1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
14 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
16 static const uint8_t THRESHOLD
= 123;
17 //test samples are not just noise
18 uint8_t justNoise1
= 1;
19 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
20 justNoise1
= BitStream
[idx
] < THRESHOLD
;
26 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
27 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
31 // get high and low thresholds
32 for (size_t i
=0; i
< size
; i
++){
33 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
34 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
36 if (*high
< 123) return -1; // just noise
37 *high
= ((*high
-128)*fuzzHi
+ 12800)/100;
38 *low
= ((*low
-128)*fuzzLo
+ 12800)/100;
43 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
44 // returns 1 if passed
45 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
48 for (uint8_t i
= 0; i
< bitLen
; i
++){
49 ans
^= ((bits
>> i
) & 1);
51 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
52 return (ans
== pType
);
56 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
57 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
60 for (int idx
=0; idx
< *size
- pLen
; idx
++){
61 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
68 *size
= idx
- *startIdx
;
77 //takes 1s and 0s and searches for EM410x format - output EM ID
78 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
80 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
81 // otherwise could be a void with no arguments
84 if (BitStream
[1]>1) return 0; //allow only 1s and 0s
86 // 111111111 bit pattern represent start of frame
87 // include 0 in front to help get start pos
88 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
90 uint32_t parityBits
= 0;
94 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
95 if (errChk
== 0 || *size
< 64) return 0;
96 if (*size
> 64) FmtLen
= 22;
97 *startIdx
+= 1; //get rid of 0 from preamble
99 for (i
=0; i
<FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
100 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
101 //check even parity - quit if failed
102 if (parityTest(parityBits
, 5, 0) == 0) return 0;
103 //set uint64 with ID from BitStream
104 for (uint8_t ii
=0; ii
<4; ii
++){
105 *hi
= (*hi
<< 1) | (*lo
>> 63);
106 *lo
= (*lo
<< 1) | (BitStream
[(i
*5)+ii
+idx
]);
109 if (errChk
!= 0) return 1;
110 //skip last 5 bit parity test for simplicity.
116 //demodulates strong heavily clipped samples
117 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
119 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
120 uint8_t waveHigh
= 0;
121 for (size_t i
=0; i
< *size
; i
++){
122 if (BinStream
[i
] >= high
&& waveHigh
){
124 } else if (BinStream
[i
] <= low
&& !waveHigh
){
126 } else { //transition
127 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
128 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
129 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
131 BinStream
[bitCnt
++]=7;
132 } else if (waveHigh
) {
133 BinStream
[bitCnt
++] = invert
;
134 BinStream
[bitCnt
++] = invert
;
135 } else if (!waveHigh
) {
136 BinStream
[bitCnt
++] = invert
^ 1;
137 BinStream
[bitCnt
++] = invert
^ 1;
141 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) {
143 BinStream
[bitCnt
++] = invert
;
144 } else if (!waveHigh
) {
145 BinStream
[bitCnt
++] = invert
^ 1;
149 } else if (!bitCnt
) {
151 waveHigh
= (BinStream
[i
] >= high
);
155 //transition bit oops
157 } else { //haven't hit new high or new low yet
167 void askAmp(uint8_t *BitStream
, size_t size
)
169 for(size_t i
= 1; i
<size
; i
++){
170 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
172 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
179 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
180 int askdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
182 if (*size
==0) return -1;
183 int start
= DetectASKClock(BinStream
, *size
, clk
, maxErr
); //clock default
184 if (*clk
==0 || start
< 0) return -3;
185 if (*invert
!= 1) *invert
= 0;
186 if (amp
==1) askAmp(BinStream
, *size
);
188 uint8_t initLoopMax
= 255;
189 if (initLoopMax
> *size
) initLoopMax
= *size
;
190 // Detect high and lows
191 //25% clip in case highs and lows aren't clipped [marshmellow]
193 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1)
194 return -2; //just noise
197 // if clean clipped waves detected run alternate demod
198 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
199 errCnt
= cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
200 if (askType
) //askman
201 return manrawdecode(BinStream
, size
, 0);
206 int lastBit
; //set first clock check - can go negative
207 size_t i
, bitnum
= 0; //output counter
209 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
210 if (*clk
<= 32) tol
= 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
211 size_t MaxBits
= 1024;
212 lastBit
= start
- *clk
;
214 for (i
= start
; i
< *size
; ++i
) {
215 if (i
-lastBit
>= *clk
-tol
){
216 if (BinStream
[i
] >= high
) {
217 BinStream
[bitnum
++] = *invert
;
218 } else if (BinStream
[i
] <= low
) {
219 BinStream
[bitnum
++] = *invert
^ 1;
220 } else if (i
-lastBit
>= *clk
+tol
) {
222 BinStream
[bitnum
++]=7;
225 } else { //in tolerance - looking for peak
230 } else if (i
-lastBit
>= (*clk
/2-tol
) && !midBit
&& !askType
){
231 if (BinStream
[i
] >= high
) {
232 BinStream
[bitnum
++] = *invert
;
233 } else if (BinStream
[i
] <= low
) {
234 BinStream
[bitnum
++] = *invert
^ 1;
235 } else if (i
-lastBit
>= *clk
/2+tol
) {
236 BinStream
[bitnum
] = BinStream
[bitnum
-1];
238 } else { //in tolerance - looking for peak
243 if (bitnum
>= MaxBits
) break;
250 //take 10 and 01 and manchester decode
251 //run through 2 times and take least errCnt
252 int manrawdecode(uint8_t * BitStream
, size_t *size
, uint8_t invert
)
254 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
256 uint16_t bestErr
= 1000, bestRun
= 0;
257 if (*size
< 16) return -1;
258 //find correct start position [alignment]
259 for (ii
=0;ii
<2;++ii
){
260 for (i
=ii
; i
<*size
-3; i
+=2)
261 if (BitStream
[i
]==BitStream
[i
+1])
271 for (i
=bestRun
; i
< *size
-3; i
+=2){
272 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
273 BitStream
[bitnum
++]=invert
;
274 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
275 BitStream
[bitnum
++]=invert
^1;
277 BitStream
[bitnum
++]=7;
279 if(bitnum
>MaxBits
) break;
286 //encode binary data into binary manchester
287 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
289 size_t modIdx
=20000, i
=0;
290 if (size
>modIdx
) return -1;
291 for (size_t idx
=0; idx
< size
; idx
++){
292 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
293 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
295 for (; i
<(size
*2); i
++){
296 BitStream
[i
] = BitStream
[i
+20000];
302 //take 01 or 10 = 1 and 11 or 00 = 0
303 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
304 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
305 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
310 uint16_t MaxBits
=512;
311 //if not enough samples - error
312 if (*size
< 51) return -1;
313 //check for phase change faults - skip one sample if faulty
314 uint8_t offsetA
= 1, offsetB
= 1;
316 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
317 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
319 if (!offsetA
&& offsetB
) offset
++;
320 for (i
=offset
; i
<*size
-3; i
+=2){
321 //check for phase error
322 if (BitStream
[i
+1]==BitStream
[i
+2]) {
323 BitStream
[bitnum
++]=7;
326 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
327 BitStream
[bitnum
++]=1^invert
;
328 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
329 BitStream
[bitnum
++]=invert
;
331 BitStream
[bitnum
++]=7;
334 if(bitnum
>MaxBits
) break;
341 // demod gProxIIDemod
342 // error returns as -x
343 // success returns start position in BitStream
344 // BitStream must contain previously askrawdemod and biphasedemoded data
345 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
348 uint8_t preamble
[] = {1,1,1,1,1,0};
350 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
351 if (errChk
== 0) return -3; //preamble not found
352 if (*size
!= 96) return -2; //should have found 96 bits
353 //check first 6 spacer bits to verify format
354 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
355 //confirmed proper separator bits found
356 //return start position
357 return (int) startIdx
;
362 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
363 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
365 size_t last_transition
= 0;
368 if (fchigh
==0) fchigh
=10;
369 if (fclow
==0) fclow
=8;
370 //set the threshold close to 0 (graph) or 128 std to avoid static
371 uint8_t threshold_value
= 123;
373 // sync to first lo-hi transition, and threshold
375 // Need to threshold first sample
377 if(dest
[0] < threshold_value
) dest
[0] = 0;
381 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
382 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
383 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
384 for(idx
= 1; idx
< size
; idx
++) {
385 // threshold current value
387 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
390 // Check for 0->1 transition
391 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
392 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
393 //do nothing with extra garbage
394 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
396 } else if ((idx
-last_transition
) > (fchigh
+1) && !numBits
) { //12 + and first bit = garbage
397 //do nothing with beginning garbage
398 } else { //9+ = 10 waves
401 last_transition
= idx
;
404 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
407 //translate 11111100000 to 10
408 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
,
409 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
411 uint8_t lastval
=dest
[0];
415 for( idx
=1; idx
< size
; idx
++) {
417 if (dest
[idx
]==lastval
) continue;
419 //if lastval was 1, we have a 1->0 crossing
420 if (dest
[idx
-1]==1) {
421 if (!numBits
&& n
< rfLen
/fclow
) {
426 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
427 } else {// 0->1 crossing
428 //test first bitsample too small
429 if (!numBits
&& n
< rfLen
/fchigh
) {
434 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
438 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
443 // if valid extra bits at the end were all the same frequency - add them in
444 if (n
> rfLen
/fchigh
) {
445 if (dest
[idx
-2]==1) {
446 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
448 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
450 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
455 //by marshmellow (from holiman's base)
456 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
457 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
460 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
461 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
);
465 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
466 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
468 if (justNoise(dest
, *size
)) return -1;
470 size_t numStart
=0, size2
=*size
, startIdx
=0;
472 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
473 if (*size
< 96*2) return -2;
474 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
475 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
476 // find bitstring in array
477 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
478 if (errChk
== 0) return -3; //preamble not found
480 numStart
= startIdx
+ sizeof(preamble
);
481 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
482 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
483 if (dest
[idx
] == dest
[idx
+1]){
484 return -4; //not manchester data
486 *hi2
= (*hi2
<<1)|(*hi
>>31);
487 *hi
= (*hi
<<1)|(*lo
>>31);
488 //Then, shift in a 0 or one into low
489 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
494 return (int)startIdx
;
497 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
498 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
500 if (justNoise(dest
, *size
)) return -1;
502 size_t numStart
=0, size2
=*size
, startIdx
=0;
504 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
505 if (*size
< 96) return -2;
507 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
508 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
510 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
511 if (errChk
== 0) return -3; //preamble not found
513 numStart
= startIdx
+ sizeof(preamble
);
514 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
515 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
516 if (dest
[idx
] == dest
[idx
+1])
517 return -4; //not manchester data
518 *hi2
= (*hi2
<<1)|(*hi
>>31);
519 *hi
= (*hi
<<1)|(*lo
>>31);
520 //Then, shift in a 0 or one into low
521 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
526 return (int)startIdx
;
529 uint32_t bytebits_to_byte(uint8_t* src
, size_t numbits
)
532 for(int i
= 0 ; i
< numbits
; i
++)
534 num
= (num
<< 1) | (*src
);
540 int IOdemodFSK(uint8_t *dest
, size_t size
)
542 if (justNoise(dest
, size
)) return -1;
543 //make sure buffer has data
544 if (size
< 66*64) return -2;
546 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
547 if (size
< 65) return -3; //did we get a good demod?
549 //0 10 20 30 40 50 60
551 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
552 //-----------------------------------------------------------------------------
553 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
555 //XSF(version)facility:codeone+codetwo
558 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
559 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
560 if (errChk
== 0) return -4; //preamble not found
562 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
563 //confirmed proper separator bits found
564 //return start position
565 return (int) startIdx
;
571 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
572 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
573 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
575 uint32_t parityWd
= 0;
576 size_t j
= 0, bitCnt
= 0;
577 for (int word
= 0; word
< (bLen
); word
+=pLen
){
578 for (int bit
=0; bit
< pLen
; bit
++){
579 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
580 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
583 // if parity fails then return 0
584 if (parityTest(parityWd
, pLen
, pType
) == 0) return -1;
588 // if we got here then all the parities passed
589 //return ID start index and size
594 // FSK Demod then try to locate an AWID ID
595 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
597 //make sure buffer has enough data
598 if (*size
< 96*50) return -1;
600 if (justNoise(dest
, *size
)) return -2;
603 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
604 if (*size
< 96) return -3; //did we get a good demod?
606 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
608 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
609 if (errChk
== 0) return -4; //preamble not found
610 if (*size
!= 96) return -5;
611 return (int)startIdx
;
615 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
616 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
618 //make sure buffer has data
619 if (*size
< 128*50) return -5;
621 //test samples are not just noise
622 if (justNoise(dest
, *size
)) return -1;
625 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
626 if (*size
< 128) return -2; //did we get a good demod?
628 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
630 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
631 if (errChk
== 0) return -4; //preamble not found
632 if (*size
!= 128) return -3;
633 return (int)startIdx
;
637 // to detect a wave that has heavily clipped (clean) samples
638 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
642 size_t loopEnd
= 512+60;
643 if (loopEnd
> size
) loopEnd
= size
;
644 for (size_t i
=60; i
<loopEnd
; i
++){
645 if (dest
[i
]>low
&& dest
[i
]<high
)
651 if (cntPeaks
> 300) return 1;
657 // to help detect clocks on heavily clipped samples
658 // based on count of low to low
659 int DetectStrongAskClock(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
661 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
665 // get to first full low to prime loop and skip incomplete first pulse
666 while ((dest
[i
] < high
) && (i
< size
))
668 while ((dest
[i
] > low
) && (i
< size
))
671 // loop through all samples
673 // measure from low to low
674 while ((dest
[i
] > low
) && (i
< size
))
677 while ((dest
[i
] < high
) && (i
< size
))
679 while ((dest
[i
] > low
) && (i
< size
))
681 //get minimum measured distance
682 if (i
-startwave
< minClk
&& i
< size
)
683 minClk
= i
- startwave
;
686 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++) {
687 if (minClk
>= fndClk
[clkCnt
]-(fndClk
[clkCnt
]/8) && minClk
<= fndClk
[clkCnt
]+1)
688 return fndClk
[clkCnt
];
694 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
695 // maybe somehow adjust peak trimming value based on samples to fix?
696 // return start index of best starting position for that clock and return clock (by reference)
697 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
700 uint8_t clk
[] = {255,8,16,32,40,50,64,100,128,255};
702 uint8_t loopCnt
= 255; //don't need to loop through entire array...
703 if (size
<= loopCnt
) return -1; //not enough samples
705 //if we already have a valid clock
708 if (clk
[i
] == *clock
) clockFnd
= i
;
709 //clock found but continue to find best startpos
711 //get high and low peak
713 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return -1;
715 //test for large clean peaks
717 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
718 int ans
= DetectStrongAskClock(dest
, size
, peak
, low
);
719 for (i
=clkEnd
-1; i
>0; i
--){
723 return 0; // for strong waves i don't use the 'best start position' yet...
724 //break; //clock found but continue to find best startpos [not yet]
731 uint8_t clkCnt
, tol
= 0;
732 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
733 uint8_t bestStart
[]={0,0,0,0,0,0,0,0,0};
735 size_t arrLoc
, loopEnd
;
743 //test each valid clock from smallest to greatest to see which lines up
744 for(; clkCnt
< clkEnd
; clkCnt
++){
745 if (clk
[clkCnt
] <= 32){
750 //if no errors allowed - keep start within the first clock
751 if (!maxErr
&& size
> clk
[clkCnt
]*2 + tol
&& clk
[clkCnt
]<128) loopCnt
=clk
[clkCnt
]*2;
752 bestErr
[clkCnt
]=1000;
753 //try lining up the peaks by moving starting point (try first few clocks)
754 for (ii
=0; ii
< loopCnt
; ii
++){
755 if (dest
[ii
] < peak
&& dest
[ii
] > low
) continue;
758 // now that we have the first one lined up test rest of wave array
759 loopEnd
= ((size
-ii
-tol
) / clk
[clkCnt
]) - 1;
760 for (i
=0; i
< loopEnd
; ++i
){
761 arrLoc
= ii
+ (i
* clk
[clkCnt
]);
762 if (dest
[arrLoc
] >= peak
|| dest
[arrLoc
] <= low
){
763 }else if (dest
[arrLoc
-tol
] >= peak
|| dest
[arrLoc
-tol
] <= low
){
764 }else if (dest
[arrLoc
+tol
] >= peak
|| dest
[arrLoc
+tol
] <= low
){
765 }else{ //error no peak detected
769 //if we found no errors then we can stop here and a low clock (common clocks)
770 // this is correct one - return this clock
771 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
772 if(errCnt
==0 && clkCnt
<7) {
773 if (!clockFnd
) *clock
= clk
[clkCnt
];
776 //if we found errors see if it is lowest so far and save it as best run
777 if(errCnt
<bestErr
[clkCnt
]){
778 bestErr
[clkCnt
]=errCnt
;
779 bestStart
[clkCnt
]=ii
;
785 for (iii
=1; iii
<clkEnd
; ++iii
){
786 if (bestErr
[iii
] < bestErr
[best
]){
787 if (bestErr
[iii
] == 0) bestErr
[iii
]=1;
788 // current best bit to error ratio vs new bit to error ratio
789 if ( (size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
] ){
794 //if (bestErr[best] > maxErr) return -1;
795 if (!clockFnd
) *clock
= clk
[best
];
796 return bestStart
[best
];
800 //detect psk clock by reading each phase shift
801 // a phase shift is determined by measuring the sample length of each wave
802 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
804 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
805 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
806 if (size
== 0) return 0;
807 if (size
<loopCnt
) loopCnt
= size
;
809 //if we already have a valid clock quit
812 if (clk
[i
] == clock
) return clock
;
814 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
815 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
816 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
817 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
818 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
819 fc
= countFC(dest
, size
, 0);
820 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
821 //PrintAndLog("DEBUG: FC: %d",fc);
823 //find first full wave
824 for (i
=0; i
<loopCnt
; i
++){
825 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
826 if (waveStart
== 0) {
828 //PrintAndLog("DEBUG: waveStart: %d",waveStart);
831 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
832 waveLenCnt
= waveEnd
-waveStart
;
833 if (waveLenCnt
> fc
){
834 firstFullWave
= waveStart
;
835 fullWaveLen
=waveLenCnt
;
842 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
844 //test each valid clock from greatest to smallest to see which lines up
845 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
846 lastClkBit
= firstFullWave
; //set end of wave as clock align
850 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
852 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
853 //top edge of wave = start of new wave
854 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
855 if (waveStart
== 0) {
860 waveLenCnt
= waveEnd
-waveStart
;
861 if (waveLenCnt
> fc
){
862 //if this wave is a phase shift
863 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
864 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
866 lastClkBit
+=clk
[clkCnt
];
867 } else if (i
<lastClkBit
+8){
868 //noise after a phase shift - ignore
869 } else { //phase shift before supposed to based on clock
872 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
873 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
882 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
883 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
885 //all tested with errors
886 //return the highest clk with the most peaks found
888 for (i
=7; i
>=1; i
--){
889 if (peaksdet
[i
] > peaksdet
[best
]) {
892 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
898 //detect nrz clock by reading #peaks vs no peaks(or errors)
899 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
902 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
903 size_t loopCnt
= 4096; //don't need to loop through entire array...
904 if (size
== 0) return 0;
905 if (size
<loopCnt
) loopCnt
= size
;
907 //if we already have a valid clock quit
909 if (clk
[i
] == clock
) return clock
;
911 //get high and low peak
913 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return 0;
915 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
920 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0};
922 //test for large clipped waves
923 for (i
=0; i
<loopCnt
; i
++){
924 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
927 if (peakcnt
>0 && maxPeak
< peakcnt
){
934 //test each valid clock from smallest to greatest to see which lines up
935 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
936 //ignore clocks smaller than largest peak
937 if (clk
[clkCnt
]<maxPeak
) continue;
939 //try lining up the peaks by moving starting point (try first 256)
940 for (ii
=0; ii
< loopCnt
; ++ii
){
941 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
943 // now that we have the first one lined up test rest of wave array
944 for (i
=0; i
< ((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
945 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
949 if(peakcnt
>peaksdet
[clkCnt
]) {
950 peaksdet
[clkCnt
]=peakcnt
;
957 for (iii
=7; iii
> 0; iii
--){
958 if (peaksdet
[iii
] > peaksdet
[best
]){
961 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
967 // convert psk1 demod to psk2 demod
968 // only transition waves are 1s
969 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
972 uint8_t lastBit
=BitStream
[0];
974 if (BitStream
[i
]==7){
976 } else if (lastBit
!=BitStream
[i
]){
977 lastBit
=BitStream
[i
];
987 // convert psk2 demod to psk1 demod
988 // from only transition waves are 1s to phase shifts change bit
989 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
992 for (size_t i
=0; i
<size
; i
++){
993 if (BitStream
[i
]==1){
1001 // redesigned by marshmellow adjusted from existing decode functions
1002 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1003 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1005 //26 bit 40134 format (don't know other formats)
1007 int long_wait
=29;//29 leading zeros in format
1013 // Finding the start of a UID
1014 for (start
= 0; start
<= *size
- 250; start
++) {
1015 first
= bitStream
[start
];
1016 for (i
= start
; i
< start
+ long_wait
; i
++) {
1017 if (bitStream
[i
] != first
) {
1021 if (i
== (start
+ long_wait
)) {
1025 if (start
== *size
- 250 + 1) {
1026 // did not find start sequence
1029 // Inverting signal if needed
1031 for (i
= start
; i
< *size
; i
++) {
1032 bitStream
[i
] = !bitStream
[i
];
1038 //found start once now test length by finding next one
1039 for (ii
=start
+29; ii
<= *size
- 250; ii
++) {
1040 first2
= bitStream
[ii
];
1041 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
1042 if (bitStream
[iii
] != first2
) {
1046 if (iii
== (ii
+ long_wait
)) {
1050 if (ii
== *size
- 250 + 1){
1051 // did not find second start sequence
1058 for (ii
= 0; ii
< bitCnt
; ii
++) {
1059 bitStream
[ii
] = bitStream
[i
++];
1065 // by marshmellow - demodulate NRZ wave (both similar enough)
1066 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1067 // there probably is a much simpler way to do this....
1068 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int maxErr
)
1070 if (justNoise(dest
, *size
)) return -1;
1071 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1072 if (*clk
==0) return -2;
1073 size_t i
, gLen
= 4096;
1074 if (gLen
>*size
) gLen
= *size
;
1076 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1077 int lastBit
= 0; //set first clock check
1078 size_t iii
= 0, bitnum
= 0; //bitnum counter
1079 uint16_t errCnt
= 0, MaxBits
= 1000;
1080 size_t bestErrCnt
= maxErr
+1;
1081 size_t bestPeakCnt
= 0, bestPeakStart
= 0;
1082 uint8_t bestFirstPeakHigh
=0, firstPeakHigh
=0, curBit
=0, bitHigh
=0, errBitHigh
=0;
1083 uint8_t tol
= 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1085 uint8_t ignoreWindow
=4;
1086 uint8_t ignoreCnt
=ignoreWindow
; //in case of noise near peak
1087 //loop to find first wave that works - align to clock
1088 for (iii
=0; iii
< gLen
; ++iii
){
1089 if ((dest
[iii
]>=high
) || (dest
[iii
]<=low
)){
1090 if (dest
[iii
]>=high
) firstPeakHigh
=1;
1091 else firstPeakHigh
=0;
1095 //loop through to see if this start location works
1096 for (i
= iii
; i
< *size
; ++i
) {
1097 // if we are at a clock bit
1098 if ((i
>= lastBit
+ *clk
- tol
) && (i
<= lastBit
+ *clk
+ tol
)) {
1100 if (dest
[i
] >= high
|| dest
[i
] <= low
) {
1104 ignoreCnt
= ignoreWindow
;
1106 } else if (i
== lastBit
+ *clk
+ tol
) {
1109 //else if no bars found
1110 } else if (dest
[i
] < high
&& dest
[i
] > low
){
1113 if (errBitHigh
==1) errCnt
++;
1118 } else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (bitHigh
==0)) {
1119 //error bar found no clock...
1122 if (((i
-iii
) / *clk
)>=MaxBits
) break;
1124 //we got more than 64 good bits and not all errors
1125 if (((i
-iii
) / *clk
) > 64 && (errCnt
<= (maxErr
))) {
1126 //possible good read
1127 if (!errCnt
|| peakCnt
> bestPeakCnt
){
1128 bestFirstPeakHigh
=firstPeakHigh
;
1129 bestErrCnt
= errCnt
;
1130 bestPeakCnt
= peakCnt
;
1131 bestPeakStart
= iii
;
1132 if (!errCnt
) break; //great read - finish
1137 //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
1138 if (bestErrCnt
> maxErr
) return bestErrCnt
;
1140 //best run is good enough set to best run and set overwrite BinStream
1141 lastBit
= bestPeakStart
- *clk
;
1142 memset(dest
, bestFirstPeakHigh
^1, bestPeakStart
/ *clk
);
1143 bitnum
+= (bestPeakStart
/ *clk
);
1144 for (i
= bestPeakStart
; i
< *size
; ++i
) {
1145 // if expecting a clock bit
1146 if ((i
>= lastBit
+ *clk
- tol
) && (i
<= lastBit
+ *clk
+ tol
)) {
1148 if (dest
[i
] >= high
|| dest
[i
] <= low
) {
1152 ignoreCnt
= ignoreWindow
;
1154 if (dest
[i
] >= high
) curBit
^= 1;
1155 dest
[bitnum
++] = curBit
;
1157 //else no bars found in clock area
1158 } else if (i
== lastBit
+ *clk
+ tol
) {
1159 dest
[bitnum
++] = curBit
;
1162 //else if no bars found
1163 } else if (dest
[i
] < high
&& dest
[i
] > low
){
1164 if (ignoreCnt
== 0){
1166 if (errBitHigh
== 1){
1174 } else if ((dest
[i
] >= high
|| dest
[i
] <= low
) && (bitHigh
== 0)) {
1175 //error bar found no clock...
1178 if (bitnum
>= MaxBits
) break;
1185 //detects the bit clock for FSK given the high and low Field Clocks
1186 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1188 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1189 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1190 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1191 uint8_t rfLensFnd
= 0;
1192 uint8_t lastFCcnt
= 0;
1193 uint16_t fcCounter
= 0;
1194 uint16_t rfCounter
= 0;
1195 uint8_t firstBitFnd
= 0;
1197 if (size
== 0) return 0;
1199 uint8_t fcTol
= (uint8_t)(0.5+(float)(fcHigh
-fcLow
)/2);
1204 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1205 // prime i to first up transition
1206 for (i
= 1; i
< size
-1; i
++)
1207 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1210 for (; i
< size
-1; i
++){
1214 if (BitStream
[i
] <= BitStream
[i
-1] || BitStream
[i
] < BitStream
[i
+1])
1217 // if we got less than the small fc + tolerance then set it to the small fc
1218 if (fcCounter
< fcLow
+fcTol
)
1220 else //set it to the large fc
1223 //look for bit clock (rf/xx)
1224 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1225 //not the same size as the last wave - start of new bit sequence
1226 if (firstBitFnd
> 1){ //skip first wave change - probably not a complete bit
1227 for (int ii
=0; ii
<15; ii
++){
1228 if (rfLens
[ii
] == rfCounter
){
1234 if (rfCounter
> 0 && rfLensFnd
< 15){
1235 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1236 rfCnts
[rfLensFnd
]++;
1237 rfLens
[rfLensFnd
++] = rfCounter
;
1243 lastFCcnt
=fcCounter
;
1247 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1249 for (i
=0; i
<15; i
++){
1250 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1251 //get highest 2 RF values (might need to get more values to compare or compare all?)
1252 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1253 rfHighest3
=rfHighest2
;
1254 rfHighest2
=rfHighest
;
1256 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1257 rfHighest3
=rfHighest2
;
1259 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1263 // set allowed clock remainder tolerance to be 1 large field clock length+1
1264 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1265 uint8_t tol1
= fcHigh
+1;
1267 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1269 // loop to find the highest clock that has a remainder less than the tolerance
1270 // compare samples counted divided by
1272 for (; ii
>=0; ii
--){
1273 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1274 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1275 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1282 if (ii
<0) return 0; // oops we went too far
1288 //countFC is to detect the field clock lengths.
1289 //counts and returns the 2 most common wave lengths
1290 //mainly used for FSK field clock detection
1291 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t fskAdj
)
1293 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1294 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1295 uint8_t fcLensFnd
= 0;
1296 uint8_t lastFCcnt
=0;
1297 uint8_t fcCounter
= 0;
1299 if (size
== 0) return 0;
1301 // prime i to first up transition
1302 for (i
= 1; i
< size
-1; i
++)
1303 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1306 for (; i
< size
-1; i
++){
1307 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1308 // new up transition
1311 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1312 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1313 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1314 if ((fcCounter
==9) || fcCounter
==4) fcCounter
++;
1315 // save last field clock count (fc/xx)
1316 lastFCcnt
= fcCounter
;
1318 // find which fcLens to save it to:
1319 for (int ii
=0; ii
<10; ii
++){
1320 if (fcLens
[ii
]==fcCounter
){
1326 if (fcCounter
>0 && fcLensFnd
<10){
1328 fcCnts
[fcLensFnd
]++;
1329 fcLens
[fcLensFnd
++]=fcCounter
;
1338 uint8_t best1
=9, best2
=9, best3
=9;
1340 // go through fclens and find which ones are bigest 2
1341 for (i
=0; i
<10; i
++){
1342 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1343 // get the 3 best FC values
1344 if (fcCnts
[i
]>maxCnt1
) {
1349 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1352 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1356 uint8_t fcH
=0, fcL
=0;
1357 if (fcLens
[best1
]>fcLens
[best2
]){
1365 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1367 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1368 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
1369 if (fskAdj
) return fcs
;
1370 return fcLens
[best1
];
1373 //by marshmellow - demodulate PSK1 wave
1374 //uses wave lengths (# Samples)
1375 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1377 if (size
== 0) return -1;
1378 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1379 if (*size
<loopCnt
) loopCnt
= *size
;
1381 uint8_t curPhase
= *invert
;
1382 size_t i
, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1383 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1384 uint16_t errCnt
=0, waveLenCnt
=0;
1385 fc
= countFC(dest
, *size
, 0);
1386 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1387 //PrintAndLog("DEBUG: FC: %d",fc);
1388 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1389 if (*clock
== 0) return -1;
1390 int avgWaveVal
=0, lastAvgWaveVal
=0;
1391 //find first phase shift
1392 for (i
=0; i
<loopCnt
; i
++){
1393 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1395 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1396 waveLenCnt
= waveEnd
-waveStart
;
1397 if (waveLenCnt
> fc
&& waveStart
> fc
){ //not first peak and is a large wave
1398 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1399 firstFullWave
= waveStart
;
1400 fullWaveLen
=waveLenCnt
;
1401 //if average wave value is > graph 0 then it is an up wave or a 1
1402 if (lastAvgWaveVal
> 123) curPhase
^= 1; //fudge graph 0 a little 123 vs 128
1408 avgWaveVal
+= dest
[i
+2];
1410 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1411 lastClkBit
= firstFullWave
; //set start of wave as clock align
1412 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1416 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1417 numBits
+= (firstFullWave
/ *clock
);
1418 dest
[numBits
++] = curPhase
; //set first read bit
1419 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
-3; i
++){
1420 //top edge of wave = start of new wave
1421 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1422 if (waveStart
== 0) {
1425 avgWaveVal
= dest
[i
+1];
1428 waveLenCnt
= waveEnd
-waveStart
;
1429 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1430 if (waveLenCnt
> fc
){
1431 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1432 //this wave is a phase shift
1433 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1434 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1436 dest
[numBits
++] = curPhase
;
1437 lastClkBit
+= *clock
;
1438 } else if (i
< lastClkBit
+10+fc
){
1439 //noise after a phase shift - ignore
1440 } else { //phase shift before supposed to based on clock
1442 dest
[numBits
++] = 7;
1444 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1445 lastClkBit
+= *clock
; //no phase shift but clock bit
1446 dest
[numBits
++] = curPhase
;
1452 avgWaveVal
+= dest
[i
+1];