1 # processing.py -- various audio processing functions
2 # Copyright (C) 2008 MUSIC TECHNOLOGY GROUP (MTG)
3 # UNIVERSITAT POMPEU FABRA
5 # This program is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU Affero General Public License as
7 # published by the Free Software Foundation, either version 3 of the
8 # License, or (at your option) any later version.
10 # This program is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU Affero General Public License for more details.
15 # You should have received a copy of the GNU Affero General Public License
16 # along with this program. If not, see <http://www.gnu.org/licenses/>.
19 # Bram de Jong <bram.dejong at domain.com where domain in gmail>
20 # 2012, Joar Wandborg <first name at last name dot se>
22 from __future__
import print_function
32 import scikits
.audiolab
as audiolab
34 print("WARNING: audiolab is not installed so wav2png will not work")
37 class AudioProcessingException(Exception):
41 class SpectrogramImage(object):
42 def __init__(self
, image_size
, fft_size
):
43 self
.image_width
, self
.image_height
= image_size
44 self
.fft_size
= fft_size
48 (58 / 4, 68 / 4, 65 / 4, 255),
49 (80 / 2, 100 / 2, 153 / 2, 255),
56 self
.palette
= interpolate_colors(colors
)
58 # Generate lookup table for y-coordinate from fft-bin
62 fft_max
= 22050.0 # kHz?
64 y_min
= math
.log10(fft_min
)
65 y_max
= math
.log10(fft_max
)
67 for y
in range(self
.image_height
):
70 y_min
+ y
/ (self
.image_height
- 1.0)
73 fft_bin
= freq
/ fft_max
* (self
.fft_size
/ 2 + 1)
75 if fft_bin
< self
.fft_size
/ 2:
76 alpha
= fft_bin
- int(fft_bin
)
78 self
.y_to_bin
.append((int(fft_bin
), alpha
* 255))
80 # this is a bit strange, but using image.load()[x,y] = ... is
81 # a lot slower than using image.putadata and then rotating the image
82 # so we store all the pixels in an array and then create the image when saving
85 def draw_spectrum(self
, x
, spectrum
):
86 # for all frequencies, draw the pixels
87 for index
, alpha
in self
.y_to_bin
:
89 self
.palette
[int((255.0 - alpha
) * spectrum
[index
]
90 + alpha
* spectrum
[index
+ 1])])
92 # if the FFT is too small to fill up the image, fill with black to the top
93 for y
in range(len(self
.y_to_bin
), self
.image_height
):
94 self
.pixels
.append(self
.palette
[0])
96 def save(self
, filename
, quality
=90):
97 self
.image
= Image
.new(
99 (self
.image_height
, self
.image_width
))
101 self
.image
.putdata(self
.pixels
)
102 self
.image
.transpose(Image
.ROTATE_90
).save(
107 class AudioProcessor(object):
109 The audio processor processes chunks of audio an calculates the spectrac centroid and the peak
110 samples in that chunk of audio.
112 def __init__(self
, input_filename
, fft_size
, window_function
=numpy
.hanning
):
113 max_level
= get_max_level(input_filename
)
115 self
.audio_file
= audiolab
.Sndfile(input_filename
, 'r')
116 self
.fft_size
= fft_size
117 self
.window
= window_function(self
.fft_size
)
118 self
.spectrum_range
= None
121 self
.lower_log
= math
.log10(self
.lower
)
122 self
.higher_log
= math
.log10(self
.higher
)
123 self
.clip
= lambda val
, low
, high
: min(high
, max(low
, val
))
125 # figure out what the maximum value is for an FFT doing the FFT of a DC signal
126 fft
= numpy
.fft
.rfft(numpy
.ones(fft_size
) * self
.window
)
127 max_fft
= (numpy
.abs(fft
)).max()
129 # set the scale to normalized audio and normalized FFT
130 self
.scale
= 1.0 / max_level
/ max_fft
if max_level
> 0 else 1
132 def read(self
, start
, size
, resize_if_less
=False):
133 """ read size samples starting at start, if resize_if_less is True and less than size
134 samples are read, resize the array to size and fill with zeros """
136 # number of zeros to add to start and end of the buffer
141 # the first FFT window starts centered around zero
142 if size
+ start
<= 0:
143 return numpy
.zeros(size
) if resize_if_less
else numpy
.array([])
145 self
.audio_file
.seek(0)
147 add_to_start
= - start
# remember: start is negative!
148 to_read
= size
+ start
150 if to_read
> self
.audio_file
.nframes
:
151 add_to_end
= to_read
- self
.audio_file
.nframes
152 to_read
= self
.audio_file
.nframes
154 self
.audio_file
.seek(start
)
157 if start
+ to_read
>= self
.audio_file
.nframes
:
158 to_read
= self
.audio_file
.nframes
- start
159 add_to_end
= size
- to_read
162 samples
= self
.audio_file
.read_frames(to_read
)
164 # this can happen for wave files with broken headers...
165 return numpy
.zeros(size
) if resize_if_less
else numpy
.zeros(2)
167 # convert to mono by selecting left channel only
168 if self
.audio_file
.channels
> 1:
169 samples
= samples
[:,0]
171 if resize_if_less
and (add_to_start
> 0 or add_to_end
> 0):
173 samples
= numpy
.concatenate((numpy
.zeros(add_to_start
), samples
), axis
=1)
176 samples
= numpy
.resize(samples
, size
)
177 samples
[size
- add_to_end
:] = 0
181 def spectral_centroid(self
, seek_point
, spec_range
=110.0):
182 """ starting at seek_point read fft_size samples, and calculate the spectral centroid """
184 samples
= self
.read(seek_point
- self
.fft_size
/2, self
.fft_size
, True)
186 samples
*= self
.window
187 fft
= numpy
.fft
.rfft(samples
)
188 spectrum
= self
.scale
* numpy
.abs(fft
) # normalized abs(FFT) between 0 and 1
190 length
= numpy
.float64(spectrum
.shape
[0])
192 # scale the db spectrum from [- spec_range db ... 0 db] > [0..1]
193 db_spectrum
= ((20*(numpy
.log10(spectrum
+ 1e-60))).clip(-spec_range
, 0.0) + spec_range
)/spec_range
195 energy
= spectrum
.sum()
196 spectral_centroid
= 0
199 # calculate the spectral centroid
201 if self
.spectrum_range
== None:
202 self
.spectrum_range
= numpy
.arange(length
)
204 spectral_centroid
= (spectrum
* self
.spectrum_range
).sum() / (energy
* (length
- 1)) * self
.audio_file
.samplerate
* 0.5
206 # clip > log10 > scale between 0 and 1
207 spectral_centroid
= (math
.log10(self
.clip(spectral_centroid
, self
.lower
, self
.higher
)) - self
.lower_log
) / (self
.higher_log
- self
.lower_log
)
209 return (spectral_centroid
, db_spectrum
)
212 def peaks(self
, start_seek
, end_seek
):
213 """ read all samples between start_seek and end_seek, then find the minimum and maximum peak
214 in that range. Returns that pair in the order they were found. So if min was found first,
215 it returns (min, max) else the other way around. """
217 # larger blocksizes are faster but take more mem...
218 # Aha, Watson, a clue, a tradeof!
229 if end_seek
> self
.audio_file
.nframes
:
230 end_seek
= self
.audio_file
.nframes
232 if end_seek
<= start_seek
:
233 samples
= self
.read(start_seek
, 1)
234 return (samples
[0], samples
[0])
236 if block_size
> end_seek
- start_seek
:
237 block_size
= end_seek
- start_seek
239 for i
in range(start_seek
, end_seek
, block_size
):
240 samples
= self
.read(i
, block_size
)
242 local_max_index
= numpy
.argmax(samples
)
243 local_max_value
= samples
[local_max_index
]
245 if local_max_value
> max_value
:
246 max_value
= local_max_value
247 max_index
= local_max_index
249 local_min_index
= numpy
.argmin(samples
)
250 local_min_value
= samples
[local_min_index
]
252 if local_min_value
< min_value
:
253 min_value
= local_min_value
254 min_index
= local_min_index
256 return (min_value
, max_value
) if min_index
< max_index
else (max_value
, min_value
)
259 def create_spectrogram_image(source_filename
, output_filename
,
260 image_size
, fft_size
, progress_callback
=None):
262 processor
= AudioProcessor(source_filename
, fft_size
, numpy
.hamming
)
263 samples_per_pixel
= processor
.audio_file
.nframes
/ float(image_size
[0])
265 spectrogram
= SpectrogramImage(image_size
, fft_size
)
267 for x
in range(image_size
[0]):
268 if progress_callback
and x
% (image_size
[0] / 10) == 0:
269 progress_callback((x
* 100) / image_size
[0])
271 seek_point
= int(x
* samples_per_pixel
)
272 next_seek_point
= int((x
+ 1) * samples_per_pixel
)
274 (spectral_centroid
, db_spectrum
) = processor
.spectral_centroid(seek_point
)
276 spectrogram
.draw_spectrum(x
, db_spectrum
)
278 if progress_callback
:
279 progress_callback(100)
281 spectrogram
.save(output_filename
)
284 def interpolate_colors(colors
, flat
=False, num_colors
=256):
288 for i
in range(num_colors
):
289 # TODO: What does this do?
292 (len(colors
) - 1) # 7
293 ) # 0..7..14..21..28...
295 (num_colors
- 1.0) # 255.0
298 # TODO: What is the meaning of 'alpha' in this context?
299 alpha
= index
- round(index
)
301 channels
= list('rgb')
304 for k
, v
in zip(range(len(channels
)), channels
):
309 colors
[int(index
)][k
]
311 alpha
* colors
[int(index
) + 1][k
]
317 colors
[int(index
)][k
]
322 tuple(int(values
[i
]) for i
in channels
))
325 tuple(int(values
[i
]) for i
in channels
))
330 def get_max_level(filename
):
333 audio_file
= audiolab
.Sndfile(filename
, 'r')
334 n_samples_left
= audio_file
.nframes
336 while n_samples_left
:
337 to_read
= min(buffer_size
, n_samples_left
)
340 samples
= audio_file
.read_frames(to_read
)
342 # this can happen with a broken header
345 # convert to mono by selecting left channel only
346 if audio_file
.channels
> 1:
347 samples
= samples
[:,0]
349 max_value
= max(max_value
, numpy
.abs(samples
).max())
351 n_samples_left
-= to_read
357 if __name__
== '__main__':
359 sys
.argv
[4] = int(sys
.argv
[4])
360 sys
.argv
[3] = tuple([int(i
) for i
in sys
.argv
[3].split('x')])
362 create_spectrogram_image(*sys
.argv
[1:])