1 %%% ====================================================================
3 %%% filename = "testmath.tex",
5 %%% date = "1999/11/15",
6 %%% time = "15:09:17 EST",
7 %%% checksum = "07762 2342 7811 82371",
8 %%% author = "American Mathematical Society",
9 %%% copyright = "Copyright 1995, 1999 American Mathematical Society,
10 %%% all rights reserved. Copying of this file is
11 %%% authorized only if either:
12 %%% (1) you make absolutely no changes to your copy,
13 %%% including name; OR
14 %%% (2) if you do make changes, you first rename it
15 %%% to some other name.",
16 %%% address = "American Mathematical Society,
17 %%% Technical Support,
18 %%% Electronic Products and Services,
20 %%% Providence, RI 02940,
22 %%% telephone = "401-455-4080 or (in the USA and Canada)
23 %%% 800-321-4AMS (321-4267)",
24 %%% FAX = "401-331-3842",
25 %%% email = "tech-support@ams.org (Internet)",
26 %%% codetable = "ISO/ASCII",
27 %%% keywords = "latex, amsmath, examples, documentation",
28 %%% supported = "yes",
29 %%% abstract = "This is a test file containing extensive examples of
30 %%% mathematical constructs supported by the amsmath
32 %%% docstring = "The checksum field above contains a CRC-16
33 %%% checksum as the first value, followed by the
34 %%% equivalent of the standard UNIX wc (word
35 %%% count) utility output of lines, words, and
36 %%% characters. This is produced by Robert
37 %%% Solovay's checksum utility.",
39 %%% ====================================================================
40 \NeedsTeXFormat{LaTeX2e
}% LaTeX 2.09 can't be used (nor non-LaTeX)
41 [1994/
12/
01]% LaTeX date must December 1994 or later
42 \documentclass[draft
]{article
}
45 \title{Sample Paper for the
\pkg{amsmath
} Package\\
46 File name:
\fn{testmath.tex
}}
47 \author{American Mathematical Society
}
48 \date{Version
2.0,
1999/
11/
15}
50 \usepackage{amsmath,amsthm
}
52 % Some definitions useful in producing this sort of documentation:
53 \chardef\bslash=`\\
% p. 424, TeXbook
54 % Normalized (nonbold, nonitalic) tt font, to avoid font
55 % substitution warning messages if tt is used inside section
56 % headings and other places where odd font combinations might
58 \newcommand{\ntt}{\normalfont\ttfamily}
60 \newcommand{\cn}[1]{{\protect\ntt\bslash#1}}
62 \newcommand{\pkg}[1]{{\protect\ntt#1}}
64 \newcommand{\fn}[1]{{\protect\ntt#1}}
66 \newcommand{\env}[1]{{\protect\ntt#1}}
67 \hfuzz1pc % Don't bother to report overfull boxes if overage is < 1pc
69 % Theorem environments
71 %% \theoremstyle{plain} %% This is the default
72 \newtheorem{thm
}{Theorem
}[section
]
73 \newtheorem{cor
}[thm
]{Corollary
}
74 \newtheorem{lem
}[thm
]{Lemma
}
75 \newtheorem{prop
}[thm
]{Proposition
}
76 \newtheorem{ax
}{Axiom
}
78 \theoremstyle{definition
}
79 \newtheorem{defn
}{Definition
}[section
]
82 \newtheorem{rem
}{Remark
}[section
]
83 \newtheorem*
{notation
}{Notation
}
85 %\numberwithin{equation}{section}
87 \newcommand{\thmref}[1]{Theorem~
\ref{#1}}
88 \newcommand{\secref}[1]{\S\ref{#1}}
89 \newcommand{\lemref}[1]{Lemma~
\ref{#1}}
91 \newcommand{\bysame}{\mbox{\rule{3em
}{.4pt
}}\,
}
95 \newcommand{\A}{\mathcal{A
}}
96 \newcommand{\B}{\mathcal{B
}}
97 \newcommand{\st}{\sigma}
98 \newcommand{\XcY}{{(X,Y)
}}
99 \newcommand{\SX}{{S_X
}}
100 \newcommand{\SY}{{S_Y
}}
101 \newcommand{\SXY}{{S_
{X,Y
}}}
102 \newcommand{\SXgYy}{{S_
{X|Y
}(y)
}}
103 \newcommand{\Cw}[1]{{\hat C_
#1(X|Y)
}}
104 \newcommand{\G}{{G(X|Y)
}}
105 \newcommand{\PY}{{P_
{\mathcal{Y
}}}}
106 \newcommand{\X}{\mathcal{X
}}
107 \newcommand{\wt}{\widetilde}
108 \newcommand{\wh}{\widehat}
110 \DeclareMathOperator{\per}{per
}
111 \DeclareMathOperator{\cov}{cov
}
112 \DeclareMathOperator{\non}{non
}
113 \DeclareMathOperator{\cf}{cf
}
114 \DeclareMathOperator{\add}{add
}
115 \DeclareMathOperator{\Cham}{Cham
}
116 \DeclareMathOperator{\IM}{Im
}
117 \DeclareMathOperator{\esssup}{ess\,sup
}
118 \DeclareMathOperator{\meas}{meas
}
119 \DeclareMathOperator{\seg}{seg
}
121 % \interval is used to provide better spacing after a [ that
122 % is used as a closing delimiter.
123 \newcommand{\interval}[1]{\mathinner{#1}}
125 % Notation for an expression evaluated at a particular condition. The
126 % optional argument can be used to override automatic sizing of the
127 % right vert bar, e.g. \eval[\biggr]{...}_{...}
128 \newcommand{\eval}[2][\right]{\relax
129 \ifx#1\right\relax \left.
\fi#2#1\rvert}
131 % Enclose the argument in vert-bar delimiters:
132 \newcommand{\envert}[1]{\left\lvert#1\right\rvert}
135 % Enclose the argument in double-vert-bar delimiters:
136 \newcommand{\enVert}[1]{\left\lVert#1\right\rVert}
141 \markboth{Sample paper for the
{\protect\ntt\lowercase{amsmath
}} package
}
142 {Sample paper for the
{\protect\ntt\lowercase{amsmath
}} package
}
143 \renewcommand{\sectionmark}[1]{}
145 \section{Introduction
}
147 This paper contains examples of various features from
\AmS-
\LaTeX{}.
149 \section{Enumeration of Hamiltonian paths in a graph
}
151 Let $
\mathbf{A
}=(a_
{ij
})$ be the adjacency matrix of graph $G$. The
152 corresponding Kirchhoff matrix $
\mathbf{K
}=(k_
{ij
})$ is obtained from
153 $
\mathbf{A
}$ by replacing in $-
\mathbf{A
}$ each diagonal entry by the
154 degree of its corresponding vertex; i.e., the $i$th diagonal entry is
155 identified with the degree of the $i$th vertex. It is well known that
157 \det\mathbf{K
}(i|i)=
\text{ the number of spanning trees of $G$
},
160 where $
\mathbf{K
}(i|i)$ is the $i$th principal submatrix of
163 \det\mathbf{K
}(i|i)=
\text{ the number of spanning trees of $G$
},
166 Let $C_
{i(j)
}$ be the set of graphs obtained from $G$ by attaching edge
167 $(v_iv_j)$ to each spanning tree of $G$. Denote by $C_i=
\bigcup_j
168 C_
{i(j)
}$. It is obvious that the collection of Hamiltonian cycles is a
169 subset of $C_i$. Note that the cardinality of $C_i$ is $k_
{ii
}\det
170 \mathbf{K
}(i|i)$. Let $
\wh X=\
{\hat x_1,
\dots,
\hat x_n\
}$.
172 $
\wh X=\
{\hat x_1,
\dots,
\hat x_n\
}$
174 Define multiplication for the elements of $
\wh X$ by
175 \begin{equation
}\label{multdef
}
176 \hat x_i
\hat x_j=
\hat x_j
\hat x_i,
\quad \hat x^
2_i=
0,
\quad
179 Let $
\hat k_
{ij
}=k_
{ij
}\hat x_j$ and $
\hat k_
{ij
}=-
\sum_{j
\not=i
} \hat
180 k_
{ij
}$. Then the number of Hamiltonian cycles $H_c$ is given by the
181 relation
\cite{liuchow:formalsum
}
182 \begin{equation
}\label{H-cycles
}
183 \biggl(
\prod^n_
{\,j=
1}\hat x_j
\biggr)H_c=
\frac{1}{2}\hat k_
{ij
}\det
184 \wh{\mathbf{K
}}(i|i),
\qquad i=
1,
\dots,n.
186 The task here is to express
\eqref{H-cycles
}
187 in a form free of any $
\hat x_i$,
188 $i=
1,
\dots,n$. The result also leads to the resolution of enumeration of
189 Hamiltonian paths in a graph.
191 It is well known that the enumeration of Hamiltonian cycles and paths in
192 a complete graph $K_n$ and in a complete bipartite graph $K_
{n_1n_2
}$
193 can only be found from
\textit{first combinatorial principles
}
194 \cite{hapa:graphenum
}. One wonders if there exists a formula which can
195 be used very efficiently to produce $K_n$ and $K_
{n_1n_2
}$. Recently,
196 using Lagrangian methods, Goulden and Jackson have shown that $H_c$ can
197 be expressed in terms of the determinant and permanent of the adjacency
198 matrix
\cite{gouja:lagrmeth
}. However, the formula of Goulden and
199 Jackson determines neither $K_n$ nor $K_
{n_1n_2
}$ effectively. In this
200 paper, using an algebraic method, we parametrize the adjacency matrix.
201 The resulting formula also involves the determinant and permanent, but
202 it can easily be applied to $K_n$ and $K_
{n_1n_2
}$. In addition, we
203 eliminate the permanent from $H_c$ and show that $H_c$ can be
204 represented by a determinantal function of multivariables, each variable
205 with domain $\
{0,
1\
}$. Furthermore, we show that $H_c$ can be written by
206 number of spanning trees of subgraphs. Finally, we apply the formulas to
207 a complete multigraph $K_
{n_1
\dots n_p
}$.
209 The conditions $a_
{ij
}=a_
{ji
}$, $i,j=
1,
\dots,n$, are not required in
210 this paper. All formulas can be extended to a digraph simply by
211 multiplying $H_c$ by
2.
213 \section{Main Theorem
}
216 \begin{notation
} For $p,q
\in P$ and $n
\in\omega$ we write
217 $(q,n)
\le(p,n)$ if $q
\le p$ and $A_
{q,n
}=A_
{p,n
}$.
219 \begin{notation
} For $p,q
\in P$ and $n
\in\omega$
225 Let $
\mathbf{B
}=(b_
{ij
})$ be an $n
\times n$ matrix. Let $
\mathbf{n
}=\
{1,
226 \dots,n\
}$. Using the properties of
\eqref{multdef
}, it is readily seen
229 \begin{lem
}\label{lem-per
}
231 \prod_{i
\in\mathbf{n
}}
232 \biggl(
\sum_{\,j
\in\mathbf{n
}}b_
{ij
}\hat x_i
\biggr)
233 =
\biggl(
\prod_{\,i
\in\mathbf{n
}}\hat x_i
\biggr)
\per \mathbf{B
}
235 where $
\per \mathbf{B
}$ is the permanent of $
\mathbf{B
}$.
238 Let $
\wh Y=\
{\hat y_1,
\dots,
\hat y_n\
}$. Define multiplication
239 for the elements of $
\wh Y$ by
241 \hat y_i
\hat y_j+
\hat y_j
\hat y_i=
0,
\quad i,j=
1,
\dots,n.
243 Then, it follows that
244 \begin{lem
}\label{lem-det
}
245 \begin{equation
}\label{detprod
}
246 \prod_{i
\in\mathbf{n
}}
247 \biggl(
\sum_{\,j
\in\mathbf{n
}}b_
{ij
}\hat y_j
\biggr)
248 =
\biggl(
\prod_{\,i
\in\mathbf{n
}}\hat y_i
\biggr)
\det\mathbf{B
}.
252 Note that all basic properties of determinants are direct consequences
253 of Lemma ~
\ref{lem-det
}. Write
254 \begin{equation
}\label{sum-bij
}
255 \sum_{j
\in\mathbf{n
}}b_
{ij
}\hat y_j=
\sum_{j
\in\mathbf{n
}}b^
{(
\lambda)
}
256 _
{ij
}\hat y_j+(b_
{ii
}-
\lambda_i)
\hat y_i
\hat y
260 b^
{(
\lambda)
}_
{ii
}=
\lambda_i,
\quad b^
{(
\lambda)
}_
{ij
}=b_
{ij
},
263 Let $
\mathbf{B
}^
{(
\lambda)
}=(b^
{(
\lambda)
}_
{ij
})$. By
\eqref{detprod
}
264 and
\eqref{sum-bij
}, it is
265 straightforward to show the following
267 \begin{thm
}\label{thm-main
}
268 \begin{equation
}\label{detB
}
270 \sum^n_
{l =
0}\sum_{I_l
\subseteq n
}
271 \prod_{i
\in I_l
}(b_
{ii
}-
\lambda_i)
272 \det\mathbf{B
}^
{(
\lambda)
}(I_l |I_l ),
274 where $I_l =\
{i_1,
\dots,i_l \
}$ and $
\mathbf{B
}^
{(
\lambda)
}(I_l |I_l )$
275 is the principal submatrix obtained from $
\mathbf{B
}^
{(
\lambda)
}$
276 by deleting its $i_1,
\dots,i_l $ rows and columns.
280 Let $
\mathbf{M
}$ be an $n
\times n$ matrix. The convention
281 $
\mathbf{M
}(
\mathbf{n
}|
\mathbf{n
})=
1$ has been used in
\eqref{detB
} and
285 Before proceeding with our discussion, we pause to note that
286 \thmref{thm-main
} yields immediately a fundamental formula which can be
287 used to compute the coefficients of a characteristic polynomial
288 \cite{mami:matrixth
}:
289 \begin{cor
}\label{BI
}
290 Write $
\det(
\mathbf{B
}-x
\mathbf{I
})=
\sum^n_
{l =
0}(-
1)
292 \begin{equation
}\label{bl-sum
}
293 b_l =
\sum_{I_l
\subseteq\mathbf{n
}}\det\mathbf{B
}(I_l |I_l ).
298 \mathbf{K
}(t,t_1,
\dots,t_n)
299 =
\begin{pmatrix
} D_1t&-a_
{12}t_2&
\dots&-a_
{1n
}t_n\\
300 -a_
{21}t_1&D_2t&
\dots&-a_
{2n
}t_n\\
302 -a_
{n1
}t_1&-a_
{n2
}t_2&
\dots&D_nt
\end{pmatrix
},
305 \begin{pmatrix
} D_1t&-a_
{12}t_2&
\dots&-a_
{1n
}t_n\\
306 -a_
{21}t_1&D_2t&
\dots&-a_
{2n
}t_n\\
308 -a_
{n1
}t_1&-a_
{n2
}t_2&
\dots&D_nt
\end{pmatrix
}
312 D_i=
\sum_{j
\in\mathbf{n
}}a_
{ij
}t_j,
\quad i=
1,
\dots,n.
317 D(t_1,
\dots,t_n)=
\frac{\delta}{\delta t
}\eval{\det\mathbf{K
}(t,t_1,
\dots,t_n)
321 \begin{equation
}\label{sum-Di
}
323 =
\sum_{i
\in\mathbf{n
}}D_i
\det\mathbf{K
}(t=
1,t_1,
\dots,t_n; i|i),
325 where $
\mathbf{K
}(t=
1,t_1,
\dots,t_n; i|i)$ is the $i$th principal
326 submatrix of $
\mathbf{K
}(t=
1,t_1,
\dots,t_n)$.
328 Theorem ~
\ref{thm-main
} leads to
329 \begin{equation
}\label{detK1
}
330 \det\mathbf{K
}(t_1,t_1,
\dots,t_n)
331 =
\sum_{I
\in\mathbf{n
}}(-
1)^
{\envert{I
}}t^
{n-
\envert{I
}}
332 \prod_{i
\in I
}t_i
\prod_{j
\in I
}(D_j+
\lambda_jt_j)
\det\mathbf{A
}
333 ^
{(
\lambda t)
}(
\overline{I
}|
\overline I).
336 \begin{equation
}\label{detK2
}
337 \det\mathbf{K
}(t=
1,t_1,
\dots,t_n)=
\sum_{I
\in\mathbf{n
}}(-
1)^
{\envert{I
}}
338 \prod_{i
\in I
}t_i
\prod_{j
\in I
}(D_j+
\lambda_jt_j)
\det\mathbf{A
}
339 ^
{(
\lambda)
}(
\overline{I
}|
\overline{I
})=
0.
342 Let $t_i=
\hat x_i,i=
1,
\dots,n$. Lemma ~
\ref{lem-per
} yields
344 \biggl(
\sum_{\,i
\in\mathbf{n
}}a_
{l _i
}x_i
\biggr)
345 \det\mathbf{K
}(t=
1,x_1,
\dots,x_n;l |l )\\
346 =
\biggl(
\prod_{\,i
\in\mathbf{n
}}\hat x_i
\biggr)
347 \sum_{I
\subseteq\mathbf{n
}-\
{l \
}}
348 (-
1)^
{\envert{I
}}\per\mathbf{A
}^
{(
\lambda)
}(I|I)
349 \det\mathbf{A
}^
{(
\lambda)
}
350 (
\overline I
\cup\
{l \
}|
\overline I
\cup\
{l \
}).
355 \biggl(
\sum_{\,i
\in\mathbf{n
}}a_
{l _i
}x_i
\biggr)
356 \det\mathbf{K
}(t=
1,x_1,
\dots,x_n;l |l )\\
357 =
\biggl(
\prod_{\,i
\in\mathbf{n
}}\hat x_i
\biggr)
358 \sum_{I
\subseteq\mathbf{n
}-\
{l \
}}
359 (-
1)^
{\envert{I
}}\per\mathbf{A
}^
{(
\lambda)
}(I|I)
360 \det\mathbf{A
}^
{(
\lambda)
}
361 (
\overline I
\cup\
{l \
}|
\overline I
\cup\
{l \
}).
366 By
\eqref{H-cycles
},
\eqref{detprod
}, and
\eqref{sum-bij
}, we have
367 \begin{prop
}\label{prop:eg
}
369 H_c=
\frac1{2n
}\sum^n_
{l =
0}(-
1)^
{l
}
373 \begin{equation
}\label{delta-l
}
374 D_
{l
}=
\eval[2]{\sum_{I_
{l
}\subseteq \mathbf{n
}}
375 D(t_1,
\dots,t_n)
}_
{t_i=
\left\
{\begin{smallmatrix
}
376 0,&
\text{if
}i
\in I_
{l
}\quad\\%
\quad added for centering
377 1,&
\text{otherwise
}\end{smallmatrix
}\right.\;,\;\; i=
1,
\dots,n
}.
381 \section{Application
}
384 We consider here the applications of Theorems~
\ref{th-info-ow-ow
} and
385 ~
\ref{th-weak-ske-owf
} to a complete
386 multipartite graph $K_
{n_1
\dots n_p
}$. It can be shown that the
387 number of spanning trees of $K_
{n_1
\dots n_p
}$
389 \begin{equation
}\label{e:st
}
390 T=n^
{p-
2}\prod^p_
{i=
1}
398 It follows from Theorems~
\ref{th-info-ow-ow
} and
399 ~
\ref{th-weak-ske-owf
} that
400 \begin{equation
}\label{e:barwq
}
403 \sum^n_
{{l
}=
0}(-
1)^
{l
}(n-
{l
})^
{p-
2}
404 \sum_{l _1+
\dots+l _p=l
}\prod^p_
{i=
1}
406 &
\quad\cdot[(n-l )-(n_i-l _i)
]^
{n_i-l _i
}\cdot
407 \biggl[(n-l )^
2-
\sum^p_
{j=
1}(n_i-l _i)^
2\biggr].
\end{split
}
410 ...
\binom{n_i
}{l _i
}\\
413 \begin{equation
}\label{joe
}
415 H_c&=
\frac12\sum^
{n-
1}_
{l =
0}
417 \sum_{l _1+
\dots+l _p=l
}
418 \prod^p_
{i=
1}\binom{n_i
}{l _i
}\\
419 &
\quad\cdot[(n-l )-(n_i-l _i)
]^
{n_i-l _i
}
420 \left(
1-
\frac{l _p
}{n_p
}\right)
425 The enumeration of $H_c$ in a $K_
{n_1
\dotsm n_p
}$ graph can also be
426 carried out by Theorem ~
\ref{thm-H-param
} or ~
\ref{thm-asym
}
427 together with the algebraic method of
\eqref{multdef
}.
428 Some elegant representations may be obtained. For example, $H_c$ in
429 a $K_
{n_1n_2n_3
}$ graph may be written
430 \begin{equation
}\label{j:mark
}
433 \frac{n_1!\,n_2!\,n_3!
}
434 {n_1+n_2+n_3
}\sum_i\left[\binom{n_1
}{i
}
435 \binom{n_2
}{n_3-n_1+i
}\binom{n_3
}{n_3-n_2+i
}\right.\\
436 &+
\left.
\binom{n_1-
1}{i
}
437 \binom{n_2-
1}{n_3-n_1+i
}
438 \binom{n_3-
1}{n_3-n_2+i
}\right].
\end{split
}
441 \section{Secret Key Exchanges
}
444 Modern cryptography is fundamentally concerned with the problem of
445 secure private communication. A Secret Key Exchange is a protocol
446 where Alice and Bob, having no secret information in common to start,
447 are able to agree on a common secret key, conversing over a public
448 channel. The notion of a Secret Key Exchange protocol was first
449 introduced in the seminal paper of Diffie and Hellman
450 \cite{dihe:newdir
}.
\cite{dihe:newdir
} presented a concrete
451 implementation of a Secret Key Exchange protocol, dependent on a
452 specific assumption (a variant on the discrete log), specially
453 tailored to yield Secret Key Exchange. Secret Key Exchange is of
454 course trivial if trapdoor permutations exist. However, there is no
455 known implementation based on a weaker general assumption.
457 The concept of an informationally one-way function was introduced
458 in
\cite{imlelu:oneway
}. We give only an informal definition here:
460 \begin{defn
} A polynomial time
461 computable function $f = \
{f_k\
}$ is informationally
462 one-way if there is no probabilistic polynomial time algorithm which
463 (with probability of the form $
1 - k^
{-e
}$ for some $e >
0$)
464 returns on input $y
\in \
{0,
1\
}^
{k
}$ a random element of $f^
{-
1}(y)$.
466 In the non-uniform setting
\cite{imlelu:oneway
} show that these are not
467 weaker than one-way functions:
468 \begin{thm
}[\cite{imlelu:oneway
} (non-uniform)
]
469 \label{th-info-ow-ow
}
470 The existence of informationally one-way functions
471 implies the existence of one-way functions.
473 We will stick to the convention introduced above of saying
474 ``non-uniform'' before the theorem statement when the theorem
475 makes use of non-uniformity. It should be understood that
476 if nothing is said then the result holds for both the uniform and
477 the non-uniform models.
479 It now follows from
\thmref{th-info-ow-ow
} that
481 \begin{thm
}[non-uniform
]\label{th-weak-ske-owf
} Weak SKE
482 implies the existence of a one-way function.
485 More recently, the polynomial-time, interior point algorithms for linear
486 programming have been extended to the case of convex quadratic programs
487 \cite{moad:quadpro,ye:intalg
}, certain linear complementarity problems
488 \cite{komiyo:lincomp,miyoki:lincomp
}, and the nonlinear complementarity
489 problem
\cite{komiyo:unipfunc
}. The connection between these algorithms
490 and the classical Newton method for nonlinear equations is well
491 explained in
\cite{komiyo:lincomp
}.
496 We begin our discussion with the following definition:
500 A function $H
\colon \Re^n
\to \Re^n$ is said to be
501 \emph{B-differentiable
} at the point $z$ if (i)~$H$ is Lipschitz
502 continuous in a neighborhood of $z$, and (ii)~ there exists a positive
503 homogeneous function $BH(z)
\colon \Re^n
\to \Re^n$, called the
504 \emph{B-derivative
} of $H$ at $z$, such that
505 \
[ \lim_{v
\to 0} \frac{H(z+v) - H(z) - BH(z)v
}{\enVert{v
}} =
0. \
]
506 The function $H$ is
\textit{B-differentiable in set $S$
} if it is
507 B-differentiable at every point in $S$. The B-derivative $BH(z)$ is said
508 to be
\textit{strong
} if
509 \
[ \lim_{(v,v')
\to (
0,
0)
} \frac{H(z+v) - H(z+v') - BH(z)(v
510 -v')
}{\enVert{v - v'
}} =
0. \
]
514 \begin{lem
}\label{limbog
} There exists a smooth function $
\psi_0(z)$
515 defined for $
\abs{z
}>
1-
2a$ satisfying the following properties
\textup{:
}
517 \renewcommand{\labelenumi}{(
\roman{enumi
})
}
518 \item $
\psi_0(z)$ is bounded above and below by positive constants
519 $c_1
\leq \psi_0(z)
\leq c_2$.
520 \item If $
\abs{z
}>
1$, then $
\psi_0(z)=
1$.
521 \item For all $z$ in the domain of $
\psi_0$, $
\Delta_0\ln \psi_0\geq 0$.
522 \item If $
1-
2a<
\abs{z
}<
1-a$, then $
\Delta_0\ln \psi_0\geq
528 We choose $
\psi_0(z)$ to be a radial function depending only on $r=
\abs{z
}$.
529 Let $h(r)
\geq 0$ be a suitable smooth function satisfying $h(r)
\geq c_3$
530 for $
1-
2a<
\abs{z
}<
1-a$, and $h(r)=
0$ for $
\abs{z
}>
1-
\tfrac a2$. The radial
532 \
[\Delta_0\ln\psi_0(r)=
\left(
\frac {d^
2}{dr^
2}+
\frac
533 1r
\frac d
{dr
}\right)
\ln\psi_0(r)\
]
534 has smooth coefficients for $r>
1-
2a$. Therefore, we may
535 apply the existence and uniqueness theory for ordinary differential
536 equations. Simply let $
\ln \psi_0(r)$ be the solution of the differential
538 \
[\left(
\frac{d^
2}{dr^
2}+
\frac 1r
\frac d
{dr
}\right)
\ln \psi_0(r)=h(r)\
]
539 with initial conditions given by $
\ln \psi_0(
1)=
0$ and
542 Next, let $D_
\nu$ be a finite collection of pairwise disjoint disks,
543 all of which are contained in the unit disk centered at the origin in
544 $C$. We assume that $D_
\nu=\
{z
\mid \abs{z-z_
\nu}<
\delta\
}$. Suppose that
545 $D_
\nu(a)$ denotes the smaller concentric disk $D_
\nu(a)=\
{z
\mid
546 \abs{z-z_
\nu}\leq (
1-
2a)
\delta\
}$. We define a smooth weight function
547 $
\Phi_0(z)$ for $z
\in C-
\bigcup_\nu D_
\nu(a)$ by setting $
\Phi_
548 0(z)=
1$ when $z
\notin \bigcup_\nu D_
\nu$ and $
\Phi_
549 0(z)=
\psi_0((z-z_
\nu)/
\delta)$ when $z$ is an element of $D_
\nu$. It
550 follows from
\lemref{limbog
} that $
\Phi_ 0$ satisfies the properties:
552 \renewcommand{\labelenumi}{(
\roman{enumi
})
}
553 \item \label{boundab
}$
\Phi_ 0(z)$ is bounded above and below by
554 positive constants $c_1
\leq \Phi_ 0(z)
\leq c_2$.
555 \item \label{d:over
}$
\Delta_0\ln\Phi_ 0\geq 0$ for all
556 $z
\in C-
\bigcup_\nu D_
\nu(a)$,
557 the domain where the function $
\Phi_ 0$ is defined.
558 \item \label{d:ad
}$
\Delta_0\ln\Phi_ 0\geq c_3
\delta^
{-
2}$
559 when $(
1-
2a)
\delta<
\abs{z-z_
\nu}<(
1-a)
\delta$.
561 Let $A_
\nu$ denote the annulus $A_
\nu=\
{(
1-
2a)
\delta<
\abs{z-z_
\nu}<(
1-a)
562 \delta \
}$, and set $A=
\bigcup_\nu A_
\nu$. The
563 properties (
\ref{d:over
}) and (
\ref{d:ad
}) of $
\Phi_ 0$
564 may be summarized as $
\Delta_0\ln \Phi_ 0\geq c_3
\delta^
{-
2}\chi_A$,
565 where $
\chi _A$ is the characteristic function of $A$.
568 Suppose that $
\alpha$ is a nonnegative real constant. We apply
569 Proposition~
\ref{prop:eg
} with $
\Phi(z)=
\Phi_ 0(z) e^
{\alpha\abs{z
}^
2}$. If
570 $u
\in C^
\infty_0(R^
2-
\bigcup_\nu D_
\nu(a))$, assume that $
\mathcal{D
}$
571 is a bounded domain containing the support of $u$ and $A
\subset
572 \mathcal{D
}\subset R^
2-
\bigcup_\nu D_
\nu(a)$. A calculation gives
573 \
[\int_{\mathcal{D
}}\abs{\overline\partial u
}^
2\Phi_ 0(z) e^
{\alpha\abs{z
}^
2}
574 \geq c_4
\alpha\int_{\mathcal{D
}}\abs{u
}^
2\Phi_ 0e^
{\alpha\abs{z
}^
2}
575 +c_5
\delta^
{-
2}\int_ A
\abs{u
}^
2\Phi_ 0e^
{\alpha\abs{z
}^
2}.\
]
577 The boundedness, property (
\ref{boundab
}) of $
\Phi_ 0$, then yields
578 \
[\int_{\mathcal{D
}}\abs{\overline\partial u
}^
2e^
{\alpha\abs{z
}^
2}\geq c_6
\alpha
579 \int_{\mathcal{D
}}\abs{u
}^
2e^
{\alpha\abs{z
}^
2}
580 +c_7
\delta^
{-
2}\int_ A
\abs{u
}^
2e^
{\alpha\abs{z
}^
2}.\
]
582 Let $B(X)$ be the set of blocks of $
\Lambda_{X
}$
583 and let $b(X) =
\abs{B(X)
}$. If $
\phi \in Q_
{X
}$ then
584 $
\phi$ is constant on the blocks of $
\Lambda_{X
}$.
585 \begin{equation
}\label{far-d
}
586 P_
{X
} = \
{ \phi \in M
\mid \Lambda_{\phi} =
\Lambda_{X
} \
},
588 Q_
{X
} = \
{\phi \in M
\mid \Lambda_{\phi} \geq \Lambda_{X
} \
}.
590 If $
\Lambda_{\phi} \geq \Lambda_{X
}$ then
591 $
\Lambda_{\phi} =
\Lambda_{Y
}$ for some $Y
\geq X$ so that
592 \
[ Q_
{X
} =
\bigcup_{Y
\geq X
} P_
{Y
}. \
]
593 Thus by M\"obius inversion
594 \
[ \abs{P_
{Y
}}=
\sum_{X
\geq Y
} \mu (Y,X)
\abs{Q_
{X
}}.\
]
595 Thus there is a bijection from $Q_
{X
}$ to $W^
{B(X)
}$.
596 In particular $
\abs{Q_
{X
}} = w^
{b(X)
}$.
598 Next note that $b(X)=
\dim X$. We see this by choosing a
599 basis for $X$ consisting of vectors $v^
{k
}$ defined by
601 \begin{cases
} 1 &
\text{if $i
\in \Lambda_{k
}$
},\\
602 0 &
\text{otherwise.
} \end{cases
}
606 \begin{cases
} 1 &
\text{if $i
\in \Lambda_{k
}$
},\\
607 0 &
\text{otherwise.
} \end{cases
}
611 \begin{lem
}\label{p0201
}
612 Let $
\A$ be an arrangement. Then
613 \
[ \chi (
\A,t) =
\sum_{\B \subseteq \A}
614 (-
1)^
{\abs{\B}} t^
{\dim T(
\B)
}. \
]
617 In order to compute $R''$ recall the definition
618 of $S(X,Y)$ from
\lemref{lem-per
}. Since $H
\in \B$,
619 $
\A_{H
} \subseteq \B$. Thus if $T(
\B) = Y$ then
620 $
\B \in S(H,Y)$. Let $L'' = L(
\A'')$. Then
621 \begin{equation
}\label{E_SXgYy
}
623 R''&=
\sum_{H
\in \B \subseteq \A} (-
1)^
{\abs{\B}}
625 &=
\sum_{Y
\in L''
} \sum_{\B \in S(H,Y)
}
626 (-
1)^
{\abs{\B}}t^
{\dim Y
} \\
627 &= -
\sum_{Y
\in L''
} \sum_{\B \in S(H,Y)
} (-
1)^
628 {\abs{\B -
\A_{H
}}} t^
{\dim Y
} \\
629 &= -
\sum_{Y
\in L''
} \mu (H,Y)t^
{\dim Y
} \\
634 \begin{cor
}\label{tripleA
}
635 Let $(
\A,
\A',
\A'')$ be a triple of arrangements. Then
636 \
[ \pi (
\A,t) =
\pi (
\A',t) + t
\pi (
\A'',t). \
]
640 Let $(
\A,
\A',
\A'')$ be a triple with respect to
641 the hyperplane $H
\in \A$. Call $H$ a
\textit{separator
}
642 if $T(
\A)
\not\in L(
\A')$.
645 \begin{cor
}\label{nsep
}
646 Let $(
\A,
\A',
\A'')$ be a triple with respect to $H
\in \A$.
648 \renewcommand{\labelenumi}{(
\roman{enumi
})
}
650 If $H$ is a separator then
651 \
[ \mu (
\A) = -
\mu (
\A'') \
]
653 \
[ \abs{\mu (
\A)
} =
\abs{ \mu (
\A'')
}. \
]
655 \item If $H$ is not a separator then
656 \
[\mu (
\A) =
\mu (
\A') -
\mu (
\A'') \
]
658 \
[ \abs{\mu (
\A)
} =
\abs{\mu (
\A')
} +
\abs{\mu (
\A'')
}. \
]
663 It follows from
\thmref{th-info-ow-ow
} that $
\pi(
\A,t)$
665 \
[(-
1)^
{r(
\A)
}\mu (
\A)t^
{r(
\A)
}.\
]
667 follows by comparing coefficients of the leading
668 terms on both sides of the equation in
669 Corollary~
\ref{tripleA
}. If $H$ is a separator then
670 $r(
\A') < r(
\A)$ and there is no contribution
674 The Poincar\'e polynomial of an arrangement
675 will appear repeatedly
676 in these notes. It will be shown to equal the
677 Poincar\'e polynomial
678 of the graded algebras which we are going to
679 associate with $
\A$. It is also the Poincar\'e
680 polynomial of the complement $M(
\A)$ for a
681 complex arrangement. Here we prove
682 that the Poincar\'e polynomial is the chamber
683 counting function for a real arrangement. The
684 complement $M(
\A)$ is a disjoint union of chambers
685 \
[M(
\A) =
\bigcup_{C
\in \Cham(
\A)
} C.\
]
687 of chambers is determined by the Poincar\'e
688 polynomial as follows.
690 \begin{thm
}\label{th-realarr
}
691 Let $
\A_{\mathbf{R
}}$ be a real arrangement. Then
692 \
[ \abs{\Cham(
\A_{\mathbf{R
}})
} =
\pi (
\A_{\mathbf{R
}},
1). \
]
696 We check the properties required in Corollary~
\ref{nsep
}:
697 (i) follows from $
\pi (
\Phi_{ l
},t) =
1$, and (ii) is a
698 consequence of Corollary~
\ref{BI
}.
703 \caption[]{$Q(
\A_{1}) = xyz(x-z)(x+z)(y-z)(y+z)$
}
708 \caption[]{$Q(
\A_{2})= xyz(x+y+z)(x+y-z)(x-y+z)(x-y-z)$
}
713 \label{T_first_the_int
}
714 Let $
\phi$ be a protocol for a random pair $
\XcY$.
715 If one of $
\st_\phi(x',y)$ and $
\st_\phi(x,y')$ is a prefix of the other
716 and $(x,y)
\in\SXY$, then
718 \langle \st_j(x',y)
\rangle_{j=
1}^
\infty
719 =
\langle \st_j(x,y)
\rangle_{j=
1}^
\infty
720 =
\langle \st_j(x,y')
\rangle_{j=
1}^
\infty .
724 We show by induction on $i$ that
726 \langle \st_j(x',y)
\rangle_{j=
1}^i
727 =
\langle \st_j(x,y)
\rangle_{j=
1}^i
728 =
\langle \st_j(x,y')
\rangle_{j=
1}^i.
730 The induction hypothesis holds vacuously for $i=
0$. Assume it holds for
732 $
[\st_j(x',y)
]_
{j=
1}^
{i-
1}=
[\st_j(x,y')
]_
{j=
1}^
{i-
1}$. Then one of
733 $
[\st_j(x',y)
]_
{j=i
}^
{\infty}$ and $
[\st_j(x,y')
]_
{j=i
}^
{\infty}$ is a
734 prefix of the other which implies that one of $
\st_i(x',y)$ and
735 $
\st_i(x,y')$ is a prefix of the other. If the $i$th message is
736 transmitted by $P_
\X$ then, by the separate-transmissions property and
737 the induction hypothesis, $
\st_i(x,y)=
\st_i(x,y')$, hence one of
738 $
\st_i(x,y)$ and $
\st_i(x',y)$ is a prefix of the other. By the
739 implicit-termination property, neither $
\st_i(x,y)$ nor $
\st_i(x',y)$
740 can be a proper prefix of the other, hence they must be the same and
741 $
\st_i(x',y)=
\st_i(x,y)=
\st_i(x,y')$. If the $i$th message is
742 transmitted by $
\PY$ then, symmetrically, $
\st_i(x,y)=
\st_i(x',y)$ by
743 the induction hypothesis and the separate-transmissions property, and,
744 then, $
\st_i(x,y)=
\st_i(x,y')$ by the implicit-termination property,
745 proving the induction step.
748 If $
\phi$ is a protocol for $(X,Y)$, and $(x,y)$, $(x',y)$ are distinct
749 inputs in $
\SXY$, then, by the correct-decision property,
750 $
\langle\st_j(x,y)
\rangle_{j=
1}^
\infty\ne\langle
751 \st_j(x',y)
\rangle_{j=
1}^
\infty$.
753 Equation~(
\ref{E_SXgYy
}) defined $
\PY$'s ambiguity set $
\SXgYy$
754 to be the set of possible $X$ values when $Y=y$.
755 The last corollary implies that for all $y
\in\SY$,
757 \footnote{A multiset allows multiplicity of elements.
758 Hence, $\
{0,
01,
01\
}$ is prefix free as a set, but not as a multiset.
}
759 of codewords $\
{\st_\phi(x,y):x
\in\SXgYy\
}$ is prefix free.
761 \section{One-Way Complexity
}
764 $
\Cw1$, the one-way complexity of a random pair $
\XcY$,
765 is the number of bits $P_
\X$ must transmit in the worst case
766 when $
\PY$ is not permitted to transmit any feedback messages.
767 Starting with $
\SXY$, the support set of $
\XcY$, we define $
\G$,
768 the
\textit{characteristic hypergraph
} of $
\XcY$, and show that
770 \Cw1=
\lceil\,
\log\chi(
\G)
\rceil\ .
773 Let $
\XcY$ be a random pair. For each $y$ in $
\SY$, the support set of
774 $Y$, Equation~(
\ref{E_SXgYy
}) defined $
\SXgYy$ to be the set of possible
775 $x$ values when $Y=y$. The
\textit{characteristic hypergraph
} $
\G$ of
776 $
\XcY$ has $
\SX$ as its vertex set and the hyperedge $
\SXgYy$ for each
780 We can now prove a continuity theorem.
781 \begin{thm
}\label{t:conl
}
782 Let $
\Omega \subset\mathbf{R
}^n$ be an open set, let
783 $u
\in BV(
\Omega ;
\mathbf{R
}^m)$, and let
784 \begin{equation
}\label{quts
}
785 T^u_x=
\left\
{y
\in\mathbf{R
}^m:
786 y=
\tilde u(x)+
\left\langle \frac{Du
}{\abs{Du
}}(x),z
787 \right\rangle \text{ for some
}z
\in\mathbf{R
}^n
\right\
}
789 for every $x
\in\Omega \backslash S_u$. Let $f
\colon \mathbf{R
}^m
\to
790 \mathbf{R
}^k$ be a Lipschitz continuous function such that $f(
0)=
0$, and
791 let $v=f(u)
\colon \Omega \to \mathbf{R
}^k$. Then $v
\in BV(
\Omega
794 Jv=
\eval{(f(u^+)-f(u^-))
\otimes \nu_u\cdot\,
795 \mathcal{H
}_
{n-
1}}_
{S_u
}.
797 In addition, for $
\abs{\wt{D
}u
}$-almost every $x
\in\Omega $ the
798 restriction of the function $f$ to $T^u_x$ is differentiable at $
\tilde
801 \wt{D
}v=
\nabla (
\eval{f
}_
{T^u_x
})(
\tilde u)
802 \frac{\wt{D
}u
}{\abs{\wt{D
}u
}}\cdot\abs{\wt{D
}u
}.
\end{equation
}
805 Before proving the theorem, we state without proof three elementary
806 remarks which will be useful in the sequel.
807 \begin{rem
}\label{r:omb
}
808 Let $
\omega\colon \left]0,+
\infty\right[\to \left]0,+
\infty\right[$
809 be a continuous function such that $
\omega (t)
\to 0$ as $t
\to
811 \
[\lim_{h
\to 0^+
}g(
\omega(h))=L
\Leftrightarrow\lim_{h
\to
813 for any function $g
\colon \left]0,+
\infty\right[\to \mathbf{R
}$.
815 \begin{rem
}\label{r:dif
}
816 Let $g
\colon \mathbf{R
}^n
\to \mathbf{R
}$ be a Lipschitz
817 continuous function and assume that
818 \
[L(z)=
\lim_{h
\to 0^+
}\frac{g(hz)-g(
0)
}h\
]
819 exists for every $z
\in\mathbf{Q
}^n$ and that $L$ is a linear function of
820 $z$. Then $g$ is differentiable at
0.
822 \begin{rem
}\label{r:dif0
}
823 Let $A
\colon \mathbf{R
}^n
\to \mathbf{R
}^m$ be a linear function, and
824 let $f
\colon \mathbf{R
}^m
\to \mathbf{R
}$ be a function. Then the
825 restriction of $f$ to the range of $A$ is differentiable at
0 if and
826 only if $f(A)
\colon \mathbf{R
}^n
\to \mathbf{R
}$ is differentiable at
0
828 \
[\nabla(
\eval{f
}_
{\IM(A)
})(
0)A=
\nabla (f(A))(
0).\
]
832 We begin by showing that $v
\in BV(
\Omega;
\mathbf{R
}^k)$ and
833 \begin{equation
}\label{e:bomb
}
834 \abs{Dv
}(B)
\le K
\abs{Du
}(B)
\qquad\forall B
\in\mathbf{B
}(
\Omega ),
836 where $K>
0$ is the Lipschitz constant of $f$. By
\eqref{sum-Di
} and by
837 the approximation result quoted in
\secref{s:mt
}, it is possible to find
838 a sequence $(u_h)
\subset C^
1(
\Omega ;
\mathbf{R
}^m)$ converging to $u$ in
839 $L^
1(
\Omega ;
\mathbf{R
}^m)$ and such that
840 \
[\lim_{h
\to +
\infty}\int_\Omega \abs{\nabla u_h
}\,dx=
\abs{Du
}(
\Omega ).\
]
841 The functions $v_h=f(u_h)$ are locally Lipschitz continuous in $
\Omega
842 $, and the definition of differential implies that $
\abs{\nabla v_h
}\le
843 K
\abs{\nabla u_h
}$ almost everywhere in $
\Omega $. The lower semicontinuity
844 of the total variation and
\eqref{sum-Di
} yield
847 \abs{Dv
}(
\Omega )
\le\liminf_{h
\to +
\infty}\abs{Dv_h
}(
\Omega) &
848 =
\liminf_{h
\to +
\infty}\int_\Omega \abs{\nabla v_h
}\,dx\\
849 &
\le K
\liminf_{h
\to +
\infty}\int_\Omega
850 \abs{\nabla u_h
}\,dx=K
\abs{Du
}(
\Omega).
851 \end{split
}\end{equation
}
852 Since $f(
0)=
0$, we have also
853 \
[\int_\Omega \abs{v
}\,dx
\le K
\int_\Omega \abs{u
}\,dx;\
]
854 therefore $u
\in BV(
\Omega ;
\mathbf{R
}^k)$. Repeating the same argument
855 for every open set $A
\subset\Omega $, we get
\eqref{e:bomb
} for every
856 $B
\in\mathbf{B
}(
\Omega)$, because $
\abs{Dv
}$, $
\abs{Du
}$ are Radon measures. To
857 prove
\lemref{limbog
}, first we observe that
858 \begin{equation
}\label{e:SS
}
859 S_v
\subset S_u,
\qquad\tilde v(x)=f(
\tilde u(x))
\qquad \forall x
\in\Omega
860 \backslash S_u.
\end{equation
}
861 In fact, for every $
\varepsilon >
0$ we have
862 \
[\
{y
\in B_
\rho(x):
\abs{v(y)-f(
\tilde u(x))
}>
\varepsilon \
}\subset \
{y
\in
863 B_
\rho(x):
\abs{u(y)-
\tilde u(x)
}>
\varepsilon /K\
},\
]
865 \
[\lim_{\rho\to 0^+
}\frac{\abs{\
{y
\in B_
\rho(x):
\abs{v(y)-f(
\tilde u(x))
}>
866 \varepsilon \
}}}{\rho^n
}=
0\
]
867 whenever $x
\in\Omega \backslash S_u$. By a similar argument, if $x
\in
868 S_u$ is a point such that there exists a triplet $(u^+,u^-,
\nu_u)$
869 satisfying
\eqref{detK1
},
\eqref{detK2
}, then
871 (v^+(x)-v^-(x))
\otimes \nu_v=(f(u^+(x))-f(u^-(x)))
\otimes\nu_u\quad
874 and $f(u^-(x))=f(u^+(x))$ if $x
\in S_u
\backslash S_v$. Hence, by (
1.8)
876 \begin{equation*
}\begin{split
}
877 Jv(B)=
\int_{B
\cap S_v
}(v^+-v^-)
\otimes \nu_v\,d
\mathcal{H
}_
{n-
1}&=
878 \int_{B
\cap S_v
}(f(u^+)-f(u^-))
\otimes \nu_u\,d
\mathcal{H
}_
{n-
1}\\
879 &=
\int_{B
\cap S_u
}(f(u^+)-f(u^-))
\otimes \nu_u\,d
\mathcal{H
}_
{n-
1}
880 \end{split
}\end{equation*
}
881 and
\lemref{limbog
} is proved.
884 To prove
\eqref{e:SS
}, it is not restrictive to assume that $k=
1$.
885 Moreover, to simplify our notation, from now on we shall assume that
886 $
\Omega =
\mathbf{R
}^n$. The proof of
\eqref{e:SS
} is divided into two
887 steps. In the first step we prove the statement in the one-dimensional
888 case $(n=
1)$, using
\thmref{th-weak-ske-owf
}. In the second step we
889 achieve the general result using
\thmref{t:conl
}.
892 Assume that $n=
1$. Since $S_u$ is at most countable,
\eqref{sum-bij
}
893 yields that $
\abs{\wt{D
}v
}(S_u
\backslash S_v)=
0$, so that
894 \eqref{e:st
} and
\eqref{e:barwq
} imply that $Dv=
\wt{D
}v+Jv$ is
895 the Radon-Nikod\'ym decomposition of $Dv$ in absolutely continuous and
896 singular part with respect to $
\abs{\wt{D
} u
}$. By
897 \thmref{th-weak-ske-owf
}, we have
899 \frac{\wt{D
}v
}{\abs{\wt{D
}u
}}(t)=
\lim_{s
\to t^+
}
900 \frac{Dv(
\interval{\left[t,s
\right[})
}
901 {\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
},
\qquad
902 \frac{\wt{D
}u
}{\abs{\wt{D
}u
}}(t)=
\lim_{s
\to t^+
}
903 \frac{Du(
\interval{\left[t,s
\right[})
}
904 {\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
}
906 $
\abs{\wt{D
}u
}$-almost everywhere in $
\mathbf{R
}$. It is well known
907 (see, for instance,
\cite[2.5.16]{ste:sint
}) that every one-dimensional
908 function of bounded variation $w$ has a unique left continuous
909 representative, i.e., a function $
\hat w$ such that $
\hat w=w$ almost
910 everywhere and $
\lim_{s
\to t^-
}\hat w(s)=
\hat w(t)$ for every $t
\in
911 \mathbf{R
}$. These conditions imply
913 \hat u(t)=Du(
\interval{\left]-
\infty,t
\right[}),
914 \qquad \hat v(t)=Dv(
\interval{\left]-
\infty,t
\right[})
\qquad
915 \forall t
\in\mathbf{R
}
918 \begin{equation
}\label{alimo
}
919 \hat v(t)=f(
\hat u(t))
\qquad\forall t
\in\mathbf{R
}.
\end{equation
}
920 Let $t
\in\mathbf{R
}$ be such that
921 $
\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})>
0$ for every $s>t$ and
922 assume that the limits in
\eqref{joe
} exist. By
\eqref{j:mark
} and
924 \begin{equation*
}\begin{split
}
926 v(t)
}{\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
}&=
\frac {f(
\hat
927 u(s))-f(
\hat u(t))
}{\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
}\\
928 &=
\frac{f(
\hat u(s))-f(
\hat
929 u(t)+
\dfrac{\wt{D
}u
}{\abs{\wt{D
}u
}}(t)
\abs{\wt{D
}u
930 }(
\interval{\left[t,s
\right[}))
}%
931 {\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
}\\
933 {f(
\hat u(t)+
\dfrac{\wt{D
}u
}{\abs{\wt{D
}u
}}(t)
\abs{\wt{D
}
934 u
}(
\interval{\left[t,s
\right[}))-f(
\hat
935 u(t))
}{\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
}
936 \end{split
}\end{equation*
}
937 for every $s>t$. Using the Lipschitz condition on $f$ we find
938 {\setlength{\multlinegap}{0pt
}
940 \left\lvert\frac{\hat v(s)-
\hat
941 v(t)
}{\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
} -
\frac{f(
\hat
942 u(t)+
\dfrac{\wt{D
}u
}{\abs{\wt{D
}u
}}(t)
943 \abs{\wt{D
}u
}(
\interval{\left[t,s
\right[}))-f(
\hat
944 u(t))
}{\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
}\right\rvert\\
946 \frac{\hat u(s)-
\hat u(t)
}
947 {\abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})
}
948 -
\frac{\wt{D
}u
}{\abs{
949 \wt{D
}u
}}(t)
\right\rvert.
\end{multline*
}
950 }% end of group with \multlinegap=0pt
951 By
\eqref{e:bomb
}, the function $s
\to
952 \abs{\wt{D
}u
}(
\interval{\left[t,s
\right[})$ is continuous and
953 converges to
0 as $s
\downarrow t$. Therefore Remark~
\ref{r:omb
} and the
954 previous inequality imply
955 \
[\frac{\wt{D
}v
}{\abs{\wt{D
}u
}}(t)=
\lim_{h
\to 0^+
}
956 \frac{f(
\hat u(t)+h
\dfrac{\wt{D
}u
}{\abs{\wt{D
}u
}}
957 (t))-f(
\hat u(t))
}h
\quad\abs{\wt{D
}u
}\text{-a.e. in
}\mathbf{R
}.\
]
958 By
\eqref{joe
}, $
\hat u(x)=
\tilde u(x)$ for every
959 $x
\in\mathbf{R
}\backslash S_u$; moreover, applying the same argument to
960 the functions $u'(t)=u(-t)$, $v'(t)=f(u'(t))=v(-t)$, we get
961 \
[\frac{\wt{D
}v
}{\abs{\wt{D
}u
}}(t)=
\lim_{h
\to 0}
963 +h
\dfrac{\wt{D
}u
}{\abs{\wt{D
}u
}}(t))-f(
\tilde u(t))
}{h
}
964 \qquad\abs{\wt{D
}u
}\text{-a.e. in
}\mathbf{R
}\
]
965 and our statement is proved.
969 Let us consider now the general case $n>
1$. Let $
\nu\in \mathbf{R
}^n$ be
970 such that $
\abs{\nu}=
1$, and let $
\pi_\nu=\
{y
\in\mathbf{R
}^n:
\langle
971 y,
\nu\rangle =
0\
}$. In the following, we shall identify $
\mathbf{R
}^n$
972 with $
\pi_\nu\times\mathbf{R
}$, and we shall denote by $y$ the variable
973 ranging in $
\pi_\nu$ and by $t$ the variable ranging in $
\mathbf{R
}$. By
974 the just proven one-dimensional result, and by
\thmref{thm-main
}, we get
975 \
[\lim_{h
\to 0}\frac{f(
\tilde u(y+t
\nu)+h
\dfrac{\wt{D
}u_y
}{\abs{
976 \wt{D
}u_y
}}(t))-f(
\tilde u(y+t
\nu))
}h=
\frac{\wt{D
}v_y
}{\abs{
977 \wt{D
}u_y
}}(t)
\qquad\abs{\wt{D
}u_y
}\text{-a.e. in
}\mathbf{R
}\
]
978 for $
\mathcal{H
}_
{n-
1}$-almost every $y
\in \pi_\nu$. We claim that
980 \frac{\langle \wt{D
}u,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle
981 }}(y+t
\nu)=
\frac{\wt{D
}u_y
}
982 {\abs{\wt{D
}u_y
}}(t)
\qquad\abs{\wt{D
}u_y
}\text{-a.e. in
}\mathbf{R
}
984 for $
\mathcal{H
}_
{n-
1}$-almost every $y
\in\pi_\nu$. In fact, by
985 \eqref{sum-ali
} and
\eqref{delta-l
} we get
987 \int_{\pi_\nu}\frac{\wt{D
}u_y
}{\abs{\wt{D
}u_y
}}\cdot\abs{\wt{D
}u_y
988 }\,d
\mathcal{H
}_
{n-
1}(y)=
\int_{\pi_\nu}\wt{D
}u_y\,d
\mathcal{H
}_
{n-
1}(y)\\
989 =
\langle \wt{D
}u,
\nu\rangle =
\frac
990 {\langle \wt{D
}u,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle}}\cdot
991 \abs{\langle \wt{D
}u,
\nu\rangle }=
\int_{\pi_\nu}\frac{
992 \langle \wt{D
}u,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle }}
993 (y+
\cdot \nu)
\cdot\abs{\wt{D
}u_y
}\,d
\mathcal{H
}_
{n-
1}(y)
995 and
\eqref{far-d
} follows from
\eqref{sum-Di
}. By the same argument it
996 is possible to prove that
998 \frac{\langle \wt{D
}v,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle
999 }}(y+t
\nu)=
\frac{\wt{D
}v_y
}{\abs{\wt{D
}u_y
}}(t)
\qquad\abs{
1000 \wt{D
}u_y
}\text{-a.e. in
}\mathbf{R
}\end{equation
}
1001 for $
\mathcal{H
}_
{n-
1}$-almost every $y
\in \pi_\nu$. By
\eqref{far-d
}
1002 and
\eqref{E_SXgYy
} we get
1004 \lim_{h
\to 0}\frac{f(
\tilde u(y+t
\nu)+h
\dfrac{\langle \wt{D
}
1005 u,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle }}(y+t
\nu))-f(
\tilde
1007 =
\frac{\langle \wt{D
}v,
\nu\rangle }{\abs{\langle
1008 \wt{D
}u,
\nu\rangle }}(y+t
\nu)\
]
1009 for $
\mathcal{H
}_
{n-
1}$-almost every $y
\in\pi_\nu$, and using again
1010 \eqref{detK1
},
\eqref{detK2
} we get
1012 \lim_{h
\to 0}\frac{f(
\tilde u(x)+h
\dfrac{\langle
1013 \wt{D
}u,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle }}(x))-f(
\tilde
1014 u(x))
}{h
}=
\frac{\langle \wt{D
}v,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu
1017 $
\abs{\langle \wt{D
}u,
\nu\rangle}$-a.e. in $
\mathbf{R
}^n$.
1019 Since the function $
\abs{\langle \wt{D
}u,
\nu\rangle }/
\abs{\wt{D
}u
}$
1020 is strictly positive $
\abs{\langle \wt{D
}u,
\nu\rangle }$-almost everywhere,
1023 \lim_{h
\to 0}\frac{f(
\tilde u(x)+h
\dfrac{\abs{\langle
1024 \wt{D
}u,
\nu\rangle }}{\abs{\wt{D
}u
}}(x)
\dfrac{\langle \wt{D
}
1025 u,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle }}(x))-f(
\tilde u(x))
}{h
}\\
1026 =
\frac{\abs{\langle \wt{D
}u,
\nu\rangle }}{\abs{\wt{D
}u
}}(x)
\frac
1027 {\langle \wt{D
}v,
\nu\rangle }{\abs{\langle
1028 \wt{D
}u,
\nu\rangle }}(x)
1030 $
\abs{\langle \wt{D
}u,
\nu\rangle }$-almost everywhere in $
\mathbf{R
}^n$.
1034 &
\frac{\abs{\langle \wt{D
}u,
\nu\rangle }}{\abs{\wt{D
}u
}}
1035 \frac{\langle \wt{D
}u,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle}}
1036 =
\frac{\langle \wt{D
}u,
\nu\rangle }{\abs{\wt{D
}u
}}
1037 =
\left\langle \frac{\wt{D
}u
}{\abs{\wt{D
}u
}},
\nu\right\rangle
1038 \qquad\abs{\wt{D
}u
}\text{-a.e. in
}\mathbf{R
}^n\\
1039 &
\frac{\abs{\langle \wt{D
}u,
\nu\rangle }}{\abs{\wt{D
}u
}}
1040 \frac{\langle \wt{D
}v,
\nu\rangle }{\abs{\langle \wt{D
}u,
\nu\rangle}}
1041 =
\frac{\langle \wt{D
}v,
\nu\rangle }{\abs{\wt{D
}u
}}
1042 =
\left\langle \frac{\wt{D
}v
}{\abs{\wt{D
}u
}},
\nu\right\rangle
1043 \qquad\abs{\wt{D
}u
}\text{-a.e. in
}\mathbf{R
}^n
1045 and since both sides of
\eqref{alimo
}
1046 are zero $
\abs{\wt{D
}u
}$-almost everywhere
1047 on $
\abs{\langle \wt{D
}u,
\nu\rangle }$-negligible sets, we conclude that
1049 \lim_{h
\to 0}\frac{f
\left(
1050 \tilde u(x)+h
\left\langle \dfrac{\wt{D
}
1051 u
}{\abs{\wt{D
}u
}}(x),
\nu\right\rangle \right)-f(
\tilde u(x))
}h
1052 =
\left\langle \frac{\wt{D
}v
}{\abs{\wt{D
}u
}}(x),
\nu\right\rangle,
1054 $
\abs{\wt{D
}u
}$-a.e. in $
\mathbf{R
}^n$.
1055 Since $
\nu$ is arbitrary, by Remarks
\ref{r:dif
} and~
\ref{r:dif0
}
1056 the restriction of $f$ to
1057 the affine space $T^u_x$ is differentiable at $
\tilde u(x)$ for $
\abs{\wt{D
}
1058 u
}$-almost every $x
\in \mathbf{R
}^n$ and
\eqref{quts
} holds.
\qed
1060 It follows from
\eqref{sum-Di
},
\eqref{detK1
}, and
\eqref{detK2
} that
1061 \begin{equation
}\label{Dt
}
1062 D(t_1,
\dots,t_n)=
\sum_{I
\in\mathbf{n
}}(-
1)^
{\abs{I
}-
1}\abs{I
}
1063 \prod_{i
\in I
}t_i
\prod_{j
\in I
}(D_j+
\lambda_jt_j)
\det\mathbf{A
}^
{(
\lambda)
}
1064 (
\overline I|
\overline I).
1066 Let $t_i=
\hat x_i$, $i=
1,
\dots,n$. Lemma
1 leads to
1067 \begin{equation
}\label{Dx
}
1068 D(
\hat x_1,
\dots,
\hat x_n)=
\prod_{i
\in\mathbf{n
}}\hat x_i
1069 \sum_{I
\in\mathbf{n
}}(-
1)^
{\abs{I
}-
1}\abs{I
}\per \mathbf{A
}
1070 ^
{(
\lambda)
}(I|I)
\det\mathbf{A
}^
{(
\lambda)
}(
\overline I|
\overline I).
1072 By
\eqref{H-cycles
},
\eqref{sum-Di
}, and
\eqref{Dx
},
1073 we have the following result:
1074 \begin{thm
}\label{thm-H-param
}
1075 \begin{equation
}\label{H-param
}
1076 H_c=
\frac{1}{2n
}\sum^n_
{l =
1}l (-
1)^
{l -
1}A_
{l
}
1080 \begin{equation
}\label{A-l-lambda
}
1081 A^
{(
\lambda)
}_l =
\sum_{I_l
\subseteq\mathbf{n
}}\per \mathbf{A
}
1082 ^
{(
\lambda)
}(I_l |I_l )
\det\mathbf{A
}^
{(
\lambda)
}
1083 (
\overline I_
{l
}|
\overline I_l ),
\abs{I_
{l
}}=l .
1087 It is worth noting that $A_l ^
{(
\lambda)
}$ of
\eqref{A-l-lambda
} is
1088 similar to the coefficients $b_l $ of the characteristic polynomial of
1089 \eqref{bl-sum
}. It is well known in graph theory that the coefficients
1090 $b_l $ can be expressed as a sum over certain subgraphs. It is
1091 interesting to see whether $A_l $, $
\lambda=
0$, structural properties
1094 We may call
\eqref{H-param
} a parametric representation of $H_c$. In
1095 computation, the parameter $
\lambda_i$ plays very important roles. The
1096 choice of the parameter usually depends on the properties of the given
1097 graph. For a complete graph $K_n$, let $
\lambda_i=
1$, $i=
1,
\dots,n$.
1098 It follows from
\eqref{A-l-lambda
} that
1099 \begin{equation
}\label{compl-gr
}
1100 A^
{(
1)
}_l =
\begin{cases
} n!,&
\text{if
}l =
1\\
1101 0,&
\text{otherwise
}.
\end{cases
}
1107 For a complete bipartite graph $K_
{n_1n_2
}$, let $
\lambda_i=
0$, $i=
1,
\dots,n$.
1108 By
\eqref{A-l-lambda
},
1111 \begin{cases
} -n_1!n_2!
\delta_{n_1n_2
},&
\text{if
}l =
2\\
1112 0,&
\text{otherwise
}.
\end{cases
}
1113 \label{compl-bip-gr
}
1115 Theorem ~
\ref{thm-H-param
}
1118 H_c=
\frac1{n_1+n_2
}n_1!n_2!
\delta_{n_1n_2
}.
1121 Now, we consider an asymmetrical approach. Theorem
\ref{thm-main
} leads to
1123 \det\mathbf{K
}(t=
1,t_1,
\dots,t_n;l |l )\\
1124 =
\sum_{I
\subseteq\mathbf{n
}-\
{l \
}}
1125 (-
1)^
{\abs{I
}}\prod_{i
\in I
}t_i
\prod_{j
\in I
}
1126 (D_j+
\lambda_jt_j)
\det\mathbf{A
}^
{(
\lambda)
}
1127 (
\overline I
\cup\
{l \
}|
\overline I
\cup\
{l \
}).
1130 By
\eqref{H-cycles
} and
\eqref{sum-ali
} we have the following asymmetrical
1132 \begin{thm
}\label{thm-asym
}
1134 H_c=
\frac12\sum_{I
\subseteq\mathbf{n
}-\
{l \
}}
1135 (-
1)^
{\abs{I
}}\per\mathbf{A
}^
{(
\lambda)
}(I|I)
\det
1136 \mathbf{A
}^
{(
\lambda)
}
1137 (
\overline I
\cup\
{l \
}|
\overline I
\cup\
{l \
})
1139 which reduces to Goulden--Jackson's formula when $
\lambda_i=
0,i=
1,
\dots,n$
1140 \cite{mami:matrixth
}.
1143 \section{Various font features of the
\pkg{amsmath
} package
}
1145 \subsection{Bold versions of special symbols
}
1147 In the
\pkg{amsmath
} package
\cn{boldsymbol
} is used for getting
1148 individual bold math symbols and bold Greek letters---everything in
1149 math except for letters of the Latin alphabet,
1150 where you'd use
\cn{mathbf
}. For example,
1152 A_
\infty +
\pi A_0
\sim
1153 \mathbf{A
}_
{\boldsymbol{\infty}} \boldsymbol{+
}
1154 \boldsymbol{\pi} \mathbf{A
}_
{\boldsymbol{0}}
1157 \
[A_
\infty +
\pi A_0
\sim \mathbf{A
}_
{\boldsymbol{\infty}}
1158 \boldsymbol{+
} \boldsymbol{\pi} \mathbf{A
}_
{\boldsymbol{0}}\
]
1160 \subsection{``Poor man's bold''
}
1161 If a bold version of a particular symbol doesn't exist in the
1163 then
\cn{boldsymbol
} can't be used to make that symbol bold.
1164 At the present time, this means that
1165 \cn{boldsymbol
} can't be used with symbols from
1166 the
\fn{msam
} and
\fn{msbm
} fonts, among others.
1167 In some cases, poor man's bold (
\cn{pmb
}) can be used instead
1169 % Can't show example from msam or msbm because this document is
1170 % supposed to be TeXable even if the user doesn't have
1171 % AMSFonts. MJD 5-JUL-1990
1172 \
[\frac{\partial x
}{\partial y
}
1174 \frac{\partial y
}{\partial z
}\
]
1176 \
[\frac{\partial x
}{\partial y
}
1178 \frac{\partial y
}{\partial z
}\
]
1180 So-called ``large operator'' symbols such as $
\sum$ and $
\prod$
1181 require an additional command,
\cn{mathop
},
1182 to produce proper spacing and limits when
\cn{pmb
} is used.
1183 For further details see
\textit{The
\TeX book
}.
1184 \
[\sum_{\substack{i<B\\
\text{$i$ odd
}}}
1185 \prod_\kappa \kappa F(r_i)
\qquad
1186 \mathop{\pmb{\sum}}_
{\substack{i<B\\
\text{$i$ odd
}}}
1187 \mathop{\pmb{\prod}}_
\kappa \kappa(r_i)
1190 \
[\sum_{\substack{i<B\\
\text{$i$ odd
}}}
1191 \prod_\kappa \kappa F(r_i)
\qquad
1192 \mathop{\pmb{\sum}}_
{\substack{i<B\\
\text{$i$ odd
}}}
1193 \mathop{\pmb{\prod}}_
\kappa \kappa(r_i)
1197 \section{Compound symbols and other features
}
1199 \subsection{Multiple integral signs
}
1201 \cn{iint
},
\cn{iiint
}, and
\cn{iiiint
} give multiple integral signs
1202 with the spacing between them nicely adjusted, in both text and
1203 display style.
\cn{idotsint
} gives two integral signs with dots
1206 \iint\limits_A f(x,y)\,dx\,dy
\qquad\iiint\limits_A
1207 f(x,y,z)\,dx\,dy\,dz\\
1209 f(w,x,y,z)\,dw\,dx\,dy\,dz
\qquad\idotsint\limits_A f(x_1,
\dots,x_k)
1212 \subsection{Over and under arrows
}
1214 Some extra over and under arrow operations are provided in
1215 the
\pkg{amsmath
} package. (Basic
\LaTeX\ provides
1216 \cn{overrightarrow
} and
\cn{overleftarrow
}).
1218 \overrightarrow{\psi_\delta(t) E_t h
}&
1219 =
\underrightarrow{\psi_\delta(t) E_t h
}\\
1220 \overleftarrow{\psi_\delta(t) E_t h
}&
1221 =
\underleftarrow{\psi_\delta(t) E_t h
}\\
1222 \overleftrightarrow{\psi_\delta(t) E_t h
}&
1223 =
\underleftrightarrow{\psi_\delta(t) E_t h
}
1227 \overrightarrow{\psi_\delta(t) E_t h
}&
1228 =
\underrightarrow{\psi_\delta(t) E_t h
}\\
1229 \overleftarrow{\psi_\delta(t) E_t h
}&
1230 =
\underleftarrow{\psi_\delta(t) E_t h
}\\
1231 \overleftrightarrow{\psi_\delta(t) E_t h
}&
1232 =
\underleftrightarrow{\psi_\delta(t) E_t h
}
1235 These all scale properly in subscript sizes:
1236 \
[\int_{\overrightarrow{AB
}} ax\,dx\
]
1238 \
[\int_{\overrightarrow{AB
}} ax\,dx\
]
1243 Normally you need only type
\cn{dots
} for ellipsis dots in a
1244 math formula. The main exception is when the dots
1245 fall at the end of the formula; then you need to
1246 specify one of
\cn{dotsc
} (series dots, after a comma),
1247 \cn{dotsb
} (binary dots, for binary relations or operators),
1248 \cn{dotsm
} (multiplication dots), or
\cn{dotsi
} (dots after
1249 an integral). For example, the input
1251 Then we have the series $A_1,A_2,
\dotsc$,
1252 the regional sum $A_1+A_2+
\dotsb$,
1253 the orthogonal product $A_1A_2
\dotsm$,
1254 and the infinite integral
1255 \
[\int_{A_1
}\int_{A_2
}\dotsi\
].
1259 Then we have the series $A_1,A_2,
\dotsc$,
1260 the regional sum $A_1+A_2+
\dotsb$,
1261 the orthogonal product $A_1A_2
\dotsm$,
1262 and the infinite integral
1263 \
[\int_{A_1
}\int_{A_2
}\dotsi\
]
1266 \subsection{Accents in math
}
1269 \
[\Hat{\Hat{H
}}\quad\Check{\Check{C
}}\quad
1270 \Tilde{\Tilde{T
}}\quad\Acute{\Acute{A
}}\quad
1271 \Grave{\Grave{G
}}\quad\Dot{\Dot{D
}}\quad
1272 \Ddot{\Ddot{D
}}\quad\Breve{\Breve{B
}}\quad
1273 \Bar{\Bar{B
}}\quad\Vec{\Vec{V
}}\
]
1275 \
[\Hat{\Hat{H
}}\quad\Check{\Check{C
}}\quad
1276 \Tilde{\Tilde{T
}}\quad\Acute{\Acute{A
}}\quad
1277 \Grave{\Grave{G
}}\quad\Dot{\Dot{D
}}\quad
1278 \Ddot{\Ddot{D
}}\quad\Breve{\Breve{B
}}\quad
1279 \Bar{\Bar{B
}}\quad\Vec{\Vec{V
}}\
]
1281 This double accent operation is complicated
1282 and tends to slow down the processing of a
\LaTeX\ file.
1285 \subsection{Dot accents
}
1286 \cn{dddot
} and
\cn{ddddot
} are available to
1287 produce triple and quadruple dot accents
1288 in addition to the
\cn{dot
} and
\cn{ddot
} accents already available
1290 \
[\dddot{Q
}\qquad\ddddot{R
}\
]
1292 \
[\dddot{Q
}\qquad\ddddot{R
}\
]
1297 In the
\pkg{amsmath
} package
\cn{leftroot
} and
\cn{uproot
} allow you to adjust
1298 the position of the root index of a radical:
1300 \sqrt[\leftroot{-
2}\uproot{2}\beta]{k
}
1302 gives good positioning of the $
\beta$:
1303 \
[\sqrt[\leftroot{-
2}\uproot{2}\beta]{k
}\
]
1305 \subsection{Boxed formulas
} The command
\cn{boxed
} puts a box around its
1306 argument, like
\cn{fbox
} except that the contents are in math mode:
1308 \boxed{W_t-F
\subseteq V(P_i)
\subseteq W_t
}
1310 \
[\boxed{W_t-F
\subseteq V(P_i)
\subseteq W_t
}.\
]
1312 \subsection{Extensible arrows
}
1313 \cn{xleftarrow
} and
\cn{xrightarrow
} produce
1314 arrows that extend automatically to accommodate unusually wide
1315 subscripts or superscripts. The text of the subscript or superscript
1316 are given as an optional resp.\@ mandatory argument:
1318 \
[0 \xleftarrow[\zeta]{\alpha} F
\times\triangle[n-
1]
1319 \xrightarrow{\partial_0\alpha(b)
} E^
{\partial_0b}\
]
1321 \
[0 \xleftarrow[\zeta]{\alpha} F
\times\triangle[n-
1]
1322 \xrightarrow{\partial_0\alpha(b)
} E^
{\partial_0b}\
]
1325 \subsection{\cn{overset
},
\cn{underset
}, and
\cn{sideset
}}
1327 \
[\overset{*
}{X
}\qquad\underset{*
}{X
}\qquad
1328 \overset{a
}{\underset{b
}{X
}}\
]
1330 \
[\overset{*
}{X
}\qquad\underset{*
}{X
}\qquad
1331 \overset{a
}{\underset{b
}{X
}}\
]
1334 The command
\cn{sideset
} is for a rather special
1335 purpose: putting symbols at the subscript and superscript
1336 corners of a large operator symbol such as $
\sum$ or $
\prod$,
1337 without affecting the placement of limits.
1339 \
[\sideset{_*^*
}{_*^*
}\prod_k\qquad
1340 \sideset{}{'
}\sum_{0\le i
\le m
} E_i
\beta x
1343 \
[\sideset{_*^*
}{_*^*
}\prod_k\qquad
1344 \sideset{}{'
}\sum_{0\le i
\le m
} E_i
\beta x
1348 \subsection{The
\cn{text
} command
}
1349 The main use of the command
\cn{text
} is for words or phrases in a
1351 \
[\mathbf{y
}=
\mathbf{y
}'
\quad\text{if and only if
}\quad
1352 y'_k=
\delta_k y_
{\tau(k)
}\
]
1354 \
[\mathbf{y
}=
\mathbf{y
}'
\quad\text{if and only if
}\quad
1355 y'_k=
\delta_k y_
{\tau(k)
}\
]
1358 \subsection{Operator names
}
1359 The more common math functions such as $
\log$, $
\sin$, and $
\lim$
1360 have predefined control sequences:
\verb=
\log=,
\verb=
\sin=,
1362 The
\pkg{amsmath
} package provides
\cn{DeclareMathOperator
} and
1363 \cn{DeclareMathOperator*
}
1364 for producing new function names that will have the
1365 same typographical treatment.
1368 \esssup_{x
\in R^n
}\abs{f(x)
}\
]
1371 \esssup_{x
\in R^n
}\abs{f(x)
}\
]
1373 \
[\meas_1\
{u
\in R_+^
1\colon f^*(u)>
\alpha\
}
1374 =
\meas_n\
{x
\in R^n
\colon \abs{f(x)
}\geq\alpha\
}
1375 \quad \forall\alpha>
0.\
]
1377 \
[\meas_1\
{u
\in R_+^
1\colon f^*(u)>
\alpha\
}
1378 =
\meas_n\
{x
\in R^n
\colon \abs{f(x)
}\geq\alpha\
}
1379 \quad \forall\alpha>
0.\
]
1381 \cn{esssup
} and
\cn{meas
} would be defined in the
document preamble as
1383 \DeclareMathOperator*
{\esssup}{ess\,sup
}
1384 \DeclareMathOperator{\meas}{meas
}
1387 The following special operator names are predefined in the
\pkg{amsmath
}
1388 package:
\cn{varlimsup
},
\cn{varliminf
},
\cn{varinjlim
}, and
1389 \cn{varprojlim
}. Here's what they look like in use:
1391 &
\varlimsup_{n
\rightarrow\infty}
1392 \mathcal{Q
}(u_n,u_n-u^
{\#
})
\le0\\
1393 &
\varliminf_{n
\rightarrow\infty}
1394 \left\lvert a_
{n+
1}\right\rvert/
\left\lvert a_n
\right\rvert=
0\\
1395 &
\varinjlim (m_i^
\lambda\cdot)^*
\le0\\
1396 &
\varprojlim_{p
\in S(A)
}A_p
\le0
1400 &
\varlimsup_{n
\rightarrow\infty}
1401 \mathcal{Q
}(u_n,u_n-u^
{\#
})
\le0\\
1402 &
\varliminf_{n
\rightarrow\infty}
1403 \left\lvert a_
{n+
1}\right\rvert/
\left\lvert a_n
\right\rvert=
0\\
1404 &
\varinjlim (m_i^
\lambda\cdot)^*
\le0\\
1405 &
\varprojlim_{p
\in S(A)
}A_p
\le0
1409 \subsection{\cn{mod
} and its relatives
}
1410 The commands
\cn{mod
} and
\cn{pod
} are variants of
1411 \cn{pmod
} preferred by some authors;
\cn{mod
} omits the parentheses,
1412 whereas
\cn{pod
} omits the `mod' and retains the parentheses.
1415 x&
\equiv y+
1\pmod{m^
2}\\
1416 x&
\equiv y+
1\mod{m^
2}\\
1417 x&
\equiv y+
1\pod{m^
2}
1421 x&
\equiv y+
1\pmod{m^
2}\\
1422 x&
\equiv y+
1\mod{m^
2}\\
1423 x&
\equiv y+
1\pod{m^
2}
1427 \subsection{Fractions and related constructions
}
1430 The usual notation for binomials is similar to the fraction concept,
1431 so it has a similar command
\cn{binom
} with two arguments. Example:
1434 \sum_{\gamma\in\Gamma_C} I_
\gamma&
1435 =
2^k-
\binom{k
}{1}2^
{k-
1}+
\binom{k
}{2}2^
{k-
2}\\
1436 &
\quad+
\dots+(-
1)^l
\binom{k
}{l
}2^
{k-l
}
1444 [\sum_{\gamma\in\Gamma_C} I_
\gamma&
1445 =
2^k-
\binom{k
}{1}2^
{k-
1}+
\binom{k
}{2}2^
{k-
2}\\
1446 &
\quad+
\dots+(-
1)^l
\binom{k
}{l
}2^
{k-l
}
1452 There are also abbreviations
1457 for the commonly needed constructions
1459 {\displaystyle\frac ...
} {\displaystyle\binom ...
}
1460 {\textstyle\frac ...
} {\textstyle\binom ...
}
1463 The generalized fraction command
\cn{genfrac
} provides full access to
1464 the six
\TeX{} fraction primitives:
1466 \text{\cn{over
}:
}&
\genfrac{}{}{}{}{n+
1}{2}&
1467 \text{\cn{overwithdelims
}:
}&
1468 \genfrac{\langle}{\rangle}{}{}{n+
1}{2}\\
1469 \text{\cn{atop
}:
}&
\genfrac{}{}{0pt
}{}{n+
1}{2}&
1470 \text{\cn{atopwithdelims
}:
}&
1471 \genfrac{(
}{)
}{0pt
}{}{n+
1}{2}\\
1472 \text{\cn{above
}:
}&
\genfrac{}{}{1pt
}{}{n+
1}{2}&
1473 \text{\cn{abovewithdelims
}:
}&
1474 \genfrac{[}{]}{1pt
}{}{n+
1}{2}
1477 \text{\cn{over
}:
}&
\genfrac{}{}{}{}{n+
1}{2}&
1478 \text{\cn{overwithdelims
}:
}&
1479 \genfrac{\langle}{\rangle}{}{}{n+
1}{2}\\
1480 \text{\cn{atop
}:
}&
\genfrac{}{}{0pt
}{}{n+
1}{2}&
1481 \text{\cn{atopwithdelims
}:
}&
1482 \genfrac{(
}{)
}{0pt
}{}{n+
1}{2}\\
1483 \text{\cn{above
}:
}&
\genfrac{}{}{1pt
}{}{n+
1}{2}&
1484 \text{\cn{abovewithdelims
}:
}&
1485 \genfrac{[}{]}{1pt
}{}{n+
1}{2}
1488 \subsection{Continued fractions
}
1489 The continued fraction
1495 \cfrac{1}{\sqrt{2}+
\dotsb
1498 can be obtained by typing
1504 \cfrac{1}{\sqrt{2}+
\dotsb
1507 Left or right placement of any of the numerators is accomplished by using
1508 \cn{cfrac
[l
]} or
\cn{cfrac
[r
]} instead of
\cn{cfrac
}.
1512 In
\pkg{amsmath
} there are optional arguments
\verb"t" and
\verb"b" for
1513 the plain
\TeX\ command
\cn{smash
}, because sometimes it is advantageous
1514 to be able to `smash' only the top or only the bottom of something while
1515 retaining the natural depth or height. In the formula
1516 $X_j=(
1/
\sqrt{\smash[b
]{\lambda_j}})X_j'$
\cn{smash
}\verb=
[b
]= has been
1517 used to limit the size of the radical symbol.
1519 $X_j=(
1/
\sqrt{\smash[b
]{\lambda_j}})X_j'$
1521 Without the use of
\cn{smash
}\verb=
[b
]= the formula would have appeared
1522 thus: $X_j=(
1/
\sqrt{\lambda_j})X_j'$, with the radical extending to
1523 encompass the depth of the subscript $j$.
1525 \subsection{The `cases' environment
}
1526 `Cases' constructions like the following can be produced using
1527 the
\env{cases
} environment.
1531 0&
\text{if $r-j$ is odd
},\\
1532 r!\,(-
1)^
{(r-j)/
2}&
\text{if $r-j$ is even
}.
1536 \begin{equation
} P_
{r-j
}=
1538 0&
\text{if $r-j$ is odd
},\\
1539 r!\,(-
1)^
{(r-j)/
2}&
\text{if $r-j$ is even
}.
1543 Notice the use of
\cn{text
} and the embedded math.
1547 Here are samples of the matrix environments,
1548 \cn{matrix
},
\cn{pmatrix
},
\cn{bmatrix
},
\cn{Bmatrix
},
\cn{vmatrix
}
1552 \vartheta&
\varrho\\
\varphi&
\varpi
1555 \vartheta&
\varrho\\
\varphi&
\varpi
1558 \vartheta&
\varrho\\
\varphi&
\varpi
1561 \vartheta&
\varrho\\
\varphi&
\varpi
1564 \vartheta&
\varrho\\
\varphi&
\varpi
1567 \vartheta&
\varrho\\
\varphi&
\varpi
1573 \vartheta&
\varrho\\
\varphi&
\varpi
1576 \vartheta&
\varrho\\
\varphi&
\varpi
1579 \vartheta&
\varrho\\
\varphi&
\varpi
1582 \vartheta&
\varrho\\
\varphi&
\varpi
1585 \vartheta&
\varrho\\
\varphi&
\varpi
1588 \vartheta&
\varrho\\
\varphi&
\varpi
1592 To produce a small matrix suitable for use in text, use the
1593 \env{smallmatrix
} environment.
1596 \bigl(
\begin{smallmatrix
}
1598 \end{smallmatrix
} \bigr)
1602 the effect of the matrix on the surrounding lines of
1603 a paragraph, we put it here:
\begin{math
}
1604 \bigl(
\begin{smallmatrix
}
1606 \end{smallmatrix
} \bigr)
1608 and follow it with enough text to ensure that there will
1609 be at least one full line below the matrix.
1611 \cn{hdotsfor
}\verb"
{"
\textit{number
}\verb"
}" produces a row of dots in a matrix
1612 spanning the given number of columns:
1613 \
[W(
\Phi)=
\begin{Vmatrix
}
1614 \dfrac\varphi{(
\varphi_1,
\varepsilon_1)
}&
0&
\dots&
0\\
1615 \dfrac{\varphi k_
{n2
}}{(
\varphi_2,
\varepsilon_1)
}&
1616 \dfrac\varphi{(
\varphi_2,
\varepsilon_2)
}&
\dots&
0\\
1618 \dfrac{\varphi k_
{n1
}}{(
\varphi_n,
\varepsilon_1)
}&
1619 \dfrac{\varphi k_
{n2
}}{(
\varphi_n,
\varepsilon_2)
}&
\dots&
1620 \dfrac{\varphi k_
{n\,n-
1}}{(
\varphi_n,
\varepsilon_{n-
1})
}&
1621 \dfrac{\varphi}{(
\varphi_n,
\varepsilon_n)
}
1624 \
[W(
\Phi)=
\begin{Vmatrix
}
1625 \dfrac\varphi{(
\varphi_1,
\varepsilon_1)
}&
0&
\dots&
0\\
1626 \dfrac{\varphi k_
{n2
}}{(
\varphi_2,
\varepsilon_1)
}&
1627 \dfrac\varphi{(
\varphi_2,
\varepsilon_2)
}&
\dots&
0\\
1629 \dfrac{\varphi k_
{n1
}}{(
\varphi_n,
\varepsilon_1)
}&
1630 \dfrac{\varphi k_
{n2
}}{(
\varphi_n,
\varepsilon_2)
}&
\dots&
1631 \dfrac{\varphi k_
{n\,n-
1}}{(
\varphi_n,
\varepsilon_{n-
1})
}&
1632 \dfrac{\varphi}{(
\varphi_n,
\varepsilon_n)
}
1635 The spacing of the dots can be varied through use of a square-bracket
1636 option, for example,
\verb"
\hdotsfor[1.5]{3}". The number in square brackets
1637 will be used as a multiplier; the normal value is
1.
1639 \subsection{The
\cn{substack
} command
}
1641 The
\cn{substack
} command can be used to produce a multiline
1642 subscript or superscript:
1645 \sum_{\substack{0\le i
\le m\\
0<j<n
}} P(i,j)
1647 produces a two-line subscript underneath the sum:
1649 \sum_{\substack{0\le i
\le m\\
0<j<n
}} P(i,j)
1651 A slightly more generalized form is the
\env{subarray
} environment which
1652 allows you to specify that each line should be left-aligned instead of
1655 \sum_{\begin{subarray
}{l
}
1661 \sum_{\begin{subarray
}{l
}
1668 \subsection{Big-g-g delimiters
}
1669 Here are some big delimiters, first in
\cn{normalsize
}:
1670 \
[\biggl(
\mathbf{E
}_
{y
}
1671 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1675 \
[\biggl(
\mathbf{E
}_
{y
}
1676 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1680 and now in
\cn{Large
} size:
1682 \
[\biggl(
\mathbf{E
}_
{y
}
1683 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1688 \
[\biggl(
\mathbf{E
}_
{y
}
1689 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1695 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1698 %% This turns on vertical rules at the right and left margins, to
1699 %% better illustrate the spacing for certain multiple-line equation
1701 \def\@makecol
{\ifvoid\footins \setbox\@outputbox
\box\@cclv
1702 \else\setbox\@outputbox
1703 \vbox{\boxmaxdepth \maxdepth
1704 \unvbox\@cclv
\vskip\skip\footins\footnoterule\unvbox\footins}\fi
1705 \xdef\@freelist
{\@freelist\@midlist
}\gdef\@midlist
{}\@combinefloats
1706 \setbox\@outputbox
\hbox{\vrule width
\marginrulewidth
1707 \vbox to\@colht
{\boxmaxdepth\maxdepth
1708 \@texttop
\dimen128=
\dp\@outputbox
\unvbox\@outputbox
1709 \vskip-
\dimen128\@textbottom
}%
1710 \vrule width
\marginrulewidth}%
1711 \global\maxdepth\@maxdepth
}
1712 \newdimen\marginrulewidth
1713 \setlength{\marginrulewidth}{.1pt
}
1716 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1719 \section{Examples of multiple-line equation structures
}
1722 \textbf{\large Note: Starting on this page, vertical rules are
1723 added at the margins so that the positioning of various display elements
1724 with respect to the margins can be seen more clearly.
}
1727 The
\env{split
} environment is not an independent environment
1728 but should be used inside something else such as
\env{equation
}
1731 If there is not enough room for it, the equation number for a
1732 \env{split
} will be shifted to the previous line, when equation numbers are
1733 on the left; the number shifts down to the next line when numbers are on
1737 f_
{h,
\varepsilon}(x,y)
1738 &=
\varepsilon\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1739 L_
{x,y_
\varepsilon(
\varepsilon u)
}\varphi(x)\,du\\
1740 &= h
\int L_
{x,z
}\varphi(x)
\rho_x(dz)\\
1741 &
\quad+h
\biggl[\frac{1}{t_
\varepsilon}\biggl(
\mathbf{E
}_
{y
}
1742 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1743 -t_
\varepsilon\int L_
{x,z
}\varphi(x)
\rho_x(dz)
\biggr)\\
1744 &
\phantom{{=
}+h
\biggl[}+
\frac{1}{t_
\varepsilon}
1745 \biggl(
\mathbf{E
}_
{y
}\int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}
1746 \varphi(x)\,ds -
\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1747 L_
{x,y_
\varepsilon(
\varepsilon s)
}
1748 \varphi(x)\,ds
\biggr)
\biggr]\\
1749 &=h
\wh{L
}_x
\varphi(x)+h
\theta_\varepsilon(x,y),
1752 Some text after to test the below-display spacing.
1757 f_
{h,
\varepsilon}(x,y)
1758 &=
\varepsilon\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1759 L_
{x,y_
\varepsilon(
\varepsilon u)
}\varphi(x)\,du\\
1760 &= h
\int L_
{x,z
}\varphi(x)
\rho_x(dz)\\
1761 &
\quad+h
\biggl[\frac{1}{t_
\varepsilon}\biggl(
\mathbf{E
}_
{y
}
1762 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1763 -t_
\varepsilon\int L_
{x,z
}\varphi(x)
\rho_x(dz)
\biggr)\\
1764 &
\phantom{{=
}+h
\biggl[}+
\frac{1}{t_
\varepsilon}
1765 \biggl(
\mathbf{E
}_
{y
}\int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}
1766 \varphi(x)\,ds -
\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1767 L_
{x,y_
\varepsilon(
\varepsilon s)
}
1768 \varphi(x)\,ds
\biggr)
\biggr]\\
1769 &=h
\wh{L
}_x
\varphi(x)+h
\theta_\varepsilon(x,y),
1773 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1779 f_
{h,
\varepsilon}(x,y)
1780 &=
\varepsilon\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1781 L_
{x,y_
\varepsilon(
\varepsilon u)
}\varphi(x)\,du\\
1782 &= h
\int L_
{x,z
}\varphi(x)
\rho_x(dz)\\
1783 &
\quad+h
\biggl[\frac{1}{t_
\varepsilon}\biggl(
\mathbf{E
}_
{y
}
1784 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1785 -t_
\varepsilon\int L_
{x,z
}\varphi(x)
\rho_x(dz)
\biggr)\\
1786 &
\phantom{{=
}+h
\biggl[}+
\frac{1}{t_
\varepsilon}
1787 \biggl(
\mathbf{E
}_
{y
}\int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}
1788 \varphi(x)\,ds -
\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1789 L_
{x,y_
\varepsilon(
\varepsilon s)
}
1790 \varphi(x)\,ds
\biggr)
\biggr]\\
1791 &=h
\wh{L
}_x
\varphi(x)+h
\theta_\varepsilon(x,y),
1794 Some text after to test the below-display spacing.
1799 f_
{h,
\varepsilon}(x,y)
1800 &=
\varepsilon\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1801 L_
{x,y_
\varepsilon(
\varepsilon u)
}\varphi(x)\,du\\
1802 &= h
\int L_
{x,z
}\varphi(x)
\rho_x(dz)\\
1803 &
\quad+h
\biggl[\frac{1}{t_
\varepsilon}\biggl(
\mathbf{E
}_
{y
}
1804 \int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}\varphi(x)\,ds
1805 -t_
\varepsilon\int L_
{x,z
}\varphi(x)
\rho_x(dz)
\biggr)\\
1806 &
\phantom{{=
}+h
\biggl[}+
\frac{1}{t_
\varepsilon}
1807 \biggl(
\mathbf{E
}_
{y
}\int_0^
{t_
\varepsilon}L_
{x,y^x(s)
}
1808 \varphi(x)\,ds -
\mathbf{E
}_
{x,y
}\int_0^
{t_
\varepsilon}
1809 L_
{x,y_
\varepsilon(
\varepsilon s)
}
1810 \varphi(x)\,ds
\biggr)
\biggr]\\
1811 &=h
\wh{L
}_x
\varphi(x)+h
\theta_\varepsilon(x,y),
1815 %%%%%%%%%%%%%%%%%%%%%%%%%%%
1818 If the option
\env{centertags
} is included in the options
1819 list of the
\pkg{amsmath
} package,
1820 the equation numbers for
\env{split
} environments will be
1821 centered vertically on the height
1823 {\makeatletter\ctagsplit@true
1826 \abs{I_2
}&=
\left\lvert \int_{0}^T
\psi(t)
\left\
{u(a,t)-
\int_{\gamma(t)
}^a
1827 \frac{d
\theta}{k(
\theta,t)
}
1828 \int_{a
}^
\theta c(
\xi)u_t(
\xi,t)\,d
\xi\right\
}dt
\right\rvert\\
1829 &
\le C_6
\left\lvert \left\lvert f
\int_\Omega\left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1830 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1831 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1832 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1835 Some text after to test the below-display spacing.
1837 %%%%%%%%%%%%%%%%%%%%%%%%%%%
1840 Use of
\env{split
} within
\env{align
}:
1841 {\delimiterfactor750
1843 \begin{split
}\abs{I_1
}
1844 &=
\left\lvert \int_\Omega gRu\,d
\Omega\right\rvert\\
1845 &
\le C_3
\left[\int_\Omega\left(
\int_{a
}^x
1846 g(
\xi,t)\,d
\xi\right)^
2d
\Omega\right]^
{1/
2}\\
1847 &
\quad\times \left[\int_\Omega\left\
{u^
2_x+
\frac{1}{k
}
1848 \left(
\int_{a
}^x cu_t\,d
\xi\right)^
2\right\
}
1849 c
\Omega\right]^
{1/
2}\\
1850 &
\le C_4
\left\lvert \left\lvert f
\left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1851 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1852 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1853 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1854 \end{split
}\label{eq:A
}\\
1855 \begin{split
}\abs{I_2
}&=
\left\lvert \int_{0}^T
\psi(t)
\left\
{u(a,t)
1856 -
\int_{\gamma(t)
}^a
\frac{d
\theta}{k(
\theta,t)
}
1857 \int_{a
}^
\theta c(
\xi)u_t(
\xi,t)\,d
\xi\right\
}dt
\right\rvert\\
1858 &
\le C_6
\left\lvert \left\lvert f
\int_\Omega
1859 \left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1860 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1861 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1862 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1865 Some text after to test the below-display spacing.
1869 \begin{split
}\abs{I_1
}
1870 &=
\left\lvert \int_\Omega gRu\,d
\Omega\right\rvert\\
1871 &
\le C_3
\left[\int_\Omega\left(
\int_{a
}^x
1872 g(
\xi,t)\,d
\xi\right)^
2d
\Omega\right]^
{1/
2}\\
1873 &
\quad\times \left[\int_\Omega\left\
{u^
2_x+
\frac{1}{k
}
1874 \left(
\int_{a
}^x cu_t\,d
\xi\right)^
2\right\
}
1875 c
\Omega\right]^
{1/
2}\\
1876 &
\le C_4
\left\lvert \left\lvert f
\left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1877 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1878 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1879 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1880 \end{split
}\label{eq:A
}\\
1881 \begin{split
}\abs{I_2
}&=
\left\lvert \int_{0}^T
\psi(t)
\left\
{u(a,t)
1882 -
\int_{\gamma(t)
}^a
\frac{d
\theta}{k(
\theta,t)
}
1883 \int_{a
}^
\theta c(
\xi)u_t(
\xi,t)\,d
\xi\right\
}dt
\right\rvert\\
1884 &
\le C_6
\left\lvert \left\lvert f
\int_\Omega
1885 \left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1886 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1887 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1888 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1896 Unnumbered
\env{align
}, with a number on the second
\env{split
}:
1898 \begin{split
}\abs{I_1
}&=
\left\lvert \int_\Omega gRu\,d
\Omega\right\rvert\\
1899 &
\le C_3
\left[\int_\Omega\left(
\int_{a
}^x
1900 g(
\xi,t)\,d
\xi\right)^
2d
\Omega\right]^
{1/
2}\\
1901 &
\phantom{=
}\times \left[\int_\Omega\left\
{u^
2_x+
\frac{1}{k
}
1902 \left(
\int_{a
}^x cu_t\,d
\xi\right)^
2\right\
}
1903 c
\Omega\right]^
{1/
2}\\
1904 &
\le C_4
\left\lvert \left\lvert f
\left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1905 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1906 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1907 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1909 \begin{split
}\abs{I_2
}&=
\left\lvert \int_{0}^T
\psi(t)
\left\
{u(a,t)
1910 -
\int_{\gamma(t)
}^a
\frac{d
\theta}{k(
\theta,t)
}
1911 \int_{a
}^
\theta c(
\xi)u_t(
\xi,t)\,d
\xi\right\
}dt
\right\rvert\\
1912 &
\le C_6
\left\lvert \left\lvert f
\int_\Omega
1913 \left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1914 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1915 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1916 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1917 \end{split
}\tag{\theequation$'$
}
1919 Some text after to test the below-display spacing.
1923 \begin{split
}\abs{I_1
}&=
\left\lvert \int_\Omega gRu\,d
\Omega\right\rvert\\
1924 &
\le C_3
\left[\int_\Omega\left(
\int_{a
}^x
1925 g(
\xi,t)\,d
\xi\right)^
2d
\Omega\right]^
{1/
2}\\
1926 &
\phantom{=
}\times \left[\int_\Omega\left\
{u^
2_x+
\frac{1}{k
}
1927 \left(
\int_{a
}^x cu_t\,d
\xi\right)^
2\right\
}
1928 c
\Omega\right]^
{1/
2}\\
1929 &
\le C_4
\left\lvert \left\lvert f
\left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1930 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1931 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1932 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1934 \begin{split
}\abs{I_2
}&=
\left\lvert \int_{0}^T
\psi(t)
\left\
{u(a,t)
1935 -
\int_{\gamma(t)
}^a
\frac{d
\theta}{k(
\theta,t)
}
1936 \int_{a
}^
\theta c(
\xi)u_t(
\xi,t)\,d
\xi\right\
}dt
\right\rvert\\
1937 &
\le C_6
\left\lvert \left\lvert f
\int_\Omega
1938 \left\lvert \wt{S
}^
{-
1,
0}_
{a,-
}
1939 W_2(
\Omega,
\Gamma_l)
\right\rvert\right\rvert
1940 \left\lvert \abs{u
}\overset{\circ}\to W_2^
{\wt{A
}}
1941 (
\Omega;
\Gamma_r,T)
\right\rvert\right\rvert.
1942 \end{split
}\tag{\theequation$'$
}
1945 %%%%%%%%%%%%%%%%%%%%%%%%%%%
1948 \subsection{Multline
}
1950 \begin{multline
}\label{eq:E
}
1951 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
1952 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
1953 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
1954 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
1956 To test the use of
\verb=
\label= and
1957 \verb=
\ref=, we refer to the number of this
1958 equation here: (
\ref{eq:E
}).
1961 \begin{multline
}\label{eq:E
}
1962 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
1963 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
1964 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
1965 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
1968 %%%%%%%%%%%%%%%%%%%%%%%%%%%
1972 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
1973 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
1974 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
1975 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
1977 Some text after to test the below-display spacing.
1981 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
1982 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
1983 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
1984 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
1987 %%%%%%%%%%%%%%%%%%%%%%%%%%%
1989 \iffalse % bugfix needed, error message "Multiple \tag"
1992 And now an ``unnumbered'' version numbered with a literal tag:
1993 \begin{multline*
}\tag*
{[a
]}
1994 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
1995 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
1996 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
1997 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
1999 Some text after to test the below-display spacing.
2002 \begin{multline*
}\tag*
{[a
]}
2003 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
2004 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
2005 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
2006 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2012 The same display with
\verb=
\multlinegap= set to zero.
2013 Notice that the space on the left in
2014 the first line does not change, because of the equation number, while
2015 the second line is pushed over to the right margin.
2016 {\setlength{\multlinegap}{0pt
}
2017 \begin{multline*
}\tag*
{[a
]}
2018 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
2019 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
2020 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
2021 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
2023 Some text after to test the below-display spacing.
2026 {\setlength{\multlinegap}{0pt
}
2027 \begin{multline*
}\tag*
{[a
]}
2028 \int_a^b
\biggl\
{\int_a^b
[f(x)^
2g(y)^
2+f(y)^
2g(x)^
2]
2029 -
2f(x)g(x)f(y)g(y)\,dx
\biggr\
}\,dy \\
2030 =
\int_a^b
\biggl\
{g(y)^
2\int_a^bf^
2+f(y)^
2
2031 \int_a^b g^
2-
2f(y)g(y)
\int_a^b fg
\biggr\
}\,dy
2034 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2035 \fi % matches \iffalse above [mjd,24-Jan-1995]
2037 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2041 Numbered version with
\verb;
\notag; on the second line:
2043 D(a,r)
\equiv\
{z
\in\mathbf{C
}\colon \abs{z-a
}<r\
},\\
2044 \seg(a,r)
\equiv\
{z
\in\mathbf{C
}\colon
2045 \Im z=
\Im a,\
\abs{z-a
}<r\
},
\notag\\
2046 c(e,
\theta,r)
\equiv\
{(x,y)
\in\mathbf{C
}
2047 \colon \abs{x-e
}<y
\tan\theta,\
0<y<r\
},\\
2048 C(E,
\theta,r)
\equiv\bigcup_{e
\in E
}c(e,
\theta,r).
2052 D(a,r)
\equiv\
{z
\in\mathbf{C
}\colon \abs{z-a
}<r\
},\\
2053 \seg(a,r)
\equiv\
{z
\in\mathbf{C
}\colon
2054 \Im z=
\Im a,\
\abs{z-a
}<r\
},
\notag\\
2055 c(e,
\theta,r)
\equiv\
{(x,y)
\in\mathbf{C
}
2056 \colon \abs{x-e
}<y
\tan\theta,\
0<y<r\
},\\
2057 C(E,
\theta,r)
\equiv\bigcup_{e
\in E
}c(e,
\theta,r).
2060 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2064 D(a,r)
\equiv\
{z
\in\mathbf{C
}\colon \abs{z-a
}<r\
},\\
2065 \seg (a,r)
\equiv\
{z
\in\mathbf{C
}\colon
2066 \Im z=
\Im a,\
\abs{z-a
}<r\
},\\
2067 c(e,
\theta,r)
\equiv\
{(x,y)
\in\mathbf{C
}
2068 \colon \abs{x-e
}<y
\tan\theta,\
0<y<r\
},\\
2069 C(E,
\theta,r)
\equiv\bigcup_{e
\in E
}c(e,
\theta,r).
2071 Some text after to test the below-display spacing.
2074 D(a,r)
\equiv\
{z
\in\mathbf{C
}\colon \abs{z-a
}<r\
},\\
2075 \seg (a,r)
\equiv\
{z
\in\mathbf{C
}\colon
2076 \Im z=
\Im a,\
\abs{z-a
}<r\
},\\
2077 c(e,
\theta,r)
\equiv\
{(x,y)
\in\mathbf{C
}
2078 \colon \abs{x-e
}<y
\tan\theta,\
0<y<r\
},\\
2079 C(E,
\theta,r)
\equiv\bigcup_{e
\in E
}c(e,
\theta,r).
2082 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2088 \gamma_x(t)&=(
\cos tu+
\sin tx,v),\\
2089 \gamma_y(t)&=(u,
\cos tv+
\sin ty),\\
2090 \gamma_z(t)&=
\left(
\cos tu+
\frac\alpha\beta\sin tv,
2091 -
\frac\beta\alpha\sin tu+
\cos tv
\right).
2093 Some text after to test the below-display spacing.
2097 \gamma_x(t)&=(
\cos tu+
\sin tx,v),\\
2098 \gamma_y(t)&=(u,
\cos tv+
\sin ty),\\
2099 \gamma_z(t)&=
\left(
\cos tu+
\frac\alpha\beta\sin tv,
2100 -
\frac\beta\alpha\sin tu+
\cos tv
\right).
2103 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2107 \gamma_x(t)&=(
\cos tu+
\sin tx,v),\\
2108 \gamma_y(t)&=(u,
\cos tv+
\sin ty),\\
2109 \gamma_z(t)&=
\left(
\cos tu+
\frac\alpha\beta\sin tv,
2110 -
\frac\beta\alpha\sin tu+
\cos tv
\right).
2112 Some text after to test the below-display spacing.
2116 \gamma_x(t)&=(
\cos tu+
\sin tx,v),\\
2117 \gamma_y(t)&=(u,
\cos tv+
\sin ty),\\
2118 \gamma_z(t)&=
\left(
\cos tu+
\frac\alpha\beta\sin tv,
2119 -
\frac\beta\alpha\sin tu+
\cos tv
\right).
2122 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2126 x& =y &&
\text {by (
\ref{eq:C
})
}\\
2127 x'& = y' &&
\text {by (
\ref{eq:D
})
}\\
2128 x+x' & = y+y' &&
\text {by Axiom
1.
}
2130 Some text after to test the below-display spacing.
2134 x& =y &&
\text {by (
\ref{eq:C
})
}\\
2135 x'& = y' &&
\text {by (
\ref{eq:D
})
}\\
2136 x+x' & = y+y' &&
\text {by Axiom
1.
}
2139 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2142 \subsection{Align and split within gather
}
2143 When using the
\env{align
} environment within the
\env{gather
}
2144 environment, one or the other, or both, should be unnumbered (using the
2145 \verb"*" form); numbering both the outer and inner environment would
2148 Automatically numbered
\env{gather
} with
\env{split
} and
\env{align*
}:
2150 \begin{split
} \varphi(x,z)
2151 &=z-
\gamma_{10}x-
\gamma_{mn
}x^mz^n\\
2152 &=z-Mr^
{-
1}x-Mr^
{-(m+n)
}x^mz^n
2155 \zeta^
0 &=(
\xi^
0)^
2,\\
2156 \zeta^
1 &=
\xi^
0\xi^
1,\\
2157 \zeta^
2 &=(
\xi^
1)^
2,
2160 Here the
\env{split
} environment gets a number from the outer
2161 \env{gather
} environment; numbers for individual lines of the
2162 \env{align*
} are suppressed because of the star.
2166 \begin{split
} \varphi(x,z)
2167 &=z-
\gamma_{10}x-
\gamma_{mn
}x^mz^n\\
2168 &=z-Mr^
{-
1}x-Mr^
{-(m+n)
}x^mz^n
2171 \zeta^
0 &=(
\xi^
0)^
2,\\
2172 \zeta^
1 &=
\xi^
0\xi^
1,\\
2173 \zeta^
2 &=(
\xi^
1)^
2,
2177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2179 The
\verb"*"-ed form of
\env{gather
} with the non-
\verb"*"-ed form of
2182 \begin{split
} \varphi(x,z)
2183 &=z-
\gamma_{10}x-
\gamma_{mn
}x^mz^n\\
2184 &=z-Mr^
{-
1}x-Mr^
{-(m+n)
}x^mz^n
2186 \begin{align
} \zeta^
0&=(
\xi^
0)^
2,\\
2187 \zeta^
1 &=
\xi^
0\xi^
1,\\
2188 \zeta^
2 &=(
\xi^
1)^
2,
2191 Some text after to test the below-display spacing.
2195 \begin{split
} \varphi(x,z)
2196 &=z-
\gamma_{10}x-
\gamma_{mn
}x^mz^n\\
2197 &=z-Mr^
{-
1}x-Mr^
{-(m+n)
}x^mz^n
2199 \begin{align
} \zeta^
0&=(
\xi^
0)^
2,\\
2200 \zeta^
1 &=
\xi^
0\xi^
1,\\
2201 \zeta^
2 &=(
\xi^
1)^
2,
2205 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2208 \subsection{Alignat
}
2211 V_i & =v_i - q_i v_j, &
\qquad X_i & = x_i - q_i x_j,
2212 &
\qquad U_i & = u_i,
2213 \qquad \text{for $i
\ne j$;
}\label{eq:B
}\\
2214 V_j & = v_j, &
\qquad X_j & = x_j,
2215 &
\qquad U_j & u_j +
\sum_{i
\ne j
} q_i u_i.
2217 Some text after to test the below-display spacing.
2221 V_i & =v_i - q_i v_j, &
\qquad X_i & = x_i - q_i x_j,
2222 &
\qquad U_i & = u_i,
2223 \qquad \text{for $i
\ne j$;
}\label{eq:B
}\\
2224 V_j & = v_j, &
\qquad X_j & = x_j,
2225 &
\qquad U_j & u_j +
\sum_{i
\ne j
} q_i u_i.
2228 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2232 V_i & =v_i - q_i v_j, &
\qquad X_i & = x_i - q_i x_j,
2233 &
\qquad U_i & = u_i,
2234 \qquad \text{for $i
\ne j$;
} \\
2235 V_j & = v_j, &
\qquad X_j & = x_j,
2236 &
\qquad U_j & u_j +
\sum_{i
\ne j
} q_i u_i.
2238 Some text after to test the below-display spacing.
2242 V_i & =v_i - q_i v_j, &
\qquad X_i & = x_i - q_i x_j,
2243 &
\qquad U_i & = u_i,
2244 \qquad \text{for $i
\ne j$;
} \\
2245 V_j & = v_j, &
\qquad X_j & = x_j,
2246 &
\qquad U_j & u_j +
\sum_{i
\ne j
} q_i u_i.
2249 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2252 The most common use for
\env{alignat
} is for things like
2254 x& =y &&
\qquad \text {by (
\ref{eq:A
})
}\label{eq:C
}\\
2255 x'& = y' &&
\qquad \text {by (
\ref{eq:B
})
}\label{eq:D
}\\
2256 x+x' & = y+y' &&
\qquad \text {by Axiom
1.
}
2258 Some text after to test the below-display spacing.
2262 x& =y &&
\qquad \text {by (
\ref{eq:A
})
}\label{eq:C
}\\
2263 x'& = y' &&
\qquad \text {by (
\ref{eq:B
})
}\label{eq:D
}\\
2264 x+x' & = y+y' &&
\qquad \text {by Axiom
1.
}
2267 %%%%%%%%%%%%%%%%%%%%%%%%%%%
2270 \setlength{\marginrulewidth}{0pt
}
2272 \begin{thebibliography
}{10}
2274 \bibitem{dihe:newdir
}
2275 W.~Diffie and E.~Hellman,
\emph{New directions in cryptography
}, IEEE
2276 Transactions on Information Theory
\textbf{22} (
1976), no.~
5,
644--
654.
2278 \bibitem{fre:cichon
}
2279 D.~H. Fremlin,
\emph{Cichon's diagram
},
1983/
1984, presented at the
2280 S
{\'e
}minaire Initiation
{\`a
} l'Analyse, G. Choquet, M. Rogalski, J.
2281 Saint Raymond, at the Universit
{\'e
} Pierre et Marie Curie, Paris,
23e
2284 \bibitem{gouja:lagrmeth
}
2285 I.~P. Goulden and D.~M. Jackson,
\emph{The enumeration of directed
2286 closed
{E
}uler trails and directed
{H
}amiltonian circuits by
2287 {L
}angrangian methods
}, European J. Combin.
\textbf{2} (
1981),
131--
212.
2289 \bibitem{hapa:graphenum
}
2290 F.~Harary and E.~M. Palmer,
\emph{Graphical enumeration
}, Academic
2293 \bibitem{imlelu:oneway
}
2294 R.~Impagliazzo, L.~Levin, and M.~Luby,
\emph{Pseudo-random generation
2295 from one-way functions
}, Proc.
21st STOC (
1989), ACM, New York,
2298 \bibitem{komiyo:unipfunc
}
2299 M.~Kojima, S.~Mizuno, and A.~Yoshise,
\emph{A new continuation method
2300 for complementarity problems with uniform p-functions
}, Tech. Report
2301 B-
194, Tokyo Inst. of Technology, Tokyo,
1987, Dept. of Information
2304 \bibitem{komiyo:lincomp
}
2305 \bysame,
\emph{A polynomial-time algorithm for a class of linear
2306 complementarity problems
}, Tech. Report B-
193, Tokyo Inst. of
2307 Technology, Tokyo,
1987, Dept. of Information Sciences.
2309 \bibitem{liuchow:formalsum
}
2310 C.~J. Liu and Yutze Chow,
\emph{On operator and formal sum methods for
2311 graph enumeration problems
}, SIAM J. Algorithms Discrete Methods
2312 \textbf{5} (
1984),
384--
438.
2314 \bibitem{mami:matrixth
}
2315 M.~Marcus and H.~Minc,
\emph{A survey of matrix theory and matrix
2316 inequalities
}, Complementary Series in Math.
\textbf{14} (
1964),
21--
48.
2318 \bibitem{miyoki:lincomp
}
2319 S.~Mizuno, A.~Yoshise, and T.~Kikuchi,
\emph{Practical polynomial time
2320 algorithms for linear complementarity problems
}, Tech. Report~
13, Tokyo
2321 Inst. of Technology, Tokyo, April
1988, Dept. of Industrial Engineering
2324 \bibitem{moad:quadpro
}
2325 R.~D. Monteiro and I.~Adler,
\emph{Interior path following primal-dual
2326 algorithms, part
{II
}: Quadratic programming
}, August
1987, Working
2327 paper, Dept. of Industrial Engineering and Operations Research.
2330 E.~M. Stein,
\emph{Singular integrals and differentiability properties
2331 of functions
}, Princeton Univ. Press, Princeton, N.J.,
1970.
2334 Y.~Ye,
\emph{Interior algorithms for linear, quadratic and linearly
2335 constrained convex programming
}, Ph.D. thesis, Stanford Univ., Palo
2336 Alto, Calif., July
1987, Dept. of Engineering--Economic Systems,
2339 \end{thebibliography
}