kvm: qemu: remove pre-kvm_cpu_exec code in main_loop()
[kvm-userspace.git] / qemu / cpu-exec.c
blobd724464d169982a5362652aaaca6532c138f7080
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23 #if !defined(TARGET_IA64)
24 #include "tcg.h"
25 #endif
26 #include "kvm.h"
28 #if !defined(CONFIG_SOFTMMU)
29 #undef EAX
30 #undef ECX
31 #undef EDX
32 #undef EBX
33 #undef ESP
34 #undef EBP
35 #undef ESI
36 #undef EDI
37 #undef EIP
38 #include <signal.h>
39 #ifdef __linux__
40 #include <sys/ucontext.h>
41 #endif
42 #endif
44 #include "qemu-kvm.h"
46 #if defined(__sparc__) && !defined(HOST_SOLARIS)
47 // Work around ugly bugs in glibc that mangle global register contents
48 #undef env
49 #define env cpu_single_env
50 #endif
52 int tb_invalidated_flag;
54 //#define DEBUG_EXEC
55 //#define DEBUG_SIGNAL
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
61 regs_to_env();
62 longjmp(env->jmp_env, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
70 #if !defined(CONFIG_SOFTMMU)
71 #ifdef __linux__
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
75 #endif
76 #endif
78 env = env1;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
83 if (puc) {
84 /* XXX: use siglongjmp ? */
85 #ifdef __linux__
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
89 #endif
91 #endif
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
100 unsigned long next_tb;
101 TranslationBlock *tb;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
109 max_cycles);
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
114 if ((next_tb & 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env, tb);
119 tb_phys_invalidate(tb, -1);
120 tb_free(tb);
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
125 uint64_t flags)
127 TranslationBlock *tb, **ptb1;
128 unsigned int h;
129 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131 tb_invalidated_flag = 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc = get_phys_addr_code(env, pc);
137 phys_page1 = phys_pc & TARGET_PAGE_MASK;
138 phys_page2 = -1;
139 h = tb_phys_hash_func(phys_pc);
140 ptb1 = &tb_phys_hash[h];
141 for(;;) {
142 tb = *ptb1;
143 if (!tb)
144 goto not_found;
145 if (tb->pc == pc &&
146 tb->page_addr[0] == phys_page1 &&
147 tb->cs_base == cs_base &&
148 tb->flags == flags) {
149 /* check next page if needed */
150 if (tb->page_addr[1] != -1) {
151 virt_page2 = (pc & TARGET_PAGE_MASK) +
152 TARGET_PAGE_SIZE;
153 phys_page2 = get_phys_addr_code(env, virt_page2);
154 if (tb->page_addr[1] == phys_page2)
155 goto found;
156 } else {
157 goto found;
160 ptb1 = &tb->phys_hash_next;
162 not_found:
163 /* if no translated code available, then translate it now */
164 tb = tb_gen_code(env, pc, cs_base, flags, 0);
166 found:
167 /* we add the TB in the virtual pc hash table */
168 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
169 return tb;
172 static inline TranslationBlock *tb_find_fast(void)
174 TranslationBlock *tb;
175 target_ulong cs_base, pc;
176 int flags;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
180 is executed. */
181 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
182 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
183 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
184 tb->flags != flags)) {
185 tb = tb_find_slow(pc, cs_base, flags);
187 return tb;
190 static CPUDebugExcpHandler *debug_excp_handler;
192 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
194 CPUDebugExcpHandler *old_handler = debug_excp_handler;
196 debug_excp_handler = handler;
197 return old_handler;
200 static void cpu_handle_debug_exception(CPUState *env)
202 CPUWatchpoint *wp;
204 if (!env->watchpoint_hit)
205 TAILQ_FOREACH(wp, &env->watchpoints, entry)
206 wp->flags &= ~BP_WATCHPOINT_HIT;
208 if (debug_excp_handler)
209 debug_excp_handler(env);
212 /* main execution loop */
214 int cpu_exec(CPUState *env1)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret, interrupt_request;
219 TranslationBlock *tb;
220 uint8_t *tc_ptr;
221 unsigned long next_tb;
223 if (cpu_halted(env1) == EXCP_HALTED)
224 return EXCP_HALTED;
226 cpu_single_env = env1;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 env = env1;
233 env_to_regs();
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 DF = 1 - (2 * ((env->eflags >> 10) & 1));
238 CC_OP = CC_OP_EFLAGS;
239 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env->cc_op = CC_OP_FLAGS;
243 env->cc_dest = env->sr & 0xf;
244 env->cc_x = (env->sr >> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MIPS)
249 #elif defined(TARGET_SH4)
250 #elif defined(TARGET_CRIS)
251 #elif defined(TARGET_IA64)
252 /* XXXXX */
253 #else
254 #error unsupported target CPU
255 #endif
256 env->exception_index = -1;
258 /* prepare setjmp context for exception handling */
259 for(;;) {
260 if (setjmp(env->jmp_env) == 0) {
261 #if defined(__sparc__) && !defined(HOST_SOLARIS)
262 #undef env
263 env = cpu_single_env;
264 #define env cpu_single_env
265 #endif
266 env->current_tb = NULL;
267 /* if an exception is pending, we execute it here */
268 if (env->exception_index >= 0) {
269 if (env->exception_index >= EXCP_INTERRUPT) {
270 /* exit request from the cpu execution loop */
271 ret = env->exception_index;
272 if (ret == EXCP_DEBUG)
273 cpu_handle_debug_exception(env);
274 break;
275 } else {
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
279 loop */
280 #if defined(TARGET_I386)
281 do_interrupt_user(env->exception_index,
282 env->exception_is_int,
283 env->error_code,
284 env->exception_next_eip);
285 /* successfully delivered */
286 env->old_exception = -1;
287 #endif
288 ret = env->exception_index;
289 break;
290 #else
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env->exception_index,
296 env->exception_is_int,
297 env->error_code,
298 env->exception_next_eip, 0);
299 /* successfully delivered */
300 env->old_exception = -1;
301 #elif defined(TARGET_PPC)
302 do_interrupt(env);
303 #elif defined(TARGET_MIPS)
304 do_interrupt(env);
305 #elif defined(TARGET_SPARC)
306 do_interrupt(env);
307 #elif defined(TARGET_ARM)
308 do_interrupt(env);
309 #elif defined(TARGET_SH4)
310 do_interrupt(env);
311 #elif defined(TARGET_ALPHA)
312 do_interrupt(env);
313 #elif defined(TARGET_CRIS)
314 do_interrupt(env);
315 #elif defined(TARGET_M68K)
316 do_interrupt(0);
317 #elif defined(TARGET_IA64)
318 do_interrupt(env);
319 #endif
320 #endif
322 env->exception_index = -1;
324 #ifdef USE_KQEMU
325 if (kqemu_is_ok(env) && env->interrupt_request == 0 && env->exit_request == 0) {
326 int ret;
327 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
328 ret = kqemu_cpu_exec(env);
329 /* put eflags in CPU temporary format */
330 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
331 DF = 1 - (2 * ((env->eflags >> 10) & 1));
332 CC_OP = CC_OP_EFLAGS;
333 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
334 if (ret == 1) {
335 /* exception */
336 longjmp(env->jmp_env, 1);
337 } else if (ret == 2) {
338 /* softmmu execution needed */
339 } else {
340 if (env->interrupt_request != 0 || env->exit_request != 0) {
341 /* hardware interrupt will be executed just after */
342 } else {
343 /* otherwise, we restart */
344 longjmp(env->jmp_env, 1);
348 #endif
350 /* kvm vcpu threads */
351 if (kvm_enabled()) {
352 kvm_cpu_exec(env);
353 longjmp(env->jmp_env, 1);
356 if (kvm_enabled()) {
357 kvm_cpu_exec(env);
358 longjmp(env->jmp_env, 1);
361 next_tb = 0; /* force lookup of first TB */
362 for(;;) {
363 interrupt_request = env->interrupt_request;
364 if (unlikely(interrupt_request)) {
365 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
366 /* Mask out external interrupts for this step. */
367 interrupt_request &= ~(CPU_INTERRUPT_HARD |
368 CPU_INTERRUPT_FIQ |
369 CPU_INTERRUPT_SMI |
370 CPU_INTERRUPT_NMI);
372 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
373 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
374 env->exception_index = EXCP_DEBUG;
375 cpu_loop_exit();
377 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
378 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
379 if (interrupt_request & CPU_INTERRUPT_HALT) {
380 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
381 env->halted = 1;
382 env->exception_index = EXCP_HLT;
383 cpu_loop_exit();
385 #endif
386 #if defined(TARGET_I386)
387 if (env->hflags2 & HF2_GIF_MASK) {
388 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
389 !(env->hflags & HF_SMM_MASK)) {
390 svm_check_intercept(SVM_EXIT_SMI);
391 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
392 do_smm_enter();
393 next_tb = 0;
394 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
395 !(env->hflags2 & HF2_NMI_MASK)) {
396 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
397 env->hflags2 |= HF2_NMI_MASK;
398 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
399 next_tb = 0;
400 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
401 (((env->hflags2 & HF2_VINTR_MASK) &&
402 (env->hflags2 & HF2_HIF_MASK)) ||
403 (!(env->hflags2 & HF2_VINTR_MASK) &&
404 (env->eflags & IF_MASK &&
405 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
406 int intno;
407 svm_check_intercept(SVM_EXIT_INTR);
408 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
409 intno = cpu_get_pic_interrupt(env);
410 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
411 #if defined(__sparc__) && !defined(HOST_SOLARIS)
412 #undef env
413 env = cpu_single_env;
414 #define env cpu_single_env
415 #endif
416 do_interrupt(intno, 0, 0, 0, 1);
417 /* ensure that no TB jump will be modified as
418 the program flow was changed */
419 next_tb = 0;
420 #if !defined(CONFIG_USER_ONLY)
421 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
422 (env->eflags & IF_MASK) &&
423 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
424 int intno;
425 /* FIXME: this should respect TPR */
426 svm_check_intercept(SVM_EXIT_VINTR);
427 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
428 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
429 do_interrupt(intno, 0, 0, 0, 1);
430 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
431 next_tb = 0;
432 #endif
435 #elif defined(TARGET_PPC)
436 #if 0
437 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
438 cpu_ppc_reset(env);
440 #endif
441 if (interrupt_request & CPU_INTERRUPT_HARD) {
442 ppc_hw_interrupt(env);
443 if (env->pending_interrupts == 0)
444 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
445 next_tb = 0;
447 #elif defined(TARGET_MIPS)
448 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
449 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
450 (env->CP0_Status & (1 << CP0St_IE)) &&
451 !(env->CP0_Status & (1 << CP0St_EXL)) &&
452 !(env->CP0_Status & (1 << CP0St_ERL)) &&
453 !(env->hflags & MIPS_HFLAG_DM)) {
454 /* Raise it */
455 env->exception_index = EXCP_EXT_INTERRUPT;
456 env->error_code = 0;
457 do_interrupt(env);
458 next_tb = 0;
460 #elif defined(TARGET_SPARC)
461 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
462 (env->psret != 0)) {
463 int pil = env->interrupt_index & 15;
464 int type = env->interrupt_index & 0xf0;
466 if (((type == TT_EXTINT) &&
467 (pil == 15 || pil > env->psrpil)) ||
468 type != TT_EXTINT) {
469 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
470 env->exception_index = env->interrupt_index;
471 do_interrupt(env);
472 env->interrupt_index = 0;
473 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
474 cpu_check_irqs(env);
475 #endif
476 next_tb = 0;
478 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
479 //do_interrupt(0, 0, 0, 0, 0);
480 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
482 #elif defined(TARGET_ARM)
483 if (interrupt_request & CPU_INTERRUPT_FIQ
484 && !(env->uncached_cpsr & CPSR_F)) {
485 env->exception_index = EXCP_FIQ;
486 do_interrupt(env);
487 next_tb = 0;
489 /* ARMv7-M interrupt return works by loading a magic value
490 into the PC. On real hardware the load causes the
491 return to occur. The qemu implementation performs the
492 jump normally, then does the exception return when the
493 CPU tries to execute code at the magic address.
494 This will cause the magic PC value to be pushed to
495 the stack if an interrupt occured at the wrong time.
496 We avoid this by disabling interrupts when
497 pc contains a magic address. */
498 if (interrupt_request & CPU_INTERRUPT_HARD
499 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
500 || !(env->uncached_cpsr & CPSR_I))) {
501 env->exception_index = EXCP_IRQ;
502 do_interrupt(env);
503 next_tb = 0;
505 #elif defined(TARGET_SH4)
506 if (interrupt_request & CPU_INTERRUPT_HARD) {
507 do_interrupt(env);
508 next_tb = 0;
510 #elif defined(TARGET_ALPHA)
511 if (interrupt_request & CPU_INTERRUPT_HARD) {
512 do_interrupt(env);
513 next_tb = 0;
515 #elif defined(TARGET_CRIS)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && (env->pregs[PR_CCS] & I_FLAG)) {
518 env->exception_index = EXCP_IRQ;
519 do_interrupt(env);
520 next_tb = 0;
522 if (interrupt_request & CPU_INTERRUPT_NMI
523 && (env->pregs[PR_CCS] & M_FLAG)) {
524 env->exception_index = EXCP_NMI;
525 do_interrupt(env);
526 next_tb = 0;
528 #elif defined(TARGET_M68K)
529 if (interrupt_request & CPU_INTERRUPT_HARD
530 && ((env->sr & SR_I) >> SR_I_SHIFT)
531 < env->pending_level) {
532 /* Real hardware gets the interrupt vector via an
533 IACK cycle at this point. Current emulated
534 hardware doesn't rely on this, so we
535 provide/save the vector when the interrupt is
536 first signalled. */
537 env->exception_index = env->pending_vector;
538 do_interrupt(1);
539 next_tb = 0;
541 #endif
542 /* Don't use the cached interupt_request value,
543 do_interrupt may have updated the EXITTB flag. */
544 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
545 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
546 /* ensure that no TB jump will be modified as
547 the program flow was changed */
548 next_tb = 0;
551 if (unlikely(env->exit_request)) {
552 env->exit_request = 0;
553 env->exception_index = EXCP_INTERRUPT;
554 cpu_loop_exit();
556 #ifdef DEBUG_EXEC
557 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
558 /* restore flags in standard format */
559 regs_to_env();
560 #if defined(TARGET_I386)
561 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
562 log_cpu_state(env, X86_DUMP_CCOP);
563 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
564 #elif defined(TARGET_ARM)
565 log_cpu_state(env, 0);
566 #elif defined(TARGET_SPARC)
567 log_cpu_state(env, 0);
568 #elif defined(TARGET_PPC)
569 log_cpu_state(env, 0);
570 #elif defined(TARGET_M68K)
571 cpu_m68k_flush_flags(env, env->cc_op);
572 env->cc_op = CC_OP_FLAGS;
573 env->sr = (env->sr & 0xffe0)
574 | env->cc_dest | (env->cc_x << 4);
575 log_cpu_state(env, 0);
576 #elif defined(TARGET_MIPS)
577 log_cpu_state(env, 0);
578 #elif defined(TARGET_SH4)
579 log_cpu_state(env, 0);
580 #elif defined(TARGET_ALPHA)
581 log_cpu_state(env, 0);
582 #elif defined(TARGET_CRIS)
583 log_cpu_state(env, 0);
584 #else
585 #error unsupported target CPU
586 #endif
588 #endif
589 spin_lock(&tb_lock);
590 tb = tb_find_fast();
591 /* Note: we do it here to avoid a gcc bug on Mac OS X when
592 doing it in tb_find_slow */
593 if (tb_invalidated_flag) {
594 /* as some TB could have been invalidated because
595 of memory exceptions while generating the code, we
596 must recompute the hash index here */
597 next_tb = 0;
598 tb_invalidated_flag = 0;
600 #ifdef DEBUG_EXEC
601 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
602 (long)tb->tc_ptr, tb->pc,
603 lookup_symbol(tb->pc));
604 #endif
605 /* see if we can patch the calling TB. When the TB
606 spans two pages, we cannot safely do a direct
607 jump. */
609 if (next_tb != 0 &&
610 #ifdef USE_KQEMU
611 (env->kqemu_enabled != 2) &&
612 #endif
613 tb->page_addr[1] == -1) {
614 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
617 spin_unlock(&tb_lock);
618 env->current_tb = tb;
620 /* cpu_interrupt might be called while translating the
621 TB, but before it is linked into a potentially
622 infinite loop and becomes env->current_tb. Avoid
623 starting execution if there is a pending interrupt. */
624 if (unlikely (env->exit_request))
625 env->current_tb = NULL;
627 while (env->current_tb) {
628 tc_ptr = tb->tc_ptr;
629 /* execute the generated code */
630 #if defined(__sparc__) && !defined(HOST_SOLARIS)
631 #undef env
632 env = cpu_single_env;
633 #define env cpu_single_env
634 #endif
635 next_tb = tcg_qemu_tb_exec(tc_ptr);
636 env->current_tb = NULL;
637 if ((next_tb & 3) == 2) {
638 /* Instruction counter expired. */
639 int insns_left;
640 tb = (TranslationBlock *)(long)(next_tb & ~3);
641 /* Restore PC. */
642 cpu_pc_from_tb(env, tb);
643 insns_left = env->icount_decr.u32;
644 if (env->icount_extra && insns_left >= 0) {
645 /* Refill decrementer and continue execution. */
646 env->icount_extra += insns_left;
647 if (env->icount_extra > 0xffff) {
648 insns_left = 0xffff;
649 } else {
650 insns_left = env->icount_extra;
652 env->icount_extra -= insns_left;
653 env->icount_decr.u16.low = insns_left;
654 } else {
655 if (insns_left > 0) {
656 /* Execute remaining instructions. */
657 cpu_exec_nocache(insns_left, tb);
659 env->exception_index = EXCP_INTERRUPT;
660 next_tb = 0;
661 cpu_loop_exit();
665 /* reset soft MMU for next block (it can currently
666 only be set by a memory fault) */
667 #if defined(USE_KQEMU)
668 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
669 if (kqemu_is_ok(env) &&
670 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
671 cpu_loop_exit();
673 #endif
674 } /* for(;;) */
675 } else {
676 env_to_regs();
678 } /* for(;;) */
681 #if defined(TARGET_I386)
682 /* restore flags in standard format */
683 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
684 #elif defined(TARGET_ARM)
685 /* XXX: Save/restore host fpu exception state?. */
686 #elif defined(TARGET_SPARC)
687 #elif defined(TARGET_PPC)
688 #elif defined(TARGET_M68K)
689 cpu_m68k_flush_flags(env, env->cc_op);
690 env->cc_op = CC_OP_FLAGS;
691 env->sr = (env->sr & 0xffe0)
692 | env->cc_dest | (env->cc_x << 4);
693 #elif defined(TARGET_MIPS)
694 #elif defined(TARGET_SH4)
695 #elif defined(TARGET_IA64)
696 #elif defined(TARGET_ALPHA)
697 #elif defined(TARGET_CRIS)
698 /* XXXXX */
699 #else
700 #error unsupported target CPU
701 #endif
703 /* restore global registers */
704 #include "hostregs_helper.h"
706 /* fail safe : never use cpu_single_env outside cpu_exec() */
707 cpu_single_env = NULL;
708 return ret;
711 /* must only be called from the generated code as an exception can be
712 generated */
713 void tb_invalidate_page_range(target_ulong start, target_ulong end)
715 /* XXX: cannot enable it yet because it yields to MMU exception
716 where NIP != read address on PowerPC */
717 #if 0
718 target_ulong phys_addr;
719 phys_addr = get_phys_addr_code(env, start);
720 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
721 #endif
724 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
726 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
728 CPUX86State *saved_env;
730 saved_env = env;
731 env = s;
732 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
733 selector &= 0xffff;
734 cpu_x86_load_seg_cache(env, seg_reg, selector,
735 (selector << 4), 0xffff, 0);
736 } else {
737 helper_load_seg(seg_reg, selector);
739 env = saved_env;
742 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
744 CPUX86State *saved_env;
746 saved_env = env;
747 env = s;
749 helper_fsave(ptr, data32);
751 env = saved_env;
754 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
756 CPUX86State *saved_env;
758 saved_env = env;
759 env = s;
761 helper_frstor(ptr, data32);
763 env = saved_env;
766 #endif /* TARGET_I386 */
768 #if !defined(CONFIG_SOFTMMU)
770 #if defined(TARGET_I386)
772 /* 'pc' is the host PC at which the exception was raised. 'address' is
773 the effective address of the memory exception. 'is_write' is 1 if a
774 write caused the exception and otherwise 0'. 'old_set' is the
775 signal set which should be restored */
776 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
777 int is_write, sigset_t *old_set,
778 void *puc)
780 TranslationBlock *tb;
781 int ret;
783 if (cpu_single_env)
784 env = cpu_single_env; /* XXX: find a correct solution for multithread */
785 #if defined(DEBUG_SIGNAL)
786 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
787 pc, address, is_write, *(unsigned long *)old_set);
788 #endif
789 /* XXX: locking issue */
790 if (is_write && page_unprotect(h2g(address), pc, puc)) {
791 return 1;
794 /* see if it is an MMU fault */
795 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
796 if (ret < 0)
797 return 0; /* not an MMU fault */
798 if (ret == 0)
799 return 1; /* the MMU fault was handled without causing real CPU fault */
800 /* now we have a real cpu fault */
801 tb = tb_find_pc(pc);
802 if (tb) {
803 /* the PC is inside the translated code. It means that we have
804 a virtual CPU fault */
805 cpu_restore_state(tb, env, pc, puc);
807 if (ret == 1) {
808 #if 0
809 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
810 env->eip, env->cr[2], env->error_code);
811 #endif
812 /* we restore the process signal mask as the sigreturn should
813 do it (XXX: use sigsetjmp) */
814 sigprocmask(SIG_SETMASK, old_set, NULL);
815 raise_exception_err(env->exception_index, env->error_code);
816 } else {
817 /* activate soft MMU for this block */
818 env->hflags |= HF_SOFTMMU_MASK;
819 cpu_resume_from_signal(env, puc);
821 /* never comes here */
822 return 1;
825 #elif defined(TARGET_ARM)
826 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
827 int is_write, sigset_t *old_set,
828 void *puc)
830 TranslationBlock *tb;
831 int ret;
833 if (cpu_single_env)
834 env = cpu_single_env; /* XXX: find a correct solution for multithread */
835 #if defined(DEBUG_SIGNAL)
836 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
837 pc, address, is_write, *(unsigned long *)old_set);
838 #endif
839 /* XXX: locking issue */
840 if (is_write && page_unprotect(h2g(address), pc, puc)) {
841 return 1;
843 /* see if it is an MMU fault */
844 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
845 if (ret < 0)
846 return 0; /* not an MMU fault */
847 if (ret == 0)
848 return 1; /* the MMU fault was handled without causing real CPU fault */
849 /* now we have a real cpu fault */
850 tb = tb_find_pc(pc);
851 if (tb) {
852 /* the PC is inside the translated code. It means that we have
853 a virtual CPU fault */
854 cpu_restore_state(tb, env, pc, puc);
856 /* we restore the process signal mask as the sigreturn should
857 do it (XXX: use sigsetjmp) */
858 sigprocmask(SIG_SETMASK, old_set, NULL);
859 cpu_loop_exit();
860 /* never comes here */
861 return 1;
863 #elif defined(TARGET_SPARC)
864 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
865 int is_write, sigset_t *old_set,
866 void *puc)
868 TranslationBlock *tb;
869 int ret;
871 if (cpu_single_env)
872 env = cpu_single_env; /* XXX: find a correct solution for multithread */
873 #if defined(DEBUG_SIGNAL)
874 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
875 pc, address, is_write, *(unsigned long *)old_set);
876 #endif
877 /* XXX: locking issue */
878 if (is_write && page_unprotect(h2g(address), pc, puc)) {
879 return 1;
881 /* see if it is an MMU fault */
882 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
883 if (ret < 0)
884 return 0; /* not an MMU fault */
885 if (ret == 0)
886 return 1; /* the MMU fault was handled without causing real CPU fault */
887 /* now we have a real cpu fault */
888 tb = tb_find_pc(pc);
889 if (tb) {
890 /* the PC is inside the translated code. It means that we have
891 a virtual CPU fault */
892 cpu_restore_state(tb, env, pc, puc);
894 /* we restore the process signal mask as the sigreturn should
895 do it (XXX: use sigsetjmp) */
896 sigprocmask(SIG_SETMASK, old_set, NULL);
897 cpu_loop_exit();
898 /* never comes here */
899 return 1;
901 #elif defined (TARGET_PPC)
902 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
903 int is_write, sigset_t *old_set,
904 void *puc)
906 TranslationBlock *tb;
907 int ret;
909 if (cpu_single_env)
910 env = cpu_single_env; /* XXX: find a correct solution for multithread */
911 #if defined(DEBUG_SIGNAL)
912 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
913 pc, address, is_write, *(unsigned long *)old_set);
914 #endif
915 /* XXX: locking issue */
916 if (is_write && page_unprotect(h2g(address), pc, puc)) {
917 return 1;
920 /* see if it is an MMU fault */
921 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
922 if (ret < 0)
923 return 0; /* not an MMU fault */
924 if (ret == 0)
925 return 1; /* the MMU fault was handled without causing real CPU fault */
927 /* now we have a real cpu fault */
928 tb = tb_find_pc(pc);
929 if (tb) {
930 /* the PC is inside the translated code. It means that we have
931 a virtual CPU fault */
932 cpu_restore_state(tb, env, pc, puc);
934 if (ret == 1) {
935 #if 0
936 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
937 env->nip, env->error_code, tb);
938 #endif
939 /* we restore the process signal mask as the sigreturn should
940 do it (XXX: use sigsetjmp) */
941 sigprocmask(SIG_SETMASK, old_set, NULL);
942 cpu_loop_exit();
943 } else {
944 /* activate soft MMU for this block */
945 cpu_resume_from_signal(env, puc);
947 /* never comes here */
948 return 1;
951 #elif defined(TARGET_M68K)
952 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
953 int is_write, sigset_t *old_set,
954 void *puc)
956 TranslationBlock *tb;
957 int ret;
959 if (cpu_single_env)
960 env = cpu_single_env; /* XXX: find a correct solution for multithread */
961 #if defined(DEBUG_SIGNAL)
962 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
963 pc, address, is_write, *(unsigned long *)old_set);
964 #endif
965 /* XXX: locking issue */
966 if (is_write && page_unprotect(address, pc, puc)) {
967 return 1;
969 /* see if it is an MMU fault */
970 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
971 if (ret < 0)
972 return 0; /* not an MMU fault */
973 if (ret == 0)
974 return 1; /* the MMU fault was handled without causing real CPU fault */
975 /* now we have a real cpu fault */
976 tb = tb_find_pc(pc);
977 if (tb) {
978 /* the PC is inside the translated code. It means that we have
979 a virtual CPU fault */
980 cpu_restore_state(tb, env, pc, puc);
982 /* we restore the process signal mask as the sigreturn should
983 do it (XXX: use sigsetjmp) */
984 sigprocmask(SIG_SETMASK, old_set, NULL);
985 cpu_loop_exit();
986 /* never comes here */
987 return 1;
990 #elif defined (TARGET_MIPS)
991 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
992 int is_write, sigset_t *old_set,
993 void *puc)
995 TranslationBlock *tb;
996 int ret;
998 if (cpu_single_env)
999 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1000 #if defined(DEBUG_SIGNAL)
1001 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1002 pc, address, is_write, *(unsigned long *)old_set);
1003 #endif
1004 /* XXX: locking issue */
1005 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1006 return 1;
1009 /* see if it is an MMU fault */
1010 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1011 if (ret < 0)
1012 return 0; /* not an MMU fault */
1013 if (ret == 0)
1014 return 1; /* the MMU fault was handled without causing real CPU fault */
1016 /* now we have a real cpu fault */
1017 tb = tb_find_pc(pc);
1018 if (tb) {
1019 /* the PC is inside the translated code. It means that we have
1020 a virtual CPU fault */
1021 cpu_restore_state(tb, env, pc, puc);
1023 if (ret == 1) {
1024 #if 0
1025 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1026 env->PC, env->error_code, tb);
1027 #endif
1028 /* we restore the process signal mask as the sigreturn should
1029 do it (XXX: use sigsetjmp) */
1030 sigprocmask(SIG_SETMASK, old_set, NULL);
1031 cpu_loop_exit();
1032 } else {
1033 /* activate soft MMU for this block */
1034 cpu_resume_from_signal(env, puc);
1036 /* never comes here */
1037 return 1;
1040 #elif defined (TARGET_SH4)
1041 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1042 int is_write, sigset_t *old_set,
1043 void *puc)
1045 TranslationBlock *tb;
1046 int ret;
1048 if (cpu_single_env)
1049 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1050 #if defined(DEBUG_SIGNAL)
1051 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1052 pc, address, is_write, *(unsigned long *)old_set);
1053 #endif
1054 /* XXX: locking issue */
1055 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1056 return 1;
1059 /* see if it is an MMU fault */
1060 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1061 if (ret < 0)
1062 return 0; /* not an MMU fault */
1063 if (ret == 0)
1064 return 1; /* the MMU fault was handled without causing real CPU fault */
1066 /* now we have a real cpu fault */
1067 tb = tb_find_pc(pc);
1068 if (tb) {
1069 /* the PC is inside the translated code. It means that we have
1070 a virtual CPU fault */
1071 cpu_restore_state(tb, env, pc, puc);
1073 #if 0
1074 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1075 env->nip, env->error_code, tb);
1076 #endif
1077 /* we restore the process signal mask as the sigreturn should
1078 do it (XXX: use sigsetjmp) */
1079 sigprocmask(SIG_SETMASK, old_set, NULL);
1080 cpu_loop_exit();
1081 /* never comes here */
1082 return 1;
1085 #elif defined (TARGET_ALPHA)
1086 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1087 int is_write, sigset_t *old_set,
1088 void *puc)
1090 TranslationBlock *tb;
1091 int ret;
1093 if (cpu_single_env)
1094 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1095 #if defined(DEBUG_SIGNAL)
1096 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1097 pc, address, is_write, *(unsigned long *)old_set);
1098 #endif
1099 /* XXX: locking issue */
1100 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1101 return 1;
1104 /* see if it is an MMU fault */
1105 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1106 if (ret < 0)
1107 return 0; /* not an MMU fault */
1108 if (ret == 0)
1109 return 1; /* the MMU fault was handled without causing real CPU fault */
1111 /* now we have a real cpu fault */
1112 tb = tb_find_pc(pc);
1113 if (tb) {
1114 /* the PC is inside the translated code. It means that we have
1115 a virtual CPU fault */
1116 cpu_restore_state(tb, env, pc, puc);
1118 #if 0
1119 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1120 env->nip, env->error_code, tb);
1121 #endif
1122 /* we restore the process signal mask as the sigreturn should
1123 do it (XXX: use sigsetjmp) */
1124 sigprocmask(SIG_SETMASK, old_set, NULL);
1125 cpu_loop_exit();
1126 /* never comes here */
1127 return 1;
1129 #elif defined (TARGET_CRIS)
1130 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1131 int is_write, sigset_t *old_set,
1132 void *puc)
1134 TranslationBlock *tb;
1135 int ret;
1137 if (cpu_single_env)
1138 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1139 #if defined(DEBUG_SIGNAL)
1140 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1141 pc, address, is_write, *(unsigned long *)old_set);
1142 #endif
1143 /* XXX: locking issue */
1144 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1145 return 1;
1148 /* see if it is an MMU fault */
1149 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1150 if (ret < 0)
1151 return 0; /* not an MMU fault */
1152 if (ret == 0)
1153 return 1; /* the MMU fault was handled without causing real CPU fault */
1155 /* now we have a real cpu fault */
1156 tb = tb_find_pc(pc);
1157 if (tb) {
1158 /* the PC is inside the translated code. It means that we have
1159 a virtual CPU fault */
1160 cpu_restore_state(tb, env, pc, puc);
1162 /* we restore the process signal mask as the sigreturn should
1163 do it (XXX: use sigsetjmp) */
1164 sigprocmask(SIG_SETMASK, old_set, NULL);
1165 cpu_loop_exit();
1166 /* never comes here */
1167 return 1;
1170 #else
1171 #error unsupported target CPU
1172 #endif
1174 #if defined(__i386__)
1176 #if defined(__APPLE__)
1177 # include <sys/ucontext.h>
1179 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1180 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1181 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1182 #else
1183 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1184 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1185 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1186 #endif
1188 int cpu_signal_handler(int host_signum, void *pinfo,
1189 void *puc)
1191 siginfo_t *info = pinfo;
1192 struct ucontext *uc = puc;
1193 unsigned long pc;
1194 int trapno;
1196 #ifndef REG_EIP
1197 /* for glibc 2.1 */
1198 #define REG_EIP EIP
1199 #define REG_ERR ERR
1200 #define REG_TRAPNO TRAPNO
1201 #endif
1202 pc = EIP_sig(uc);
1203 trapno = TRAP_sig(uc);
1204 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1205 trapno == 0xe ?
1206 (ERROR_sig(uc) >> 1) & 1 : 0,
1207 &uc->uc_sigmask, puc);
1210 #elif defined(__x86_64__)
1212 #ifdef __NetBSD__
1213 #define REG_ERR _REG_ERR
1214 #define REG_TRAPNO _REG_TRAPNO
1216 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
1217 #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
1218 #else
1219 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
1220 #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
1221 #endif
1223 int cpu_signal_handler(int host_signum, void *pinfo,
1224 void *puc)
1226 siginfo_t *info = pinfo;
1227 unsigned long pc;
1228 #ifdef __NetBSD__
1229 ucontext_t *uc = puc;
1230 #else
1231 struct ucontext *uc = puc;
1232 #endif
1234 pc = QEMU_UC_MACHINE_PC(uc);
1235 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1236 QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ?
1237 (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0,
1238 &uc->uc_sigmask, puc);
1241 #elif defined(_ARCH_PPC)
1243 /***********************************************************************
1244 * signal context platform-specific definitions
1245 * From Wine
1247 #ifdef linux
1248 /* All Registers access - only for local access */
1249 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1250 /* Gpr Registers access */
1251 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1252 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1253 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1254 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1255 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1256 # define LR_sig(context) REG_sig(link, context) /* Link register */
1257 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1258 /* Float Registers access */
1259 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1260 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1261 /* Exception Registers access */
1262 # define DAR_sig(context) REG_sig(dar, context)
1263 # define DSISR_sig(context) REG_sig(dsisr, context)
1264 # define TRAP_sig(context) REG_sig(trap, context)
1265 #endif /* linux */
1267 #ifdef __APPLE__
1268 # include <sys/ucontext.h>
1269 typedef struct ucontext SIGCONTEXT;
1270 /* All Registers access - only for local access */
1271 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1272 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1273 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1274 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1275 /* Gpr Registers access */
1276 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1277 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1278 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1279 # define CTR_sig(context) REG_sig(ctr, context)
1280 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1281 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1282 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1283 /* Float Registers access */
1284 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1285 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1286 /* Exception Registers access */
1287 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1288 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1289 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1290 #endif /* __APPLE__ */
1292 int cpu_signal_handler(int host_signum, void *pinfo,
1293 void *puc)
1295 siginfo_t *info = pinfo;
1296 struct ucontext *uc = puc;
1297 unsigned long pc;
1298 int is_write;
1300 pc = IAR_sig(uc);
1301 is_write = 0;
1302 #if 0
1303 /* ppc 4xx case */
1304 if (DSISR_sig(uc) & 0x00800000)
1305 is_write = 1;
1306 #else
1307 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1308 is_write = 1;
1309 #endif
1310 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1311 is_write, &uc->uc_sigmask, puc);
1314 #elif defined(__alpha__)
1316 int cpu_signal_handler(int host_signum, void *pinfo,
1317 void *puc)
1319 siginfo_t *info = pinfo;
1320 struct ucontext *uc = puc;
1321 uint32_t *pc = uc->uc_mcontext.sc_pc;
1322 uint32_t insn = *pc;
1323 int is_write = 0;
1325 /* XXX: need kernel patch to get write flag faster */
1326 switch (insn >> 26) {
1327 case 0x0d: // stw
1328 case 0x0e: // stb
1329 case 0x0f: // stq_u
1330 case 0x24: // stf
1331 case 0x25: // stg
1332 case 0x26: // sts
1333 case 0x27: // stt
1334 case 0x2c: // stl
1335 case 0x2d: // stq
1336 case 0x2e: // stl_c
1337 case 0x2f: // stq_c
1338 is_write = 1;
1341 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1342 is_write, &uc->uc_sigmask, puc);
1344 #elif defined(__sparc__)
1346 int cpu_signal_handler(int host_signum, void *pinfo,
1347 void *puc)
1349 siginfo_t *info = pinfo;
1350 int is_write;
1351 uint32_t insn;
1352 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1353 uint32_t *regs = (uint32_t *)(info + 1);
1354 void *sigmask = (regs + 20);
1355 /* XXX: is there a standard glibc define ? */
1356 unsigned long pc = regs[1];
1357 #else
1358 #ifdef __linux__
1359 struct sigcontext *sc = puc;
1360 unsigned long pc = sc->sigc_regs.tpc;
1361 void *sigmask = (void *)sc->sigc_mask;
1362 #elif defined(__OpenBSD__)
1363 struct sigcontext *uc = puc;
1364 unsigned long pc = uc->sc_pc;
1365 void *sigmask = (void *)(long)uc->sc_mask;
1366 #endif
1367 #endif
1369 /* XXX: need kernel patch to get write flag faster */
1370 is_write = 0;
1371 insn = *(uint32_t *)pc;
1372 if ((insn >> 30) == 3) {
1373 switch((insn >> 19) & 0x3f) {
1374 case 0x05: // stb
1375 case 0x06: // sth
1376 case 0x04: // st
1377 case 0x07: // std
1378 case 0x24: // stf
1379 case 0x27: // stdf
1380 case 0x25: // stfsr
1381 is_write = 1;
1382 break;
1385 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1386 is_write, sigmask, NULL);
1389 #elif defined(__arm__)
1391 int cpu_signal_handler(int host_signum, void *pinfo,
1392 void *puc)
1394 siginfo_t *info = pinfo;
1395 struct ucontext *uc = puc;
1396 unsigned long pc;
1397 int is_write;
1399 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1400 pc = uc->uc_mcontext.gregs[R15];
1401 #else
1402 pc = uc->uc_mcontext.arm_pc;
1403 #endif
1404 /* XXX: compute is_write */
1405 is_write = 0;
1406 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1407 is_write,
1408 &uc->uc_sigmask, puc);
1411 #elif defined(__mc68000)
1413 int cpu_signal_handler(int host_signum, void *pinfo,
1414 void *puc)
1416 siginfo_t *info = pinfo;
1417 struct ucontext *uc = puc;
1418 unsigned long pc;
1419 int is_write;
1421 pc = uc->uc_mcontext.gregs[16];
1422 /* XXX: compute is_write */
1423 is_write = 0;
1424 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1425 is_write,
1426 &uc->uc_sigmask, puc);
1429 #elif defined(__ia64)
1431 #ifndef __ISR_VALID
1432 /* This ought to be in <bits/siginfo.h>... */
1433 # define __ISR_VALID 1
1434 #endif
1436 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1438 siginfo_t *info = pinfo;
1439 struct ucontext *uc = puc;
1440 unsigned long ip;
1441 int is_write = 0;
1443 ip = uc->uc_mcontext.sc_ip;
1444 switch (host_signum) {
1445 case SIGILL:
1446 case SIGFPE:
1447 case SIGSEGV:
1448 case SIGBUS:
1449 case SIGTRAP:
1450 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1451 /* ISR.W (write-access) is bit 33: */
1452 is_write = (info->si_isr >> 33) & 1;
1453 break;
1455 default:
1456 break;
1458 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1459 is_write,
1460 &uc->uc_sigmask, puc);
1463 #elif defined(__s390__)
1465 int cpu_signal_handler(int host_signum, void *pinfo,
1466 void *puc)
1468 siginfo_t *info = pinfo;
1469 struct ucontext *uc = puc;
1470 unsigned long pc;
1471 int is_write;
1473 pc = uc->uc_mcontext.psw.addr;
1474 /* XXX: compute is_write */
1475 is_write = 0;
1476 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1477 is_write, &uc->uc_sigmask, puc);
1480 #elif defined(__mips__)
1482 int cpu_signal_handler(int host_signum, void *pinfo,
1483 void *puc)
1485 siginfo_t *info = pinfo;
1486 struct ucontext *uc = puc;
1487 greg_t pc = uc->uc_mcontext.pc;
1488 int is_write;
1490 /* XXX: compute is_write */
1491 is_write = 0;
1492 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1493 is_write, &uc->uc_sigmask, puc);
1496 #elif defined(__hppa__)
1498 int cpu_signal_handler(int host_signum, void *pinfo,
1499 void *puc)
1501 struct siginfo *info = pinfo;
1502 struct ucontext *uc = puc;
1503 unsigned long pc;
1504 int is_write;
1506 pc = uc->uc_mcontext.sc_iaoq[0];
1507 /* FIXME: compute is_write */
1508 is_write = 0;
1509 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1510 is_write,
1511 &uc->uc_sigmask, puc);
1514 #else
1516 #error host CPU specific signal handler needed
1518 #endif
1520 #endif /* !defined(CONFIG_SOFTMMU) */