1 //-----------------------------------------------------------------------------
3 // Jonathan Westhues, April 2006
4 //-----------------------------------------------------------------------------
6 module hi_read_rx_xcorr(
7 pck0
, ck_1356meg
, ck_1356megb
,
8 pwr_lo
, pwr_hi
, pwr_oe1
, pwr_oe2
, pwr_oe3
, pwr_oe4
,
10 ssp_frame
, ssp_din
, ssp_dout
, ssp_clk
,
13 xcorr_is_848
, snoop
, xcorr_quarter_freq
15 input pck0
, ck_1356meg
, ck_1356megb
;
16 output pwr_lo
, pwr_hi
, pwr_oe1
, pwr_oe2
, pwr_oe3
, pwr_oe4
;
20 output ssp_frame
, ssp_din
, ssp_clk
;
21 input cross_hi
, cross_lo
;
23 input xcorr_is_848
, snoop
, xcorr_quarter_freq
;
25 // Carrier is steady on through this, unless we're snooping.
26 assign pwr_hi
= ck_1356megb
& (~snoop
);
27 assign pwr_oe1
= 1'b0;
28 assign pwr_oe2
= 1'b0;
29 assign pwr_oe3
= 1'b0;
30 assign pwr_oe4
= 1'b0;
36 always @(posedge ck_1356meg
)
40 always @(posedge fc_div_2
)
44 always @(posedge fc_div_4
)
49 always @(xcorr_is_848
or xcorr_quarter_freq
or ck_1356meg
)
50 if(~xcorr_quarter_freq
)
53 // The subcarrier frequency is fc/16; we will sample at fc, so that
54 // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ...
55 adc_clk
<= ck_1356meg
;
57 // The subcarrier frequency is fc/32; we will sample at fc/2, and
58 // the subcarrier will look identical.
64 // The subcarrier frequency is fc/64
67 // The subcarrier frequency is fc/128
71 // When we're a reader, we just need to do the BPSK demod; but when we're an
72 // eavesdropper, we also need to pick out the commands sent by the reader,
73 // using AM. Do this the same way that we do it for the simulated tag.
74 reg after_hysteresis
, after_hysteresis_prev
;
75 reg [11:0] has_been_low_for
;
76 always @(negedge adc_clk
)
78 if(& adc_d
[7:0]) after_hysteresis
<= 1'b1;
79 else if(~(| adc_d
[7:0])) after_hysteresis
<= 1'b0;
83 has_been_low_for
<= 7'b0;
87 if(has_been_low_for
== 12'd4095)
89 has_been_low_for
<= 12'd0;
90 after_hysteresis
<= 1'b1;
93 has_been_low_for
<= has_been_low_for
+ 1;
97 // Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,
98 // so we need a 6-bit counter.
100 reg [5:0] corr_q_cnt
;
101 // And a couple of registers in which to accumulate the correlations.
102 reg signed
[15:0] corr_i_accum
;
103 reg signed
[15:0] corr_q_accum
;
104 reg signed
[7:0] corr_i_out
;
105 reg signed
[7:0] corr_q_out
;
107 // ADC data appears on the rising edge, so sample it on the falling edge
108 always @(negedge adc_clk
)
110 // These are the correlators: we correlate against in-phase and quadrature
111 // versions of our reference signal, and keep the (signed) result to
112 // send out later over the SSP.
113 if(corr_i_cnt
== 7'd63)
117 corr_i_out
<= {corr_i_accum
[12:6], after_hysteresis_prev
};
118 corr_q_out
<= {corr_q_accum
[12:6], after_hysteresis
};
122 // Only correlations need to be delivered.
123 corr_i_out
<= corr_i_accum
[13:6];
124 corr_q_out
<= corr_q_accum
[13:6];
127 corr_i_accum
<= adc_d
;
128 corr_q_accum
<= adc_d
;
135 corr_i_accum
<= corr_i_accum
- adc_d
;
137 corr_i_accum
<= corr_i_accum
+ adc_d
;
140 corr_q_accum
<= corr_q_accum
- adc_d
;
142 corr_q_accum
<= corr_q_accum
+ adc_d
;
144 corr_i_cnt
<= corr_i_cnt
+ 1;
145 corr_q_cnt
<= corr_q_cnt
+ 1;
148 // The logic in hi_simulate.v reports 4 samples per bit. We report two
149 // (I, Q) pairs per bit, so we should do 2 samples per pair.
150 if(corr_i_cnt
== 6'd31)
151 after_hysteresis_prev
<= after_hysteresis
;
153 // Then the result from last time is serialized and send out to the ARM.
154 // We get one report each cycle, and each report is 16 bits, so the
155 // ssp_clk should be the adc_clk divided by 64/16 = 4.
157 if(corr_i_cnt
[1:0] == 2'b10)
160 if(corr_i_cnt
[1:0] == 2'b00)
163 // Don't shift if we just loaded new data, obviously.
164 if(corr_i_cnt
!= 7'd0)
166 corr_i_out
[7:0] <= {corr_i_out
[6:0], corr_q_out
[7]};
167 corr_q_out
[7:1] <= corr_q_out
[6:0];
171 if(corr_i_cnt
[5:2] == 4'b000 || corr_i_cnt
[5:2] == 4'b1000)
178 assign ssp_din
= corr_i_out
[7];
180 assign dbg
= corr_i_cnt
[3];
183 assign pwr_lo
= 1'b0;