
*s
)
722 s
->scntl1
&= ~LSI_SCNTL1_CON
;
723 s
->sstat1
&= ~PHASE_MASK
;
726 static void lsi_do_msgin(LSIState
*s
)
729 DPRINTF("Message in len=%d/%d\n", s
->dbc
, s
->msg_len
);
734 cpu_physical_memory_write(s
->dnad
, s
->msg
, len
);
735 /* Linux drivers rely on the last byte being in the SIDL. */
736 s
->sidl
= s
->msg
[len
- 1];
739 memmove(s
->msg
, s
->msg
+ len
, s
->msg_len
);
741 /* ??? Check if ATN (not yet implemented) is asserted and maybe
742 switch to PHASE_MO. */
743 switch (s
->msg_action
) {
745 lsi_set_phase(s
, PHASE_CMD
);
751 lsi_set_phase(s
, PHASE_DO
);
754 lsi_set_phase(s
, PHASE_DI
);
762 /* Read the next byte during a MSGOUT phase. */
763 static uint8_t lsi_get_msgbyte(LSIState
*s
)
766 cpu_physical_memory_read(s
->dnad
, &data
, 1);
772 static void lsi_do_msgout(LSIState
*s
)
777 DPRINTF("MSG out len=%d\n", s
->dbc
);
779 msg
= lsi_get_msgbyte(s
);
784 DPRINTF("MSG: Disconnect\n");
788 DPRINTF("MSG: No Operation\n");
789 lsi_set_phase(s
, PHASE_CMD
);
792 len
= lsi_get_msgbyte(s
);
793 msg
= lsi_get_msgbyte(s
);
794 DPRINTF("Extended message 0x%x (len %d)\n", msg
, len
);
797 DPRINTF("SDTR (ignored)\n");
801 DPRINTF("WDTR (ignored)\n");
808 case 0x20: /* SIMPLE queue */
809 s
->current_tag
|= lsi_get_msgbyte(s
) | LSI_TAG_VALID
;
810 DPRINTF("SIMPLE queue tag=0x%x\n", s
->current_tag
& 0xff);
812 case 0x21: /* HEAD of queue */
813 BADF("HEAD queue not implemented\n");
814 s
->current_tag
|= lsi_get_msgbyte(s
) | LSI_TAG_VALID
;
816 case 0x22: /* ORDERED queue */
817 BADF("ORDERED queue not implemented\n");
818 s
->current_tag
|= lsi_get_msgbyte(s
) | LSI_TAG_VALID
;
821 if ((msg
& 0x80) == 0) {
824 s
->current_lun
= msg
& 7;
825 DPRINTF("Select LUN %d\n", s
->current_lun
);
826 lsi_set_phase(s
, PHASE_CMD
);
832 BADF("Unimplemented message 0x%02x\n", msg
);
833 lsi_set_phase(s
, PHASE_MI
);
834 lsi_add_msg_byte(s
, 7); /* MESSAGE REJECT */
838 /* Sign extend a 24-bit value. */
839 static inline int32_t sxt24(int32_t n
)
841 return (n
<< 8) >> 8;
844 static void lsi_memcpy(LSIState
*s
, uint32_t dest
, uint32_t src
, int count
)
847 uint8_t buf
[TARGET_PAGE_SIZE
];
849 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest
, src
, count
);
851 n
= (count
> TARGET_PAGE_SIZE
) ? TARGET_PAGE_SIZE
: count
;
852 cpu_physical_memory_read(src
, buf
, n
);
853 cpu_physical_memory_write(dest
, buf
, n
);
860 static void lsi_wait_reselect(LSIState
*s
)
863 DPRINTF("Wait Reselect\n");
864 if (s
->current_dma_len
)
865 BADF("Reselect with pending DMA\n");
866 for (i
= 0; i
< s
->active_commands
; i
++) {
867 if (s
->queue
[i
].pending
) {
868 lsi_reselect(s
, s
->queue
[i
].tag
);
872 if (s
->current_dma_len
== 0) {
877 static void lsi_execute_script(LSIState
*s
)
880 uint32_t addr
, addr_high
;
882 int insn_processed
= 0;
884 s
->istat1
|= LSI_ISTAT1_SRUN
;
887 insn
= read_dword(s
, s
->dsp
);
889 /* If we receive an empty opcode increment the DSP by 4 bytes
890 instead of 8 and execute the next opcode at that location */
894 addr
= read_dword(s
, s
->dsp
+ 4);
896 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s
->dsp
, insn
, addr
);
898 s
->dcmd
= insn
>> 24;
900 switch (insn
>> 30) {
901 case 0: /* Block move. */
902 if (s
->sist1
& LSI_SIST1_STO
) {
903 DPRINTF("Delayed select timeout\n");
907 s
->dbc
= insn
& 0xffffff;
911 if (insn
& (1 << 29)) {
912 /* Indirect addressing. */
913 addr
= read_dword(s
, addr
);
914 } else if (insn
& (1 << 28)) {
917 /* Table indirect addressing. */
919 /* 32-bit Table indirect */
920 offset
= sxt24(addr
);
921 cpu_physical_memory_read(s
->dsa
+ offset
, (uint8_t *)buf
, 8);
922 /* byte count is stored in bits 0:23 only */
923 s
->dbc
= cpu_to_le32(buf
[0]) & 0xffffff;
925 addr
= cpu_to_le32(buf
[1]);
927 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
928 * table, bits [31:24] */
929 if (lsi_dma_40bit(s
))
930 addr_high
= cpu_to_le32(buf
[0]) >> 24;
931 else if (lsi_dma_ti64bit(s
)) {
932 int selector
= (cpu_to_le32(buf
[0]) >> 24) & 0x1f;
935 /* offset index into scratch registers since
936 * TI64 mode can use registers C to R */
937 addr_high
= s
->scratch
[2 + selector
];
958 BADF("Illegal selector specified (0x%x > 0x15)"
959 " for 64-bit DMA block move", selector
);
963 } else if (lsi_dma_64bit(s
)) {
964 /* fetch a 3rd dword if 64-bit direct move is enabled and
965 only if we're not doing table indirect or indirect addressing */
966 s
->dbms
= read_dword(s
, s
->dsp
);
970 if ((s
->sstat1
& PHASE_MASK
) != ((insn
>> 24) & 7)) {
971 DPRINTF("Wrong phase got %d expected %d\n",
972 s
->sstat1
& PHASE_MASK
, (insn
>> 24) & 7);
973 lsi_script_scsi_interrupt(s
, LSI_SIST0_MA
, 0);
977 s
->dnad64
= addr_high
;
978 switch (s
->sstat1
& 0x7) {
1004 BADF("Unimplemented phase %d\n", s
->sstat1
& PHASE_MASK
);
1007 s
->dfifo
= s
->dbc
& 0xff;
1008 s
->ctest5
= (s
->ctest5
& 0xfc) | ((s
->dbc
>> 8) & 3);
1011 s
->ua
= addr
+ s
->dbc
;
1014 case 1: /* IO or Read/Write instruction. */
1015 opcode
= (insn
>> 27) & 7;
1019 if (insn
& (1 << 25)) {
1020 id
= read_dword(s
, s
->dsa
+ sxt24(insn
));
1024 id
= (id
>> 16) & 0xf;
1025 if (insn
& (1 << 26)) {
1026 addr
= s
->dsp
+ sxt24(addr
);
1030 case 0: /* Select */
1032 if (s
->current_dma_len
&& (s
->ssid
& 0xf) == id
) {
1033 DPRINTF("Already reselected by target %d\n", id
);
1036 s
->sstat0
|= LSI_SSTAT0_WOA
;
1037 s
->scntl1
&= ~LSI_SCNTL1_IARB
;
1038 if (id
>= LSI_MAX_DEVS
|| !s
->scsi_dev
[id
]) {
1039 DPRINTF("Selected absent target %d\n", id
);
1040 lsi_script_scsi_interrupt(s
, 0, LSI_SIST1_STO
);
1044 DPRINTF("Selected target %d%s\n",
1045 id
, insn
& (1 << 3) ? " ATN" : "");
1046 /* ??? Linux drivers compain when this is set. Maybe
1047 it only applies in low-level mode (unimplemented).
1048 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1049 s
->current_dev
= s
->scsi_dev
[id
];
1050 s
->current_tag
= id
<< 8;
1051 s
->scntl1
|= LSI_SCNTL1_CON
;
1052 if (insn
& (1 << 3)) {
1053 s
->socl
|= LSI_SOCL_ATN
;
1055 lsi_set_phase(s
, PHASE_MO
);
1057 case 1: /* Disconnect */
1058 DPRINTF("Wait Disconect\n");
1059 s
->scntl1
&= ~LSI_SCNTL1_CON
;
1061 case 2: /* Wait Reselect */
1062 lsi_wait_reselect(s
);
1065 DPRINTF("Set%s%s%s%s\n",
1066 insn
& (1 << 3) ? " ATN" : "",
1067 insn
& (1 << 6) ? " ACK" : "",
1068 insn
& (1 << 9) ? " TM" : "",
1069 insn
& (1 << 10) ? " CC" : "");
1070 if (insn
& (1 << 3)) {
1071 s
->socl
|= LSI_SOCL_ATN
;
1072 lsi_set_phase(s
, PHASE_MO
);
1074 if (insn
& (1 << 9)) {
1075 BADF("Target mode not implemented\n");
1078 if (insn
& (1 << 10))
1082 DPRINTF("Clear%s%s%s%s\n",
1083 insn
& (1 << 3) ? " ATN" : "",
1084 insn
& (1 << 6) ? " ACK" : "",
1085 insn
& (1 << 9) ? " TM" : "",
1086 insn
& (1 << 10) ? " CC" : "");
1087 if (insn
& (1 << 3)) {
1088 s
->socl
&= ~LSI_SOCL_ATN
;
1090 if (insn
& (1 << 10))
1101 static const char *opcode_names
[3] =
1102 {"Write", "Read", "Read-Modify-Write"};
1103 static const char *operator_names
[8] =
1104 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1107 reg
= ((insn
>> 16) & 0x7f) | (insn
& 0x80);
1108 data8
= (insn
>> 8) & 0xff;
1109 opcode
= (insn
>> 27) & 7;
1110 operator = (insn
>> 24) & 7;
1111 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1112 opcode_names
[opcode
- 5], reg
,
1113 operator_names
[operator], data8
, s
->sfbr
,
1114 (insn
& (1 << 23)) ? " SFBR" : "");
1117 case 5: /* From SFBR */
1121 case 6: /* To SFBR */
1123 op0
= lsi_reg_readb(s
, reg
);
1126 case 7: /* Read-modify-write */
1128 op0
= lsi_reg_readb(s
, reg
);
1129 if (insn
& (1 << 23)) {
1141 case 1: /* Shift left */
1143 op0
= (op0
<< 1) | s
->carry
;
1157 op0
= (op0
>> 1) | (s
->carry
<< 7);
1162 s
->carry
= op0
< op1
;
1165 op0
+= op1
+ s
->carry
;
1167 s
->carry
= op0
<= op1
;
1169 s
->carry
= op0
< op1
;
1174 case 5: /* From SFBR */
1175 case 7: /* Read-modify-write */
1176 lsi_reg_writeb(s
, reg
, op0
);
1178 case 6: /* To SFBR */
1185 case 2: /* Transfer Control. */
1190 if ((insn
& 0x002e0000) == 0) {
1194 if (s
->sist1
& LSI_SIST1_STO
) {
1195 DPRINTF("Delayed select timeout\n");
1199 cond
= jmp
= (insn
& (1 << 19)) != 0;
1200 if (cond
== jmp
&& (insn
& (1 << 21))) {
1201 DPRINTF("Compare carry %d\n", s
->carry
== jmp
);
1202 cond
= s
->carry
!= 0;
1204 if (cond
== jmp
&& (insn
& (1 << 17))) {
1205 DPRINTF("Compare phase %d %c= %d\n",
1206 (s
->sstat1
& PHASE_MASK
),
1208 ((insn
>> 24) & 7));
1209 cond
= (s
->sstat1
& PHASE_MASK
) == ((insn
>> 24) & 7);
1211 if (cond
== jmp
&& (insn
& (1 << 18))) {
1214 mask
= (~insn
>> 8) & 0xff;
1215 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1216 s
->sfbr
, mask
, jmp
? '=' : '!', insn
& mask
);
1217 cond
= (s
->sfbr
& mask
) == (insn
& mask
);
1220 if (insn
& (1 << 23)) {
1221 /* Relative address. */
1222 addr
= s
->dsp
+ sxt24(addr
);
1224 switch ((insn
>> 27) & 7) {
1226 DPRINTF("Jump to 0x%08x\n", addr
);
1230 DPRINTF("Call 0x%08x\n", addr
);
1234 case 2: /* Return */
1235 DPRINTF("Return to 0x%08x\n", s
->temp
);
1238 case 3: /* Interrupt */
1239 DPRINTF("Interrupt 0x%08x\n", s
->dsps
);
1240 if ((insn
& (1 << 20)) != 0) {
1241 s
->istat0
|= LSI_ISTAT0_INTF
;
1244 lsi_script_dma_interrupt(s
, LSI_DSTAT_SIR
);
1248 DPRINTF("Illegal transfer control\n");
1249 lsi_script_dma_interrupt(s
, LSI_DSTAT_IID
);
1253 DPRINTF("Control condition failed\n");
1259 if ((insn
& (1 << 29)) == 0) {
1262 /* ??? The docs imply the destination address is loaded into
1263 the TEMP register. However the Linux drivers rely on
1264 the value being presrved. */
1265 dest
= read_dword(s
, s
->dsp
);
1267 lsi_memcpy(s
, dest
, addr
, insn
& 0xffffff);
1274 if (insn
& (1 << 28)) {
1275 addr
= s
->dsa
+ sxt24(addr
);
1278 reg
= (insn
>> 16) & 0xff;
1279 if (insn
& (1 << 24)) {
1280 cpu_physical_memory_read(addr
, data
, n
);
1281 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg
, n
,
1282 addr
, *(int *)data
);
1283 for (i
= 0; i
< n
; i
++) {
1284 lsi_reg_writeb(s
, reg
+ i
, data
[i
]);
1287 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg
, n
, addr
);
1288 for (i
= 0; i
< n
; i
++) {
1289 data
[i
] = lsi_reg_readb(s
, reg
+ i
);
1291 cpu_physical_memory_write(addr
, data
, n
);
1295 if (insn_processed
> 10000 && !s
->waiting
) {
1296 /* Some windows drivers make the device spin waiting for a memory
1297 location to change. If we have been executed a lot of code then
1298 assume this is the case and force an unexpected device disconnect.
1299 This is apparently sufficient to beat the drivers into submission.
1301 if (!(s
->sien0
& LSI_SIST0_UDC
))
1302 fprintf(stderr
, "inf. loop with UDC masked\n");
1303 lsi_script_scsi_interrupt(s
, LSI_SIST0_UDC
, 0);
1305 } else if (s
->istat1
& LSI_ISTAT1_SRUN
&& !s
->waiting
) {
1306 if (s
->dcntl
& LSI_DCNTL_SSM
) {
1307 lsi_script_dma_interrupt(s
, LSI_DSTAT_SSI
);
1312 DPRINTF("SCRIPTS execution stopped\n");
1315 static uint8_t lsi_reg_readb(LSIState
*s
, int offset
)
1318 #define CASE_GET_REG32(name, addr) \
1319 case addr: return s->name & 0xff; \
1320 case addr + 1: return (s->name >> 8) & 0xff; \
1321 case addr + 2: return (s->name >> 16) & 0xff; \
1322 case addr + 3: return (s->name >> 24) & 0xff;
1324 #ifdef DEBUG_LSI_REG
1325 DPRINTF("Read reg %x\n", offset
);
1328 case 0x00: /* SCNTL0 */
1330 case 0x01: /* SCNTL1 */
1332 case 0x02: /* SCNTL2 */
1334 case 0x03: /* SCNTL3 */
1336 case 0x04: /* SCID */
1338 case 0x05: /* SXFER */
1340 case 0x06: /* SDID */
1342 case 0x07: /* GPREG0 */
1344 case 0x08: /* Revision ID */
1346 case 0xa: /* SSID */
1348 case 0xb: /* SBCL */
1349 /* ??? This is not correct. However it's (hopefully) only
1350 used for diagnostics, so should be ok. */
1352 case 0xc: /* DSTAT */
1353 tmp
= s
->dstat
| 0x80;
1354 if ((s
->istat0
& LSI_ISTAT0_INTF
) == 0)
1358 case 0x0d: /* SSTAT0 */
1360 case 0x0e: /* SSTAT1 */
1362 case 0x0f: /* SSTAT2 */
1363 return s
->scntl1
& LSI_SCNTL1_CON
? 0 : 2;
1364 CASE_GET_REG32(dsa
, 0x10)
1365 case 0x14: /* ISTAT0 */
1367 case 0x16: /* MBOX0 */
1369 case 0x17: /* MBOX1 */
1371 case 0x18: /* CTEST0 */
1373 case 0x19: /* CTEST1 */
1375 case 0x1a: /* CTEST2 */
1376 tmp
= s
->ctest2
| LSI_CTEST2_DACK
| LSI_CTEST2_CM
;
1377 if (s
->istat0
& LSI_ISTAT0_SIGP
) {
1378 s
->istat0
&= ~LSI_ISTAT0_SIGP
;
1379 tmp
|= LSI_CTEST2_SIGP
;
1382 case 0x1b: /* CTEST3 */
1384 CASE_GET_REG32(temp
, 0x1c)
1385 case 0x20: /* DFIFO */
1387 case 0x21: /* CTEST4 */
1389 case 0x22: /* CTEST5 */
1391 case 0x23: /* CTEST6 */
1393 case 0x24: /* DBC[0:7] */
1394 return s
->dbc
& 0xff;
1395 case 0x25: /* DBC[8:15] */
1396 return (s
->dbc
>> 8) & 0xff;
1397 case 0x26: /* DBC[16->23] */
1398 return (s
->dbc
>> 16) & 0xff;
1399 case 0x27: /* DCMD */
1401 CASE_GET_REG32(dsp
, 0x2c)
1402 CASE_GET_REG32(dsps
, 0x30)
1403 CASE_GET_REG32(scratch
[0], 0x34)
1404 case 0x38: /* DMODE */
1406 case 0x39: /* DIEN */
1408 case 0x3b: /* DCNTL */
1410 case 0x40: /* SIEN0 */
1412 case 0x41: /* SIEN1 */
1414 case 0x42: /* SIST0 */
1419 case 0x43: /* SIST1 */
1424 case 0x46: /* MACNTL */
1426 case 0x47: /* GPCNTL0 */
1428 case 0x48: /* STIME0 */
1430 case 0x4a: /* RESPID0 */
1432 case 0x4b: /* RESPID1 */
1434 case 0x4d: /* STEST1 */
1436 case 0x4e: /* STEST2 */
1438 case 0x4f: /* STEST3 */
1440 case 0x50: /* SIDL */
1441 /* This is needed by the linux drivers. We currently only update it
1442 during the MSG IN phase. */
1444 case 0x52: /* STEST4 */
1446 case 0x56: /* CCNTL0 */
1448 case 0x57: /* CCNTL1 */
1450 case 0x58: /* SBDL */
1451 /* Some drivers peek at the data bus during the MSG IN phase. */
1452 if ((s
->sstat1
& PHASE_MASK
) == PHASE_MI
)
1455 case 0x59: /* SBDL high */
1457 CASE_GET_REG32(mmrs
, 0xa0)
1458 CASE_GET_REG32(mmws
, 0xa4)
1459 CASE_GET_REG32(sfs
, 0xa8)
1460 CASE_GET_REG32(drs
, 0xac)
1461 CASE_GET_REG32(sbms
, 0xb0)
1462 CASE_GET_REG32(dbms
, 0xb4)
1463 CASE_GET_REG32(dnad64
, 0xb8)
1464 CASE_GET_REG32(pmjad1
, 0xc0)
1465 CASE_GET_REG32(pmjad2
, 0xc4)
1466 CASE_GET_REG32(rbc
, 0xc8)
1467 CASE_GET_REG32(ua
, 0xcc)
1468 CASE_GET_REG32(ia
, 0xd4)
1469 CASE_GET_REG32(sbc
, 0xd8)
1470 CASE_GET_REG32(csbc
, 0xdc)
1472 if (offset
>= 0x5c && offset
< 0xa0) {
1475 n
= (offset
- 0x58) >> 2;
1476 shift
= (offset
& 3) * 8;
1477 return (s
->scratch
[n
] >> shift
) & 0xff;
1479 BADF("readb 0x%x\n", offset
);
1481 #undef CASE_GET_REG32
1484 static void lsi_reg_writeb(LSIState
*s
, int offset
, uint8_t val
)
1486 #define CASE_SET_REG32(name, addr) \
1487 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1488 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1489 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1490 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1492 #ifdef DEBUG_LSI_REG
1493 DPRINTF("Write reg %x = %02x\n", offset
, val
);
1496 case 0x00: /* SCNTL0 */
1498 if (val
& LSI_SCNTL0_START
) {
1499 BADF("Start sequence not implemented\n");
1502 case 0x01: /* SCNTL1 */
1503 s
->scntl1
= val
& ~LSI_SCNTL1_SST
;
1504 if (val
& LSI_SCNTL1_IARB
) {
1505 BADF("Immediate Arbritration not implemented\n");
1507 if (val
& LSI_SCNTL1_RST
) {
1508 s
->sstat0
|= LSI_SSTAT0_RST
;
1509 lsi_script_scsi_interrupt(s
, LSI_SIST0_RST
, 0);
1511 s
->sstat0
&= ~LSI_SSTAT0_RST
;
1514 case 0x02: /* SCNTL2 */
1515 val
&= ~(LSI_SCNTL2_WSR
| LSI_SCNTL2_WSS
);
1518 case 0x03: /* SCNTL3 */
1521 case 0x04: /* SCID */
1524 case 0x05: /* SXFER */
1527 case 0x06: /* SDID */
1528 if ((val
& 0xf) != (s
->ssid
& 0xf))
1529 BADF("Destination ID does not match SSID\n");
1530 s
->sdid
= val
& 0xf;
1532 case 0x07: /* GPREG0 */
1534 case 0x08: /* SFBR */
1535 /* The CPU is not allowed to write to this register. However the
1536 SCRIPTS register move instructions are. */
1539 case 0x0a: case 0x0b:
1540 /* Openserver writes to these readonly registers on startup */
1542 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1543 /* Linux writes to these readonly registers on startup. */
1545 CASE_SET_REG32(dsa
, 0x10)
1546 case 0x14: /* ISTAT0 */
1547 s
->istat0
= (s
->istat0
& 0x0f) | (val
& 0xf0);
1548 if (val
& LSI_ISTAT0_ABRT
) {
1549 lsi_script_dma_interrupt(s
, LSI_DSTAT_ABRT
);
1551 if (val
& LSI_ISTAT0_INTF
) {
1552 s
->istat0
&= ~LSI_ISTAT0_INTF
;
1555 if (s
->waiting
== 1 && val
& LSI_ISTAT0_SIGP
) {
1556 DPRINTF("Woken by SIGP\n");
1559 lsi_execute_script(s
);
1561 if (val
& LSI_ISTAT0_SRST
) {
1565 case 0x16: /* MBOX0 */
1568 case 0x17: /* MBOX1 */
1571 case 0x1a: /* CTEST2 */
1572 s
->ctest2
= val
& LSI_CTEST2_PCICIE
;
1574 case 0x1b: /* CTEST3 */
1575 s
->ctest3
= val
& 0x0f;
1577 CASE_SET_REG32(temp
, 0x1c)
1578 case 0x21: /* CTEST4 */
1580 BADF("Unimplemented CTEST4-FBL 0x%x\n", val
);
1584 case 0x22: /* CTEST5 */
1585 if (val
& (LSI_CTEST5_ADCK
| LSI_CTEST5_BBCK
)) {
1586 BADF("CTEST5 DMA increment not implemented\n");
1590 case 0x2c: /* DSP[0:7] */
1591 s
->dsp
&= 0xffffff00;
1594 case 0x2d: /* DSP[8:15] */
1595 s
->dsp
&= 0xffff00ff;
1598 case 0x2e: /* DSP[16:23] */
1599 s
->dsp
&= 0xff00ffff;
1600 s
->dsp
|= val
<< 16;
1602 case 0x2f: /* DSP[24:31] */
1603 s
->dsp
&= 0x00ffffff;
1604 s
->dsp
|= val
<< 24;
1605 if ((s
->dmode
& LSI_DMODE_MAN
) == 0
1606 && (s
->istat1
& LSI_ISTAT1_SRUN
) == 0)
1607 lsi_execute_script(s
);
1609 CASE_SET_REG32(dsps
, 0x30)
1610 CASE_SET_REG32(scratch
[0], 0x34)
1611 case 0x38: /* DMODE */
1612 if (val
& (LSI_DMODE_SIOM
| LSI_DMODE_DIOM
)) {
1613 BADF("IO mappings not implemented\n");
1617 case 0x39: /* DIEN */
1621 case 0x3b: /* DCNTL */
1622 s
->dcntl
= val
& ~(LSI_DCNTL_PFF
| LSI_DCNTL_STD
);
1623 if ((val
& LSI_DCNTL_STD
) && (s
->istat1
& LSI_ISTAT1_SRUN
) == 0)
1624 lsi_execute_script(s
);
1626 case 0x40: /* SIEN0 */
1630 case 0x41: /* SIEN1 */
1634 case 0x47: /* GPCNTL0 */
1636 case 0x48: /* STIME0 */
1639 case 0x49: /* STIME1 */
1641 DPRINTF("General purpose timer not implemented\n");
1642 /* ??? Raising the interrupt immediately seems to be sufficient
1643 to keep the FreeBSD driver happy. */
1644 lsi_script_scsi_interrupt(s
, 0, LSI_SIST1_GEN
);
1647 case 0x4a: /* RESPID0 */
1650 case 0x4b: /* RESPID1 */
1653 case 0x4d: /* STEST1 */
1656 case 0x4e: /* STEST2 */
1658 BADF("Low level mode not implemented\n");
1662 case 0x4f: /* STEST3 */
1664 BADF("SCSI FIFO test mode not implemented\n");
1668 case 0x56: /* CCNTL0 */
1671 case 0x57: /* CCNTL1 */
1674 CASE_SET_REG32(mmrs
, 0xa0)
1675 CASE_SET_REG32(mmws
, 0xa4)
1676 CASE_SET_REG32(sfs
, 0xa8)
1677 CASE_SET_REG32(drs
, 0xac)
1678 CASE_SET_REG32(sbms
, 0xb0)
1679 CASE_SET_REG32(dbms
, 0xb4)
1680 CASE_SET_REG32(dnad64
, 0xb8)
1681 CASE_SET_REG32(pmjad1
, 0xc0)
1682 CASE_SET_REG32(pmjad2
, 0xc4)
1683 CASE_SET_REG32(rbc
, 0xc8)
1684 CASE_SET_REG32(ua
, 0xcc)
1685 CASE_SET_REG32(ia
, 0xd4)
1686 CASE_SET_REG32(sbc
, 0xd8)
1687 CASE_SET_REG32(csbc
, 0xdc)
1689 if (offset
>= 0x5c && offset
< 0xa0) {
1692 n
= (offset
- 0x58) >> 2;
1693 shift
= (offset
& 3) * 8;
1694 s
->scratch
[n
] &= ~(0xff << shift
);
1695 s
->scratch
[n
] |= (val
& 0xff) << shift
;
1697 BADF("Unhandled writeb 0x%x = 0x%x\n", offset
, val
);
1700 #undef CASE_SET_REG32
1703 static void lsi_mmio_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1705 LSIState
*s
= (LSIState
*)opaque
;
1707 lsi_reg_writeb(s
, addr
& 0xff, val
);
1710 static void lsi_mmio_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1712 LSIState
*s
= (LSIState
*)opaque
;
1715 lsi_reg_writeb(s
, addr
, val
& 0xff);
1716 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1719 static void lsi_mmio_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1721 LSIState
*s
= (LSIState
*)opaque
;
1724 lsi_reg_writeb(s
, addr
, val
& 0xff);
1725 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1726 lsi_reg_writeb(s
, addr
+ 2, (val
>> 16) & 0xff);
1727 lsi_reg_writeb(s
, addr
+ 3, (val
>> 24) & 0xff);
1730 static uint32_t lsi_mmio_readb(void *opaque
, target_phys_addr_t addr
)
1732 LSIState
*s
= (LSIState
*)opaque
;
1734 return lsi_reg_readb(s
, addr
& 0xff);
1737 static uint32_t lsi_mmio_readw(void *opaque
, target_phys_addr_t addr
)
1739 LSIState
*s
= (LSIState
*)opaque
;
1743 val
= lsi_reg_readb(s
, addr
);
1744 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1748 static uint32_t lsi_mmio_readl(void *opaque
, target_phys_addr_t addr
)
1750 LSIState
*s
= (LSIState
*)opaque
;
1753 val
= lsi_reg_readb(s
, addr
);
1754 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1755 val
|= lsi_reg_readb(s
, addr
+ 2) << 16;
1756 val
|= lsi_reg_readb(s
, addr
+ 3) << 24;
1760 static CPUReadMemoryFunc
*lsi_mmio_readfn
[3] = {
1766 static CPUWriteMemoryFunc
*lsi_mmio_writefn
[3] = {
1772 static void lsi_ram_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1774 LSIState
*s
= (LSIState
*)opaque
;
1779 newval
= s
->script_ram
[addr
>> 2];
1780 shift
= (addr
& 3) * 8;
1781 newval
&= ~(0xff << shift
);
1782 newval
|= val
<< shift
;
1783 s
->script_ram
[addr
>> 2] = newval
;
1786 static void lsi_ram_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1788 LSIState
*s
= (LSIState
*)opaque
;
1792 newval
= s
->script_ram
[addr
>> 2];
1794 newval
= (newval
& 0xffff) | (val
<< 16);
1796 newval
= (newval
& 0xffff0000) | val
;
1798 s
->script_ram
[addr
>> 2] = newval
;
1802 static void lsi_ram_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
1804 LSIState
*s
= (LSIState
*)opaque
;
1807 s
->script_ram
[addr
>> 2] = val
;
1810 static uint32_t lsi_ram_readb(void *opaque
, target_phys_addr_t addr
)
1812 LSIState
*s
= (LSIState
*)opaque
;
1816 val
= s
->script_ram
[addr
>> 2];
1817 val
>>= (addr
& 3) * 8;
1821 static uint32_t lsi_ram_readw(void *opaque
, target_phys_addr_t addr
)
1823 LSIState
*s
= (LSIState
*)opaque
;
1827 val
= s
->script_ram
[addr
>> 2];
1830 return le16_to_cpu(val
);
1833 static uint32_t lsi_ram_readl(void *opaque
, target_phys_addr_t addr
)
1835 LSIState
*s
= (LSIState
*)opaque
;
1838 return le32_to_cpu(s
->script_ram
[addr
>> 2]);
1841 static CPUReadMemoryFunc
*lsi_ram_readfn
[3] = {
1847 static CPUWriteMemoryFunc
*lsi_ram_writefn
[3] = {
1853 static uint32_t lsi_io_readb(void *opaque
, uint32_t addr
)
1855 LSIState
*s
= (LSIState
*)opaque
;
1856 return lsi_reg_readb(s
, addr
& 0xff);
1859 static uint32_t lsi_io_readw(void *opaque
, uint32_t addr
)
1861 LSIState
*s
= (LSIState
*)opaque
;
1864 val
= lsi_reg_readb(s
, addr
);
1865 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1869 static uint32_t lsi_io_readl(void *opaque
, uint32_t addr
)
1871 LSIState
*s
= (LSIState
*)opaque
;
1874 val
= lsi_reg_readb(s
, addr
);
1875 val
|= lsi_reg_readb(s
, addr
+ 1) << 8;
1876 val
|= lsi_reg_readb(s
, addr
+ 2) << 16;
1877 val
|= lsi_reg_readb(s
, addr
+ 3) << 24;
1881 static void lsi_io_writeb(void *opaque
, uint32_t addr
, uint32_t val
)
1883 LSIState
*s
= (LSIState
*)opaque
;
1884 lsi_reg_writeb(s
, addr
& 0xff, val
);
1887 static void lsi_io_writew(void *opaque
, uint32_t addr
, uint32_t val
)
1889 LSIState
*s
= (LSIState
*)opaque
;
1891 lsi_reg_writeb(s
, addr
, val
& 0xff);
1892 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1895 static void lsi_io_writel(void *opaque
, uint32_t addr
, uint32_t val
)
1897 LSIState
*s
= (LSIState
*)opaque
;
1899 lsi_reg_writeb(s
, addr
, val
& 0xff);
1900 lsi_reg_writeb(s
, addr
+ 1, (val
>> 8) & 0xff);
1901 lsi_reg_writeb(s
, addr
+ 2, (val
>> 16) & 0xff);
1902 lsi_reg_writeb(s
, addr
+ 3, (val
>> 24) & 0xff);
1905 static void lsi_io_mapfunc(PCIDevice
*pci_dev
, int region_num
,
1906 uint32_t addr
, uint32_t size
, int type
)
1908 LSIState
*s
= (LSIState
*)pci_dev
;
1910 DPRINTF("Mapping IO at %08x\n", addr
);
1912 register_ioport_write(addr
, 256, 1, lsi_io_writeb
, s
);
1913 register_ioport_read(addr
, 256, 1, lsi_io_readb
, s
);
1914 register_ioport_write(addr
, 256, 2, lsi_io_writew
, s
);
1915 register_ioport_read(addr
, 256, 2, lsi_io_readw
, s
);
1916 register_ioport_write(addr
, 256, 4, lsi_io_writel
, s
);
1917 register_ioport_read(addr
, 256, 4, lsi_io_readl
, s
);
1920 static void lsi_ram_mapfunc(PCIDevice
*pci_dev
, int region_num
,
1921 uint32_t addr
, uint32_t size
, int type
)
1923 LSIState
*s
= (LSIState
*)pci_dev
;
1925 DPRINTF("Mapping ram at %08x\n", addr
);
1926 s
->script_ram_base
= addr
;
1927 cpu_register_physical_memory(addr
+ 0, 0x2000, s
->ram_io_addr
);
1930 static void lsi_mmio_mapfunc(PCIDevice
*pci_dev
, int region_num
,
1931 uint32_t addr
, uint32_t size
, int type
)
1933 LSIState
*s
= (LSIState
*)pci_dev
;
1935 DPRINTF("Mapping registers at %08x\n", addr
);
1936 cpu_register_physical_memory(addr
+ 0, 0x400, s
->mmio_io_addr
);
1939 void lsi_scsi_attach(void *opaque
, BlockDriverState
*bd
, int id
)
1941 LSIState
*s
= (LSIState
*)opaque
;
1944 for (id
= 0; id
< LSI_MAX_DEVS
; id
++) {
1945 if (s
->scsi_dev
[id
] == NULL
)
1949 if (id
>= LSI_MAX_DEVS
) {
1950 BADF("Bad Device ID %d\n", id
);
1953 if (s
->scsi_dev
[id
]) {
1954 DPRINTF("Destroying device %d\n", id
);
1955 s
->scsi_dev
[id
]->destroy(s
->scsi_dev
[id
]);
1957 DPRINTF("Attaching block device %d\n", id
);
1958 s
->scsi_dev
[id
] = scsi_generic_init(bd
, 1, lsi_command_complete
, s
);
1959 if (s
->scsi_dev
[id
] == NULL
)
1960 s
->scsi_dev
[id
] = scsi_disk_init(bd
, 1, lsi_command_complete
, s
);
1961 bd
->devfn
= s
->pci_dev
.devfn
;
1964 static int lsi_scsi_uninit(PCIDevice
*d
)
1966 LSIState
*s
= (LSIState
*) d
;
1968 cpu_unregister_io_memory(s
->mmio_io_addr
);
1969 cpu_unregister_io_memory(s
->ram_io_addr
);
1971 qemu_free(s
->queue
);
1976 void *lsi_scsi_init(PCIBus
*bus
, int devfn
)
1980 s
= (LSIState
*)pci_register_device(bus
, "LSI53C895A SCSI HBA",
1981 sizeof(*s
), devfn
, NULL
, NULL
);
1983 fprintf(stderr
, "lsi-scsi: Failed to register PCI device\n");
1987 /* PCI Vendor ID (word) */
1988 s
->pci_dev
.config
[0x00] = 0x00;
1989 s
->pci_dev
.config
[0x01] = 0x10;
1990 /* PCI device ID (word) */
1991 s
->pci_dev
.config
[0x02] = 0x12;
1992 s
->pci_dev
.config
[0x03] = 0x00;
1993 /* PCI base class code */
1994 s
->pci_dev
.config
[0x0b] = 0x01;
1995 /* PCI subsystem ID */
1996 s
->pci_dev
.config
[0x2e] = 0x00;
1997 s
->pci_dev
.config
[0x2f] = 0x10;
1998 /* PCI latency timer = 255 */
1999 s
->pci_dev
.config
[0x0d] = 0xff;
2000 /* Interrupt pin 1 */
2001 s
->pci_dev
.config
[0x3d] = 0x01;
2003 s
->mmio_io_addr
= cpu_register_io_memory(0, lsi_mmio_readfn
,
2004 lsi_mmio_writefn
, s
);
2005 s
->ram_io_addr
= cpu_register_io_memory(0, lsi_ram_readfn
,
2006 lsi_ram_writefn
, s
);
2008 pci_register_io_region((struct PCIDevice
*)s
, 0, 256,
2009 PCI_ADDRESS_SPACE_IO
, lsi_io_mapfunc
);
2010 pci_register_io_region((struct PCIDevice
*)s
, 1, 0x400,
2011 PCI_ADDRESS_SPACE_MEM
, lsi_mmio_mapfunc
);
2012 pci_register_io_region((struct PCIDevice
*)s
, 2, 0x2000,
2013 PCI_ADDRESS_SPACE_MEM
, lsi_ram_mapfunc
);
2014 s
->queue
= qemu_malloc(sizeof(lsi_queue
));
2016 s
->active_commands
= 0;
2017 s
->pci_dev
.unregister
= lsi_scsi_uninit
;