kvm: qemu: propagate errors on failed migration.
[kvm-userspace.git] / qemu / hw / mpcore.c
blob1d5fcc71c34996dcb27e0e479ebffc78877b01e7
1 /*
2 * ARM MPCore internal peripheral emulation.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "hw.h"
11 #include "qemu-timer.h"
12 #include "primecell.h"
14 #define MPCORE_PRIV_BASE 0x10100000
15 #define NCPU 4
16 /* ??? The MPCore TRM says the on-chip controller has 224 external IRQ lines
17 (+ 32 internal). However my test chip only exposes/reports 32.
18 More importantly Linux falls over if more than 32 are present! */
19 #define GIC_NIRQ 64
21 static inline int
22 gic_get_current_cpu(void)
24 return cpu_single_env->cpu_index;
27 #include "arm_gic.c"
29 /* MPCore private memory region. */
31 typedef struct {
32 uint32_t count;
33 uint32_t load;
34 uint32_t control;
35 uint32_t status;
36 uint32_t old_status;
37 int64_t tick;
38 QEMUTimer *timer;
39 struct mpcore_priv_state *mpcore;
40 int id; /* Encodes both timer/watchdog and CPU. */
41 } mpcore_timer_state;
43 typedef struct mpcore_priv_state {
44 gic_state *gic;
45 uint32_t scu_control;
46 mpcore_timer_state timer[8];
47 } mpcore_priv_state;
49 /* Per-CPU Timers. */
51 static inline void mpcore_timer_update_irq(mpcore_timer_state *s)
53 if (s->status & ~s->old_status) {
54 gic_set_pending_private(s->mpcore->gic, s->id >> 1, 29 + (s->id & 1));
56 s->old_status = s->status;
59 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
60 static inline uint32_t mpcore_timer_scale(mpcore_timer_state *s)
62 return (((s->control >> 8) & 0xff) + 1) * 10;
65 static void mpcore_timer_reload(mpcore_timer_state *s, int restart)
67 if (s->count == 0)
68 return;
69 if (restart)
70 s->tick = qemu_get_clock(vm_clock);
71 s->tick += (int64_t)s->count * mpcore_timer_scale(s);
72 qemu_mod_timer(s->timer, s->tick);
75 static void mpcore_timer_tick(void *opaque)
77 mpcore_timer_state *s = (mpcore_timer_state *)opaque;
78 s->status = 1;
79 if (s->control & 2) {
80 s->count = s->load;
81 mpcore_timer_reload(s, 0);
82 } else {
83 s->count = 0;
85 mpcore_timer_update_irq(s);
88 static uint32_t mpcore_timer_read(mpcore_timer_state *s, int offset)
90 int64_t val;
91 switch (offset) {
92 case 0: /* Load */
93 return s->load;
94 /* Fall through. */
95 case 4: /* Counter. */
96 if (((s->control & 1) == 0) || (s->count == 0))
97 return 0;
98 /* Slow and ugly, but hopefully won't happen too often. */
99 val = s->tick - qemu_get_clock(vm_clock);
100 val /= mpcore_timer_scale(s);
101 if (val < 0)
102 val = 0;
103 return val;
104 case 8: /* Control. */
105 return s->control;
106 case 12: /* Interrupt status. */
107 return s->status;
108 default:
109 return 0;
113 static void mpcore_timer_write(mpcore_timer_state *s, int offset,
114 uint32_t value)
116 int64_t old;
117 switch (offset) {
118 case 0: /* Load */
119 s->load = value;
120 /* Fall through. */
121 case 4: /* Counter. */
122 if ((s->control & 1) && s->count) {
123 /* Cancel the previous timer. */
124 qemu_del_timer(s->timer);
126 s->count = value;
127 if (s->control & 1) {
128 mpcore_timer_reload(s, 1);
130 break;
131 case 8: /* Control. */
132 old = s->control;
133 s->control = value;
134 if (((old & 1) == 0) && (value & 1)) {
135 if (s->count == 0 && (s->control & 2))
136 s->count = s->load;
137 mpcore_timer_reload(s, 1);
139 break;
140 case 12: /* Interrupt status. */
141 s->status &= ~value;
142 mpcore_timer_update_irq(s);
143 break;
147 static void mpcore_timer_init(mpcore_priv_state *mpcore,
148 mpcore_timer_state *s, int id)
150 s->id = id;
151 s->mpcore = mpcore;
152 s->timer = qemu_new_timer(vm_clock, mpcore_timer_tick, s);
156 /* Per-CPU private memory mapped IO. */
158 static uint32_t mpcore_priv_read(void *opaque, target_phys_addr_t offset)
160 mpcore_priv_state *s = (mpcore_priv_state *)opaque;
161 int id;
162 offset &= 0xfff;
163 if (offset < 0x100) {
164 /* SCU */
165 switch (offset) {
166 case 0x00: /* Control. */
167 return s->scu_control;
168 case 0x04: /* Configuration. */
169 return 0xf3;
170 case 0x08: /* CPU status. */
171 return 0;
172 case 0x0c: /* Invalidate all. */
173 return 0;
174 default:
175 goto bad_reg;
177 } else if (offset < 0x600) {
178 /* Interrupt controller. */
179 if (offset < 0x200) {
180 id = gic_get_current_cpu();
181 } else {
182 id = (offset - 0x200) >> 8;
184 return gic_cpu_read(s->gic, id, offset & 0xff);
185 } else if (offset < 0xb00) {
186 /* Timers. */
187 if (offset < 0x700) {
188 id = gic_get_current_cpu();
189 } else {
190 id = (offset - 0x700) >> 8;
192 id <<= 1;
193 if (offset & 0x20)
194 id++;
195 return mpcore_timer_read(&s->timer[id], offset & 0xf);
197 bad_reg:
198 cpu_abort(cpu_single_env, "mpcore_priv_read: Bad offset %x\n",
199 (int)offset);
200 return 0;
203 static void mpcore_priv_write(void *opaque, target_phys_addr_t offset,
204 uint32_t value)
206 mpcore_priv_state *s = (mpcore_priv_state *)opaque;
207 int id;
208 offset &= 0xfff;
209 if (offset < 0x100) {
210 /* SCU */
211 switch (offset) {
212 case 0: /* Control register. */
213 s->scu_control = value & 1;
214 break;
215 case 0x0c: /* Invalidate all. */
216 /* This is a no-op as cache is not emulated. */
217 break;
218 default:
219 goto bad_reg;
221 } else if (offset < 0x600) {
222 /* Interrupt controller. */
223 if (offset < 0x200) {
224 id = gic_get_current_cpu();
225 } else {
226 id = (offset - 0x200) >> 8;
228 gic_cpu_write(s->gic, id, offset & 0xff, value);
229 } else if (offset < 0xb00) {
230 /* Timers. */
231 if (offset < 0x700) {
232 id = gic_get_current_cpu();
233 } else {
234 id = (offset - 0x700) >> 8;
236 id <<= 1;
237 if (offset & 0x20)
238 id++;
239 mpcore_timer_write(&s->timer[id], offset & 0xf, value);
240 return;
242 return;
243 bad_reg:
244 cpu_abort(cpu_single_env, "mpcore_priv_read: Bad offset %x\n",
245 (int)offset);
248 static CPUReadMemoryFunc *mpcore_priv_readfn[] = {
249 mpcore_priv_read,
250 mpcore_priv_read,
251 mpcore_priv_read
254 static CPUWriteMemoryFunc *mpcore_priv_writefn[] = {
255 mpcore_priv_write,
256 mpcore_priv_write,
257 mpcore_priv_write
261 static qemu_irq *mpcore_priv_init(uint32_t base, qemu_irq *pic_irq)
263 mpcore_priv_state *s;
264 int iomemtype;
265 int i;
267 s = (mpcore_priv_state *)qemu_mallocz(sizeof(mpcore_priv_state));
268 s->gic = gic_init(base + 0x1000, pic_irq);
269 if (!s->gic)
270 return NULL;
271 iomemtype = cpu_register_io_memory(0, mpcore_priv_readfn,
272 mpcore_priv_writefn, s);
273 cpu_register_physical_memory(base, 0x00001000, iomemtype);
274 for (i = 0; i < 8; i++) {
275 mpcore_timer_init(s, &s->timer[i], i);
277 return s->gic->in;
280 /* Dummy PIC to route IRQ lines. The baseboard has 4 independent IRQ
281 controllers. The output of these, plus some of the raw input lines
282 are fed into a single SMP-aware interrupt controller on the CPU. */
283 typedef struct {
284 qemu_irq *cpuic;
285 qemu_irq *rvic[4];
286 } mpcore_rirq_state;
288 /* Map baseboard IRQs onto CPU IRQ lines. */
289 static const int mpcore_irq_map[32] = {
290 -1, -1, -1, -1, 1, 2, -1, -1,
291 -1, -1, 6, -1, 4, 5, -1, -1,
292 -1, 14, 15, 0, 7, 8, -1, -1,
293 -1, -1, -1, -1, 9, 3, -1, -1,
296 static void mpcore_rirq_set_irq(void *opaque, int irq, int level)
298 mpcore_rirq_state *s = (mpcore_rirq_state *)opaque;
299 int i;
301 for (i = 0; i < 4; i++) {
302 qemu_set_irq(s->rvic[i][irq], level);
304 if (irq < 32) {
305 irq = mpcore_irq_map[irq];
306 if (irq >= 0) {
307 qemu_set_irq(s->cpuic[irq], level);
312 qemu_irq *mpcore_irq_init(qemu_irq *cpu_irq)
314 mpcore_rirq_state *s;
315 int n;
317 /* ??? IRQ routing is hardcoded to "normal" mode. */
318 s = qemu_mallocz(sizeof(mpcore_rirq_state));
319 s->cpuic = mpcore_priv_init(MPCORE_PRIV_BASE, cpu_irq);
320 for (n = 0; n < 4; n++) {
321 s->rvic[n] = realview_gic_init(0x10040000 + n * 0x10000,
322 s->cpuic[10 + n]);
324 return qemu_allocate_irqs(mpcore_rirq_set_irq, s, 64);