1 //-----------------------------------------------------------------------------
2 // ISO14443-A support for the Proxmark III
3 // Gerhard de Koning Gans, April 2008
4 //-----------------------------------------------------------------------------
6 // constants for the different modes:
8 `define TAGSIM_LISTEN 3'b001
9 `define TAGSIM_MOD 3'b010
10 `define READER_LISTEN 3'b011
11 `define READER_MOD 3'b100
14 pck0
, ck_1356meg
, ck_1356megb
,
15 pwr_lo
, pwr_hi
, pwr_oe1
, pwr_oe2
, pwr_oe3
, pwr_oe4
,
17 ssp_frame
, ssp_din
, ssp_dout
, ssp_clk
,
22 input pck0
, ck_1356meg
, ck_1356megb
;
23 output pwr_lo
, pwr_hi
, pwr_oe1
, pwr_oe2
, pwr_oe3
, pwr_oe4
;
27 output ssp_frame
, ssp_din
, ssp_clk
;
28 input cross_hi
, cross_lo
;
33 wire adc_clk
= ck_1356meg
;
37 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
39 // detecting and shaping the reader's signal. Reader will modulate the carrier by 100% (signal is either on or off). Use a
40 // hysteresis (Schmitt Trigger) to avoid false triggers during slowly increasing or decreasing carrier amplitudes
42 reg [11:0] has_been_low_for
;
44 always @(negedge adc_clk
)
46 if(adc_d
>= 16) after_hysteresis
<= 1'b1; // U >= 1,14V -> after_hysteresis = 1
47 else if(adc_d
< 8) after_hysteresis
<= 1'b0; // U < 1,04V -> after_hysteresis = 0
48 // Note: was >= 3,53V and <= 1,19V. The new trigger values allow more reliable detection of the first bit
49 // (it might not reach 3,53V due to the high time constant of the high pass filter in the analogue RF part).
50 // In addition, the new values are more in line with ISO14443-2: "The PICC shall detect the ”End of Pause” after the field exceeds
51 // 5% of H_INITIAL and before it exceeds 60% of H_INITIAL." Depending on the signal strength, 60% might well be less than 3,53V.
54 // detecting a loss of reader's field (adc_d < 192 for 4096 clock cycles). If this is the case,
55 // set the detected reader signal (after_hysteresis) to '1' (unmodulated)
58 has_been_low_for
<= 12'd0;
62 if(has_been_low_for
== 12'd4095)
64 has_been_low_for
<= 12'd0;
65 after_hysteresis
<= 1'b1;
69 has_been_low_for
<= has_been_low_for
+ 1;
77 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
79 // detect when a reader is active (modulating). We assume that the reader is active, if we see the carrier off for at least 8
80 // carrier cycles. We assume that the reader is inactive, if the carrier stayed high for at least 256 carrier cycles.
82 reg [2:0] deep_counter
;
83 reg [8:0] saw_deep_modulation
;
85 always @(negedge adc_clk
)
87 if(~(| adc_d
[7:0])) // if adc_d == 0 (U <= 0,94V)
89 if(deep_counter
== 3'd7) // adc_d == 0 for 8 adc_clk ticks -> deep_modulation (by reader)
91 deep_modulation
<= 1'b1;
92 saw_deep_modulation
<= 8'd0;
95 deep_counter
<= deep_counter
+ 1;
100 if(saw_deep_modulation
== 8'd255) // adc_d != 0 for 256 adc_clk ticks -> deep_modulation is over, probably waiting for tag's response
101 deep_modulation
<= 1'b0;
103 saw_deep_modulation
<= saw_deep_modulation
+ 1;
109 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
111 // filter the input for a tag's signal. The filter box needs the 4 previous input values and is a gaussian derivative filter
112 // for noise reduction and edge detection.
113 // store 4 previous samples:
114 reg [7:0] input_prev_4
, input_prev_3
, input_prev_2
, input_prev_1
;
115 // convert to signed signals (and multiply by two for samples at t-4 and t)
116 wire signed
[10:0] input_prev_4_times_2
= {0, 0, input_prev_4
, 0};
117 wire signed
[10:0] input_prev_3_times_1
= {0, 0, 0, input_prev_3
};
118 wire signed
[10:0] input_prev_1_times_1
= {0, 0, 0, input_prev_1
};
119 wire signed
[10:0] adc_d_times_2
= {0, 0, adc_d
, 0};
121 wire signed
[10:0] tmp_1
, tmp_2
;
122 wire signed
[10:0] adc_d_filtered
;
125 assign tmp_1
= input_prev_4_times_2
+ input_prev_3_times_1
;
126 assign tmp_2
= input_prev_1_times_1
+ adc_d_times_2
;
128 always @(negedge adc_clk
)
130 // for (i = 3; i > 0; i = i - 1)
132 // input_shift[i] <= input_shift[i-1];
134 // input_shift[0] <= adc_d;
135 input_prev_4
<= input_prev_3
;
136 input_prev_3
<= input_prev_2
;
137 input_prev_2
<= input_prev_1
;
138 input_prev_1
<= adc_d
;
141 // assign adc_d_filtered = (input_shift[3] << 1) + input_shift[2] - input_shift[0] - (adc_d << 1);
142 assign adc_d_filtered
= tmp_1
- tmp_2
;
145 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
146 // internal FPGA timing. Maximum required period is 128 carrier clock cycles for a full 8 Bit transfer to ARM. (i.e. we need a
147 // 7 bit counter). Adjust its frequency to external reader's clock when simulating a tag or sniffing.
148 reg pre_after_hysteresis
;
149 reg [3:0] reader_falling_edge_time
;
150 reg [6:0] negedge_cnt
;
152 always @(negedge adc_clk
)
154 // detect a reader signal's falling edge and remember its timing:
155 pre_after_hysteresis
<= after_hysteresis
;
156 if (pre_after_hysteresis
&& ~after_hysteresis
)
158 reader_falling_edge_time
[3:0] <= negedge_cnt
[3:0];
161 // adjust internal timer counter if necessary:
162 if (negedge_cnt
[3:0] == 4'd13 && (mod_type
== `SNIFFER || mod_type == `TAGSIM_LISTEN) && deep_modulation)
164 if (reader_falling_edge_time
== 4'd1) // reader signal changes right after sampling. Better sample earlier next time.
166 negedge_cnt
<= negedge_cnt
+ 2; // time warp
168 else if (reader_falling_edge_time
== 4'd0) // reader signal changes right before sampling. Better sample later next time.
170 negedge_cnt
<= negedge_cnt
; // freeze time
174 negedge_cnt
<= negedge_cnt
+ 1; // Continue as usual
176 reader_falling_edge_time
[3:0] <= 4'd8; // adjust only once per detected edge
178 else if (negedge_cnt
== 7'd127) // normal operation: count from 0 to 127
184 negedge_cnt
<= negedge_cnt
+ 1;
189 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
191 // determine best possible time for starting/resetting the modulation detector.
192 reg [3:0] mod_detect_reset_time
;
194 always @(negedge adc_clk
)
196 if (mod_type
== `READER_LISTEN)
197 // (our) reader signal changes at t=1, tag response expected n*16+4 ticks later, further delayed by
198 // 3 ticks ADC conversion.
201 mod_detect_reset_time
<= 4'd8;
204 if (mod_type
== `SNIFFER)
206 // detect a rising edge of reader's signal and sync modulation detector to the tag's answer:
207 if (~pre_after_hysteresis
&& after_hysteresis
&& deep_modulation
)
208 // reader signal rising edge detected at negedge_cnt[3:0]. This signal had been delayed
209 // 9 ticks by the RF part + 3 ticks by the A/D converter + 1 tick to assign to after_hysteresis.
210 // The tag will respond n*16 + 4 ticks later + 3 ticks A/D converter delay.
211 // - 9 - 3 - 1 + 4 + 3 = -6
213 mod_detect_reset_time
<= negedge_cnt
[3:0] - 4'd4;
219 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
221 // modulation detector. Looks for the steepest falling and rising edges within a 16 clock period. If there is both a significant
222 // falling and rising edge (in any order), a modulation is detected.
223 reg signed
[10:0] rx_mod_falling_edge_max
;
224 reg signed
[10:0] rx_mod_rising_edge_max
;
227 always @(negedge adc_clk
)
229 if(negedge_cnt
[3:0] == mod_detect_reset_time
)
231 // detect modulation signal: if modulating, there must have been a falling AND a rising edge
232 if (rx_mod_falling_edge_max
> 5 && rx_mod_rising_edge_max
> 5)
233 curbit
<= 1'b1; // modulation
235 curbit
<= 1'b0; // no modulation
236 // reset modulation detector
237 rx_mod_rising_edge_max
<= 0;
238 rx_mod_falling_edge_max
<= 0;
240 else // look for steepest edges (slopes)
242 if (adc_d_filtered
> 0)
244 if (adc_d_filtered
> rx_mod_falling_edge_max
)
245 rx_mod_falling_edge_max
<= adc_d_filtered
;
249 if (-adc_d_filtered
> rx_mod_rising_edge_max
)
250 rx_mod_rising_edge_max
<= -adc_d_filtered
;
258 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
260 // sample 4 bits reader data and 4 bits tag data for sniffing
261 reg [3:0] reader_data
;
264 always @(negedge adc_clk
)
266 if(negedge_cnt
[3:0] == 4'd0)
268 reader_data
[3:0] <= {reader_data
[2:0], after_hysteresis
};
269 tag_data
[3:0] <= {tag_data
[2:0], curbit
};
275 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
277 // a delay line to ensure that we send the (emulated) tag's answer at the correct time according to ISO14443-3
278 reg [31:0] mod_sig_buf
;
279 reg [4:0] mod_sig_ptr
;
282 always @(negedge adc_clk
)
284 if(negedge_cnt
[3:0] == 4'd0) // sample data at rising edge of ssp_clk - ssp_dout changes at the falling edge.
286 mod_sig_buf
[31:2] <= mod_sig_buf
[30:1]; // shift
287 if (~ssp_dout
&& ~mod_sig_buf
[1])
288 mod_sig_buf
[1] <= 1'b0; // delete the correction bit (a single 1 preceded and succeeded by 0)
290 mod_sig_buf
[1] <= mod_sig_buf
[0];
291 mod_sig_buf
[0] <= ssp_dout
; // add new data to the delay line
293 mod_sig
= mod_sig_buf
[mod_sig_ptr
]; // the delayed signal.
299 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
300 // PM3 -> Tag, internal timing:
301 // a timer for the 1172 cycles fdt (Frame Delay Time). Start the timer with a rising edge of the reader's signal.
302 // set fdt_elapsed when we no longer need to delay data. Set fdt_indicator when we can start sending data.
303 // Note: the FPGA only takes care for the 1172 delay. To achieve an additional 1236-1172=64 ticks delay, the ARM must send
304 // a correction bit (before the start bit). The correction bit will be coded as 00010000, i.e. it adds 4 bits to the
305 // transmission stream, causing the required additional delay.
306 reg [10:0] fdt_counter
;
307 reg fdt_indicator
, fdt_elapsed
;
308 reg [3:0] mod_sig_flip
;
309 reg [3:0] sub_carrier_cnt
;
311 // we want to achieve a delay of 1172. The RF part already has delayed the reader signals's rising edge
312 // by 9 ticks, the ADC took 3 ticks and there is always a delay of 32 ticks by the mod_sig_buf. Therefore need to
313 // count to 1172 - 9 - 3 - 32 = 1128
314 `define FDT_COUNT 11'd1128
316 // The ARM must not send too early, otherwise the mod_sig_buf will overflow, therefore signal that we are ready
317 // with fdt_indicator. The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks.
318 // fdt_indicator could appear at ssp_din after 1 tick, the transfer needs 16 ticks, the ARM can send 128 ticks later.
319 // 1128 - 464 - 1 - 128 - 8 = 535
320 `define FDT_INDICATOR_COUNT 11'd535
322 // reset on a pause in listen mode. I.e. the counter starts when the pause is over:
323 assign fdt_reset
= ~after_hysteresis
&& mod_type
== `TAGSIM_LISTEN;
325 always @(negedge adc_clk
)
329 fdt_counter
<= 11'd0;
331 fdt_indicator
<= 1'b0;
335 if(fdt_counter
== `FDT_COUNT)
337 if(~fdt_elapsed
) // just reached fdt.
339 mod_sig_flip
<= negedge_cnt
[3:0]; // start modulation at this time
340 sub_carrier_cnt
<= 4'd0; // subcarrier phase in sync with start of modulation
345 sub_carrier_cnt
<= sub_carrier_cnt
+ 1;
350 fdt_counter
<= fdt_counter
+ 1;
354 if(fdt_counter
== `FDT_INDICATOR_COUNT) fdt_indicator <= 1'b1;
358 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
359 // PM3 -> Reader or Tag
360 // assign a modulation signal to the antenna. This signal is either a delayed signal (to achieve fdt when sending to a reader)
361 // or undelayed when sending to a tag
364 always @(negedge adc_clk
)
366 if (mod_type
== `TAGSIM_MOD) // need to take care of proper fdt timing
368 if(fdt_counter
== `FDT_COUNT)
372 if(negedge_cnt
[3:0] == mod_sig_flip
) mod_sig_coil
<= mod_sig
;
376 mod_sig_coil
<= mod_sig
; // just reached fdt. Immediately assign signal to coil
380 else // other modes: don't delay
382 mod_sig_coil
<= ssp_dout
;
388 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
390 // determine the required delay in the mod_sig_buf (set mod_sig_ptr).
391 reg temp_buffer_reset
;
393 always @(negedge adc_clk
)
398 temp_buffer_reset
= 1'b0;
402 if(fdt_counter
== `FDT_COUNT && ~fdt_elapsed) // if we just reached fdt
403 if(~(| mod_sig_ptr
[4:0]))
404 mod_sig_ptr
<= 5'd8; // ... but didn't buffer a 1 yet, delay next 1 by n*128 ticks.
406 temp_buffer_reset
= 1'b1; // else no need for further delays.
408 if(negedge_cnt
[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge.
410 if((ssp_dout ||
(| mod_sig_ptr
[4:0])) && ~fdt_elapsed
) // buffer a 1 (and all subsequent data) until fdt is reached.
411 if (mod_sig_ptr
== 5'd31)
412 mod_sig_ptr
<= 5'd0; // buffer overflow - data loss.
414 mod_sig_ptr
<= mod_sig_ptr
+ 1; // increase buffer (= increase delay by 16 adc_clk ticks). mod_sig_ptr always points ahead of first 1.
415 else if(fdt_elapsed
&& ~temp_buffer_reset
)
417 // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
418 // at intervals of 8 * 16 = 128 adc_clk ticks (as defined in ISO14443-3)
420 temp_buffer_reset
= 1'b1;
421 if(mod_sig_ptr
== 5'd1)
422 mod_sig_ptr
<= 5'd8; // still nothing received, need to go for the next interval
424 mod_sig_ptr
<= mod_sig_ptr
- 1; // decrease buffer.
432 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
433 // FPGA -> ARM communication:
434 // buffer 8 bits data to be sent to ARM. Shift them out bit by bit.
437 always @(negedge adc_clk
)
439 if (negedge_cnt
[5:0] == 6'd63) // fill the buffer
441 if (mod_type
== `SNIFFER)
443 if(deep_modulation
) // a reader is sending (or there's no field at all)
445 to_arm
<= {reader_data
[3:0], 4'b0000}; // don't send tag data
449 to_arm
<= {reader_data
[3:0], tag_data
[3:0]};
454 to_arm
[7:0] <= {mod_sig_ptr
[4:0], mod_sig_flip
[3:1]}; // feedback timing information
458 if(negedge_cnt
[2:0] == 3'b000 && mod_type
== `SNIFFER) // shift at double speed
460 // Don't shift if we just loaded new data, obviously.
461 if(negedge_cnt
[5:0] != 6'd0)
463 to_arm
[7:1] <= to_arm
[6:0];
467 if(negedge_cnt
[3:0] == 4'b0000 && mod_type
!= `SNIFFER)
469 // Don't shift if we just loaded new data, obviously.
470 if(negedge_cnt
[6:0] != 7'd0)
472 to_arm
[7:1] <= to_arm
[6:0];
479 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
480 // FPGA -> ARM communication:
481 // generate a ssp clock and ssp frame signal for the synchronous transfer from/to the ARM
484 reg [2:0] ssp_frame_counter
;
486 always @(negedge adc_clk
)
488 if(mod_type
== `SNIFFER)
489 // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
491 if(negedge_cnt
[2:0] == 3'd0)
493 if(negedge_cnt
[2:0] == 3'd4)
496 if(negedge_cnt
[5:0] == 6'd0) // ssp_frame rising edge indicates start of frame
498 if(negedge_cnt
[5:0] == 6'd8)
502 // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
504 if(negedge_cnt
[3:0] == 4'd0)
506 if(negedge_cnt
[3:0] == 4'd8)
509 if(negedge_cnt
[6:0] == 7'd7) // ssp_frame rising edge indicates start of frame
511 if(negedge_cnt
[6:0] == 7'd23)
518 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
519 // FPGA -> ARM communication:
520 // select the data to be sent to ARM
524 always @(negedge adc_clk
)
526 if(negedge_cnt
[3:0] == 4'd0)
528 // What do we communicate to the ARM
529 if(mod_type
== `TAGSIM_LISTEN)
530 sendbit
= after_hysteresis
;
531 else if(mod_type
== `TAGSIM_MOD)
532 /* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh?
534 sendbit
= fdt_indicator
;
535 else if (mod_type
== `READER_LISTEN)
542 if(mod_type
== `SNIFFER)
543 // send sampled reader and tag data:
544 bit_to_arm
= to_arm
[7];
545 else if (mod_type
== `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset)
546 // send timing information:
547 bit_to_arm
= to_arm
[7];
549 // send data or fdt_indicator
550 bit_to_arm
= sendbit
;
556 assign ssp_din
= bit_to_arm
;
558 // Subcarrier (adc_clk/16, for TAGSIM_MOD only).
560 assign sub_carrier
= ~sub_carrier_cnt
[3];
562 // in READER_MOD: drop carrier for mod_sig_coil==1 (pause); in READER_LISTEN: carrier always on; in other modes: carrier always off
563 assign pwr_hi
= (ck_1356megb
& (((mod_type
== `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN)));
566 // Enable HF antenna drivers:
567 assign pwr_oe1
= 1'b0;
568 assign pwr_oe3
= 1'b0;
570 // TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil)
571 // for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
572 // for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
573 assign pwr_oe4
= mod_sig_coil
& sub_carrier
& (mod_type
== `TAGSIM_MOD);
575 // This is all LF, so doesn't matter.
576 assign pwr_oe2
= 1'b0;
577 assign pwr_lo
= 1'b0;
580 assign dbg
= negedge_cnt
[3];