1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands - by marshmellow, holiman, iceman and
9 // many others who came before
12 // LF Demod functions are placed here to allow the flexability to use client or
13 // device side. Most BUT NOT ALL of these functions are currently safe for
14 // device side use. (DetectST for example...)
16 // There are likely many improvements to the code that could be made, please
17 // make suggestions...
19 // we tried to include author comments so any questions could be directed to
22 // There are 4 main sections of code below:
24 // for general utilities used by multiple other functions
25 // Clock / Bitrate Detection Section:
26 // for clock detection functions for each modulation
27 // Modulation Demods &/or Decoding Section:
28 // for main general modulation demodulating and encoding decoding code.
29 // Tag format detection section:
30 // for detection of specific tag formats within demodulated data
33 //-----------------------------------------------------------------------------
35 #include <string.h> // for memset, memcmp and size_t
37 #include <stdint.h> // for uint_32+
38 #include <stdbool.h> // for bool
39 #include "parity.h" // for parity test
41 //**********************************************************************************************
42 //---------------------------------Utilities Section--------------------------------------------
43 //**********************************************************************************************
44 #define LOWEST_DEFAULT_CLOCK 32
45 #define FSK_PSK_THRESHOLD 123
47 //to allow debug print calls when used not on device
48 void dummy(char *fmt
, ...){}
51 #include "cmdparser.h"
53 #define prnt PrintAndLog
55 uint8_t g_debugMode
=0;
59 uint8_t justNoise(uint8_t *BitStream
, size_t size
) {
60 //test samples are not just noise
61 uint8_t justNoise1
= 1;
62 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
63 justNoise1
= BitStream
[idx
] < FSK_PSK_THRESHOLD
;
69 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
70 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
) {
73 // get high and low thresholds
74 for (size_t i
=0; i
< size
; i
++){
75 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
76 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
78 if (*high
< FSK_PSK_THRESHOLD
) return -1; // just noise
79 *high
= ((*high
-128)*fuzzHi
+ 12800)/100;
80 *low
= ((*low
-128)*fuzzLo
+ 12800)/100;
85 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
86 // returns 1 if passed
87 bool parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
) {
88 return oddparity32(bits
) ^ pType
;
92 // takes a array of binary values, start position, length of bits per parity (includes parity bit - MAX 32),
93 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
94 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
) {
95 uint32_t parityWd
= 0;
97 for (int word
= 0; word
< (bLen
); word
+=pLen
) {
98 for (int bit
=0; bit
< pLen
; bit
++) {
99 if (word
+bit
>= bLen
) break;
100 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
101 BitStream
[bitCnt
++] = (BitStream
[startIdx
+word
+bit
]);
103 if (word
+pLen
> bLen
) break;
105 bitCnt
--; // overwrite parity with next data
106 // if parity fails then return 0
108 case 3: if (BitStream
[bitCnt
]==1) {return 0;} break; //should be 0 spacer bit
109 case 2: if (BitStream
[bitCnt
]==0) {return 0;} break; //should be 1 spacer bit
110 default: if (parityTest(parityWd
, pLen
, pType
) == 0) {return 0;} break; //test parity
114 // if we got here then all the parities passed
120 // takes a array of binary values, length of bits per parity (includes parity bit),
121 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
122 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
123 size_t addParity(uint8_t *BitSource
, uint8_t *dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
) {
124 uint32_t parityWd
= 0;
125 size_t j
= 0, bitCnt
= 0;
126 for (int word
= 0; word
< sourceLen
; word
+=pLen
-1) {
127 for (int bit
=0; bit
< pLen
-1; bit
++){
128 parityWd
= (parityWd
<< 1) | BitSource
[word
+bit
];
129 dest
[j
++] = (BitSource
[word
+bit
]);
131 // if parity fails then return 0
133 case 3: dest
[j
++]=0; break; // marker bit which should be a 0
134 case 2: dest
[j
++]=1; break; // marker bit which should be a 1
136 dest
[j
++] = parityTest(parityWd
, pLen
-1, pType
) ^ 1;
142 // if we got here then all the parities passed
143 //return ID start index and size
147 uint32_t bytebits_to_byte(uint8_t *src
, size_t numbits
) {
149 for(int i
= 0 ; i
< numbits
; i
++)
151 num
= (num
<< 1) | (*src
);
157 //least significant bit first
158 uint32_t bytebits_to_byteLSBF(uint8_t *src
, size_t numbits
) {
160 for(int i
= 0 ; i
< numbits
; i
++)
162 num
= (num
<< 1) | *(src
+ (numbits
-(i
+1)));
167 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone
168 // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits
169 bool preambleSearchEx(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
, bool findone
) {
170 // Sanity check. If preamble length is bigger than bitstream length.
171 if ( *size
<= pLen
) return false;
173 uint8_t foundCnt
= 0;
174 for (size_t idx
= 0; idx
< *size
- pLen
; idx
++) {
175 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0) {
179 if (g_debugMode
) prnt("DEBUG: preamble found at %u", idx
);
181 if (findone
) return true;
182 } else if (foundCnt
== 2) {
183 *size
= idx
- *startIdx
;
192 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
193 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
) {
194 return (preambleSearchEx(BitStream
, preamble
, pLen
, size
, startIdx
, false)) ? 1 : 0;
197 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
198 size_t findModStart(uint8_t dest
[], size_t size
, uint8_t expWaveSize
) {
200 size_t waveSizeCnt
= 0;
201 uint8_t thresholdCnt
= 0;
202 bool isAboveThreshold
= dest
[i
++] >= FSK_PSK_THRESHOLD
;
203 for (; i
< size
-20; i
++ ) {
204 if(dest
[i
] < FSK_PSK_THRESHOLD
&& isAboveThreshold
) {
206 if (thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+1) break;
207 isAboveThreshold
= false;
209 } else if (dest
[i
] >= FSK_PSK_THRESHOLD
&& !isAboveThreshold
) {
211 if (thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+1) break;
212 isAboveThreshold
= true;
217 if (thresholdCnt
> 10) break;
219 if (g_debugMode
== 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i
, thresholdCnt
);
223 int getClosestClock(int testclk
) {
224 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
226 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++)
227 if (testclk
>= fndClk
[clkCnt
]-(fndClk
[clkCnt
]/8) && testclk
<= fndClk
[clkCnt
]+1)
228 return fndClk
[clkCnt
];
233 void getNextLow(uint8_t samples
[], size_t size
, int low
, size_t *i
) {
234 while ((samples
[*i
] > low
) && (*i
< size
))
238 void getNextHigh(uint8_t samples
[], size_t size
, int high
, size_t *i
) {
239 while ((samples
[*i
] < high
) && (*i
< size
))
243 // load wave counters
244 bool loadWaveCounters(uint8_t samples
[], size_t size
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int *waveCnt
, int *skip
, int *minClk
, int *high
, int *low
) {
245 size_t i
=0, firstLow
, firstHigh
;
246 size_t testsize
= (size
< 512) ? size
: 512;
248 if ( getHiLo(samples
, testsize
, high
, low
, 80, 80) == -1 ) {
249 if (g_debugMode
==2) prnt("DEBUG STT: just noise detected - quitting");
250 return false; //just noise
253 // get to first full low to prime loop and skip incomplete first pulse
254 getNextHigh(samples
, size
, *high
, &i
);
255 getNextLow(samples
, size
, *low
, &i
);
258 // populate tmpbuff buffer with pulse lengths
260 // measure from low to low
262 //find first high point for this wave
263 getNextHigh(samples
, size
, *high
, &i
);
266 getNextLow(samples
, size
, *low
, &i
);
268 if (*waveCnt
>= (size
/LOWEST_DEFAULT_CLOCK
))
271 highToLowWaveLen
[*waveCnt
] = i
- firstHigh
; //first high to first low
272 lowToLowWaveLen
[*waveCnt
] = i
- firstLow
;
274 if (i
-firstLow
< *minClk
&& i
< size
) {
275 *minClk
= i
- firstLow
;
281 size_t pskFindFirstPhaseShift(uint8_t samples
[], size_t size
, uint8_t *curPhase
, size_t waveStart
, uint16_t fc
, uint16_t *fullWaveLen
) {
282 uint16_t loopCnt
= (size
+3 < 4096) ? size
: 4096; //don't need to loop through entire array...
284 uint16_t avgWaveVal
=0, lastAvgWaveVal
=0;
285 size_t i
= waveStart
, waveEnd
, waveLenCnt
, firstFullWave
;
286 for (; i
<loopCnt
; i
++) {
287 // find peak // was "samples[i] + fc" but why? must have been used to weed out some wave error... removed..
288 if (samples
[i
] < samples
[i
+1] && samples
[i
+1] >= samples
[i
+2]){
290 if (g_debugMode
== 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd
, waveStart
);
291 waveLenCnt
= waveEnd
-waveStart
;
292 if (waveLenCnt
> fc
&& waveStart
> fc
&& !(waveLenCnt
> fc
+8)){ //not first peak and is a large wave but not out of whack
293 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
294 firstFullWave
= waveStart
;
295 *fullWaveLen
= waveLenCnt
;
296 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
297 if (lastAvgWaveVal
> FSK_PSK_THRESHOLD
) *curPhase
^= 1;
298 return firstFullWave
;
303 avgWaveVal
+= samples
[i
+2];
309 //amplify based on ask edge detection - not accurate enough to use all the time
310 void askAmp(uint8_t *BitStream
, size_t size
) {
312 for(size_t i
= 1; i
<size
; i
++){
313 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
315 else if(BitStream
[i
-1]-BitStream
[i
]>=20) //large jump down
318 BitStream
[i
-1] = Last
;
323 uint32_t manchesterEncode2Bytes(uint16_t datain
) {
326 for (uint8_t i
=0; i
<16; i
++) {
327 curBit
= (datain
>> (15-i
) & 1);
328 output
|= (1<<(((15-i
)*2)+curBit
));
334 //encode binary data into binary manchester
335 //NOTE: BitStream must have triple the size of "size" available in memory to do the swap
336 int ManchesterEncode(uint8_t *BitStream
, size_t size
) {
337 //allow up to 4K out (means BitStream must be at least 2048+4096 to handle the swap)
338 size
= (size
>2048) ? 2048 : size
;
339 size_t modIdx
= size
;
341 for (size_t idx
=0; idx
< size
; idx
++){
342 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
343 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
345 for (i
=0; i
<(size
*2); i
++){
346 BitStream
[i
] = BitStream
[i
+size
];
352 // to detect a wave that has heavily clipped (clean) samples
353 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
) {
354 bool allArePeaks
= true;
356 size_t loopEnd
= 512+160;
357 if (loopEnd
> size
) loopEnd
= size
;
358 for (size_t i
=160; i
<loopEnd
; i
++){
359 if (dest
[i
]>low
&& dest
[i
]<high
)
365 if (cntPeaks
> 300) return true;
370 //**********************************************************************************************
371 //-------------------Clock / Bitrate Detection Section------------------------------------------
372 //**********************************************************************************************
375 // to help detect clocks on heavily clipped samples
376 // based on count of low to low
377 int DetectStrongAskClock(uint8_t dest
[], size_t size
, int high
, int low
, int *clock
) {
381 int shortestWaveIdx
= 0;
382 // get to first full low to prime loop and skip incomplete first pulse
383 getNextHigh(dest
, size
, high
, &i
);
384 getNextLow(dest
, size
, low
, &i
);
386 // loop through all samples
388 // measure from low to low
391 getNextHigh(dest
, size
, high
, &i
);
392 getNextLow(dest
, size
, low
, &i
);
393 //get minimum measured distance
394 if (i
-startwave
< minClk
&& i
< size
) {
395 minClk
= i
- startwave
;
396 shortestWaveIdx
= startwave
;
400 if (g_debugMode
==2) prnt("DEBUG ASK: DetectStrongAskClock smallest wave: %d",minClk
);
401 *clock
= getClosestClock(minClk
);
405 return shortestWaveIdx
;
409 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
410 // maybe somehow adjust peak trimming value based on samples to fix?
411 // return start index of best starting position for that clock and return clock (by reference)
412 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
) {
414 uint8_t clk
[] = {255,8,16,32,40,50,64,100,128,255};
416 uint8_t loopCnt
= 255; //don't need to loop through entire array...
417 if (size
<= loopCnt
+60) return -1; //not enough samples
418 size
-= 60; //sometimes there is a strange end wave - filter out this....
419 //if we already have a valid clock
422 if (clk
[i
] == *clock
) clockFnd
= i
;
423 //clock found but continue to find best startpos
425 //get high and low peak
427 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return -1;
429 //test for large clean peaks
431 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
432 int ans
= DetectStrongAskClock(dest
, size
, peak
, low
, clock
);
433 if (g_debugMode
==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i",clock
, ans
);
435 return ans
; //return shortest wave start position
440 uint8_t clkCnt
, tol
= 0;
441 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
442 uint8_t bestStart
[]={0,0,0,0,0,0,0,0,0};
444 size_t arrLoc
, loopEnd
;
452 //test each valid clock from smallest to greatest to see which lines up
453 for(; clkCnt
< clkEnd
; clkCnt
++){
454 if (clk
[clkCnt
] <= 32){
459 //if no errors allowed - keep start within the first clock
460 if (!maxErr
&& size
> clk
[clkCnt
]*2 + tol
&& clk
[clkCnt
]<128) loopCnt
=clk
[clkCnt
]*2;
461 bestErr
[clkCnt
]=1000;
462 //try lining up the peaks by moving starting point (try first few clocks)
463 for (ii
=0; ii
< loopCnt
; ii
++){
464 if (dest
[ii
] < peak
&& dest
[ii
] > low
) continue;
467 // now that we have the first one lined up test rest of wave array
468 loopEnd
= ((size
-ii
-tol
) / clk
[clkCnt
]) - 1;
469 for (i
=0; i
< loopEnd
; ++i
){
470 arrLoc
= ii
+ (i
* clk
[clkCnt
]);
471 if (dest
[arrLoc
] >= peak
|| dest
[arrLoc
] <= low
){
472 }else if (dest
[arrLoc
-tol
] >= peak
|| dest
[arrLoc
-tol
] <= low
){
473 }else if (dest
[arrLoc
+tol
] >= peak
|| dest
[arrLoc
+tol
] <= low
){
474 }else{ //error no peak detected
478 //if we found no errors then we can stop here and a low clock (common clocks)
479 // this is correct one - return this clock
480 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk
[clkCnt
],errCnt
,ii
,i
);
481 if(errCnt
==0 && clkCnt
<7) {
482 if (!clockFnd
) *clock
= clk
[clkCnt
];
485 //if we found errors see if it is lowest so far and save it as best run
486 if(errCnt
<bestErr
[clkCnt
]){
487 bestErr
[clkCnt
]=errCnt
;
488 bestStart
[clkCnt
]=ii
;
494 for (iii
=1; iii
<clkEnd
; ++iii
){
495 if (bestErr
[iii
] < bestErr
[best
]){
496 if (bestErr
[iii
] == 0) bestErr
[iii
]=1;
497 // current best bit to error ratio vs new bit to error ratio
498 if ( (size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
] ){
502 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk
[iii
],bestErr
[iii
],clk
[best
],bestStart
[best
]);
504 if (!clockFnd
) *clock
= clk
[best
];
505 return bestStart
[best
];
508 int DetectStrongNRZClk(uint8_t *dest
, size_t size
, int peak
, int low
, bool *strong
) {
509 //find shortest transition from high to low
512 size_t transition1
= 0;
513 int lowestTransition
= 255;
514 bool lastWasHigh
= false;
515 size_t transitionSampleCount
= 0;
516 //find first valid beginning of a high or low wave
517 while ((dest
[i
] >= peak
|| dest
[i
] <= low
) && (i
< size
))
519 while ((dest
[i
] < peak
&& dest
[i
] > low
) && (i
< size
))
521 lastWasHigh
= (dest
[i
] >= peak
);
523 if (i
==size
) return 0;
526 for (;i
< size
; i
++) {
527 if ((dest
[i
] >= peak
&& !lastWasHigh
) || (dest
[i
] <= low
&& lastWasHigh
)) {
528 lastWasHigh
= (dest
[i
] >= peak
);
529 if (i
-transition1
< lowestTransition
) lowestTransition
= i
-transition1
;
531 } else if (dest
[i
] < peak
&& dest
[i
] > low
) {
532 transitionSampleCount
++;
535 if (lowestTransition
== 255) lowestTransition
= 0;
536 if (g_debugMode
==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition
);
537 // if less than 10% of the samples were not peaks (or 90% were peaks) then we have a strong wave
538 if (transitionSampleCount
/ size
< 10) {
540 lowestTransition
= getClosestClock(lowestTransition
);
542 return lowestTransition
;
546 //detect nrz clock by reading #peaks vs no peaks(or errors)
547 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
, size_t *clockStartIdx
) {
549 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
550 size_t loopCnt
= 4096; //don't need to loop through entire array...
551 if (size
== 0) return 0;
552 if (size
<loopCnt
) loopCnt
= size
-20;
553 //if we already have a valid clock quit
555 if (clk
[i
] == clock
) return clock
;
557 //get high and low peak
559 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 90, 90) < 1) return 0;
562 int lowestTransition
= DetectStrongNRZClk(dest
, size
-20, peak
, low
, &strong
);
563 if (strong
) return lowestTransition
;
567 uint16_t smplCnt
= 0;
569 int16_t peaksdet
[] = {0,0,0,0,0,0,0,0};
570 uint16_t minPeak
= 255;
571 bool firstpeak
= true;
572 //test for large clipped waves - ignore first peak
573 for (i
=0; i
<loopCnt
; i
++) {
574 if (dest
[i
] >= peak
|| dest
[i
] <= low
) {
575 if (firstpeak
) continue;
580 if (minPeak
> smplCnt
&& smplCnt
> 7) minPeak
= smplCnt
;
582 if (g_debugMode
== 2) prnt("DEBUG NRZ: minPeak: %d, smplCnt: %d, peakcnt: %d",minPeak
,smplCnt
,peakcnt
);
587 if (minPeak
< 8) return 0;
590 uint8_t ignoreCnt
= 0;
591 uint8_t ignoreWindow
= 4;
592 bool lastPeakHigh
= 0;
594 size_t bestStart
[]={0,0,0,0,0,0,0,0,0};
596 //test each valid clock from smallest to greatest to see which lines up
597 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
) {
598 //ignore clocks smaller than smallest peak
599 if (clk
[clkCnt
] < minPeak
- (clk
[clkCnt
]/4)) continue;
600 //try lining up the peaks by moving starting point (try first 256)
601 for (ii
=20; ii
< loopCnt
; ++ii
) {
602 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)) {
606 lastBit
= ii
-clk
[clkCnt
];
607 //loop through to see if this start location works
608 for (i
= ii
; i
< size
-20; ++i
) {
609 //if we are at a clock bit
610 if ((i
>= lastBit
+ clk
[clkCnt
] - tol
) && (i
<= lastBit
+ clk
[clkCnt
] + tol
)) {
612 if (dest
[i
] >= peak
|| dest
[i
] <= low
) {
613 //if same peak don't count it
614 if ((dest
[i
] >= peak
&& !lastPeakHigh
) || (dest
[i
] <= low
&& lastPeakHigh
)) {
617 lastPeakHigh
= (dest
[i
] >= peak
);
620 ignoreCnt
= ignoreWindow
;
621 lastBit
+= clk
[clkCnt
];
622 } else if (i
== lastBit
+ clk
[clkCnt
] + tol
) {
623 lastBit
+= clk
[clkCnt
];
625 //else if not a clock bit and no peaks
626 } else if (dest
[i
] < peak
&& dest
[i
] > low
) {
629 if (errBitHigh
==true) peakcnt
--;
634 // else if not a clock bit but we have a peak
635 } else if ((dest
[i
]>=peak
|| dest
[i
]<=low
) && (!bitHigh
)) {
636 //error bar found no clock...
640 if(peakcnt
>peaksdet
[clkCnt
]) {
641 bestStart
[clkCnt
]=ii
;
642 peaksdet
[clkCnt
]=peakcnt
;
649 for (iii
=7; iii
> 0; iii
--) {
650 if ((peaksdet
[iii
] >= (peaksdet
[best
]-1)) && (peaksdet
[iii
] <= peaksdet
[best
]+1) && lowestTransition
) {
651 if (clk
[iii
] > (lowestTransition
- (clk
[iii
]/8)) && clk
[iii
] < (lowestTransition
+ (clk
[iii
]/8))) {
654 } else if (peaksdet
[iii
] > peaksdet
[best
]) {
657 if (g_debugMode
==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, minPeak: %d, bestClk: %d, lowestTrs: %d",clk
[iii
],peaksdet
[iii
],minPeak
, clk
[best
], lowestTransition
);
659 *clockStartIdx
= bestStart
[best
];
664 //countFC is to detect the field clock lengths.
665 //counts and returns the 2 most common wave lengths
666 //mainly used for FSK field clock detection
667 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t fskAdj
) {
668 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
669 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
670 uint8_t fcLensFnd
= 0;
671 uint8_t lastFCcnt
= 0;
672 uint8_t fcCounter
= 0;
674 if (size
< 180) return 0;
676 // prime i to first up transition
677 for (i
= 160; i
< size
-20; i
++)
678 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
681 for (; i
< size
-20; i
++){
682 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
686 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
687 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
688 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
689 if ((fcCounter
==9) || fcCounter
==4) fcCounter
++;
690 // save last field clock count (fc/xx)
691 lastFCcnt
= fcCounter
;
693 // find which fcLens to save it to:
694 for (int ii
=0; ii
<15; ii
++){
695 if (fcLens
[ii
]==fcCounter
){
701 if (fcCounter
>0 && fcLensFnd
<15){
704 fcLens
[fcLensFnd
++]=fcCounter
;
713 uint8_t best1
=14, best2
=14, best3
=14;
715 // go through fclens and find which ones are bigest 2
716 for (i
=0; i
<15; i
++){
717 // get the 3 best FC values
718 if (fcCnts
[i
]>maxCnt1
) {
723 } else if(fcCnts
[i
]>fcCnts
[best2
]){
726 } else if(fcCnts
[i
]>fcCnts
[best3
]){
729 if (g_debugMode
==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens
[i
],fcCnts
[i
],fcLens
[best1
],fcLens
[best2
]);
730 if (fcLens
[i
]==0) break;
732 if (fcLens
[best1
]==0) return 0;
733 uint8_t fcH
=0, fcL
=0;
734 if (fcLens
[best1
]>fcLens
[best2
]){
741 if ((size
-180)/fcH
/3 > fcCnts
[best1
]+fcCnts
[best2
]) {
742 if (g_debugMode
==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size
-180)/fcH
/3,fcCnts
[best1
]+fcCnts
[best2
]);
743 return 0; //lots of waves not psk or fsk
745 // TODO: take top 3 answers and compare to known Field clocks to get top 2
747 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
748 if (fskAdj
) return fcs
;
749 return (uint16_t)fcLens
[best2
] << 8 | fcLens
[best1
];
753 //detect psk clock by reading each phase shift
754 // a phase shift is determined by measuring the sample length of each wave
755 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
, size_t *firstPhaseShift
, uint8_t *curPhase
, uint8_t *fc
) {
756 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
757 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
758 if (size
== 0) return 0;
759 if (size
+3<loopCnt
) loopCnt
= size
-20;
761 uint16_t fcs
= countFC(dest
, size
, 0);
763 if (g_debugMode
==2) prnt("DEBUG PSK: FC: %d, FC2: %d",*fc
, fcs
>>8);
764 if ((fcs
>>8) == 10 && *fc
== 8) return 0;
765 if (*fc
!=2 && *fc
!=4 && *fc
!=8) return 0;
767 //if we already have a valid clock quit
770 if (clk
[i
] == clock
) return clock
;
772 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
774 uint8_t clkCnt
, tol
=1;
775 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0, fullWaveLen
=0;
776 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
777 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
779 //find start of modulating data in trace
780 i
= findModStart(dest
, size
, *fc
);
782 firstFullWave
= pskFindFirstPhaseShift(dest
, size
, curPhase
, i
, *fc
, &fullWaveLen
);
783 if (firstFullWave
== 0) {
784 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
785 // so skip a little to ensure we are past any Start Signal
790 *firstPhaseShift
= firstFullWave
;
791 if (g_debugMode
==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave
,fullWaveLen
);
792 //test each valid clock from greatest to smallest to see which lines up
793 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--) {
795 lastClkBit
= firstFullWave
; //set end of wave as clock align
799 if (g_debugMode
== 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk
[clkCnt
],lastClkBit
);
801 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
802 //top edge of wave = start of new wave
803 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
804 if (waveStart
== 0) {
809 waveLenCnt
= waveEnd
-waveStart
;
810 if (waveLenCnt
> *fc
){
811 //if this wave is a phase shift
812 if (g_debugMode
== 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart
,waveLenCnt
,lastClkBit
+clk
[clkCnt
]-tol
,i
+1,*fc
);
813 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
815 lastClkBit
+=clk
[clkCnt
];
816 } else if (i
<lastClkBit
+8){
817 //noise after a phase shift - ignore
818 } else { //phase shift before supposed to based on clock
821 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ *fc
){
822 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
831 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
832 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
834 //all tested with errors
835 //return the highest clk with the most peaks found
837 for (i
=7; i
>=1; i
--){
838 if (peaksdet
[i
] > peaksdet
[best
]) {
841 if (g_debugMode
== 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk
[i
],peaksdet
[i
],bestErr
[i
],clk
[best
]);
847 //detects the bit clock for FSK given the high and low Field Clocks
848 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
, int *firstClockEdge
) {
849 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
850 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
851 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
852 uint8_t rfLensFnd
= 0;
853 uint8_t lastFCcnt
= 0;
854 uint16_t fcCounter
= 0;
855 uint16_t rfCounter
= 0;
856 uint8_t firstBitFnd
= 0;
858 if (size
== 0) return 0;
860 uint8_t fcTol
= ((fcHigh
*100 - fcLow
*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
865 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
866 // prime i to first peak / up transition
867 for (i
= 160; i
< size
-20; i
++)
868 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
871 for (; i
< size
-20; i
++){
875 if (BitStream
[i
] <= BitStream
[i
-1] || BitStream
[i
] < BitStream
[i
+1])
878 // if we got less than the small fc + tolerance then set it to the small fc
879 // if it is inbetween set it to the last counter
880 if (fcCounter
< fcHigh
&& fcCounter
> fcLow
)
881 fcCounter
= lastFCcnt
;
882 else if (fcCounter
< fcLow
+fcTol
)
884 else //set it to the large fc
887 //look for bit clock (rf/xx)
888 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
889 //not the same size as the last wave - start of new bit sequence
890 if (firstBitFnd
> 1){ //skip first wave change - probably not a complete bit
891 for (int ii
=0; ii
<15; ii
++){
892 if (rfLens
[ii
] >= (rfCounter
-4) && rfLens
[ii
] <= (rfCounter
+4)){
898 if (rfCounter
> 0 && rfLensFnd
< 15){
899 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
901 rfLens
[rfLensFnd
++] = rfCounter
;
912 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
914 for (i
=0; i
<15; i
++){
915 //get highest 2 RF values (might need to get more values to compare or compare all?)
916 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
917 rfHighest3
=rfHighest2
;
918 rfHighest2
=rfHighest
;
920 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
921 rfHighest3
=rfHighest2
;
923 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
926 if (g_debugMode
==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens
[i
], rfCnts
[i
]);
928 // set allowed clock remainder tolerance to be 1 large field clock length+1
929 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
930 uint8_t tol1
= fcHigh
+1;
932 if (g_debugMode
==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens
[rfHighest
],rfLens
[rfHighest2
],rfLens
[rfHighest3
]);
934 // loop to find the highest clock that has a remainder less than the tolerance
935 // compare samples counted divided by
936 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
939 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
940 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
941 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
942 if (g_debugMode
==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk
[ii
]);
949 if (ii
<2) return 0; // oops we went too far
954 //**********************************************************************************************
955 //--------------------Modulation Demods &/or Decoding Section-----------------------------------
956 //**********************************************************************************************
958 // look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index...
959 bool findST(int *stStopLoc
, int *stStartIdx
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int clk
, int tol
, int buffSize
, size_t *i
) {
960 if (buffSize
< *i
+4) return false;
962 for (; *i
< buffSize
- 4; *i
+=1) {
963 *stStartIdx
+= lowToLowWaveLen
[*i
]; //caution part of this wave may be data and part may be ST.... to be accounted for in main function for now...
964 if (lowToLowWaveLen
[*i
] >= clk
*1-tol
&& lowToLowWaveLen
[*i
] <= (clk
*2)+tol
&& highToLowWaveLen
[*i
] < clk
+tol
) { //1 to 2 clocks depending on 2 bits prior
965 if (lowToLowWaveLen
[*i
+1] >= clk
*2-tol
&& lowToLowWaveLen
[*i
+1] <= clk
*2+tol
&& highToLowWaveLen
[*i
+1] > clk
*3/2-tol
) { //2 clocks and wave size is 1 1/2
966 if (lowToLowWaveLen
[*i
+2] >= (clk
*3)/2-tol
&& lowToLowWaveLen
[*i
+2] <= clk
*2+tol
&& highToLowWaveLen
[*i
+2] > clk
-tol
) { //1 1/2 to 2 clocks and at least one full clock wave
967 if (lowToLowWaveLen
[*i
+3] >= clk
*1-tol
&& lowToLowWaveLen
[*i
+3] <= clk
*2+tol
) { //1 to 2 clocks for end of ST + first bit
978 //attempt to identify a Sequence Terminator in ASK modulated raw wave
979 bool DetectST(uint8_t buffer
[], size_t *size
, int *foundclock
, size_t *ststart
, size_t *stend
) {
980 size_t bufsize
= *size
;
981 //need to loop through all samples and identify our clock, look for the ST pattern
984 int j
=0, high
, low
, skip
=0, start
=0, end
=0, minClk
=255;
986 //probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow]
987 int tmpbuff
[bufsize
/ LOWEST_DEFAULT_CLOCK
]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
988 int waveLen
[bufsize
/ LOWEST_DEFAULT_CLOCK
]; // high to low wave count //if clock is larger then we waste memory in array size that is not needed...
989 //size_t testsize = (bufsize < 512) ? bufsize : 512;
992 memset(tmpbuff
, 0, sizeof(tmpbuff
));
993 memset(waveLen
, 0, sizeof(waveLen
));
995 if (!loadWaveCounters(buffer
, bufsize
, tmpbuff
, waveLen
, &j
, &skip
, &minClk
, &high
, &low
)) return false;
996 // set clock - might be able to get this externally and remove this work...
997 clk
= getClosestClock(minClk
);
998 // clock not found - ERROR
1000 if (g_debugMode
==2) prnt("DEBUG STT: clock not found - quitting");
1006 if (!findST(&start
, &skip
, tmpbuff
, waveLen
, clk
, tol
, j
, &i
)) {
1007 // first ST not found - ERROR
1008 if (g_debugMode
==2) prnt("DEBUG STT: first STT not found - quitting");
1011 if (g_debugMode
==2) prnt("DEBUG STT: first STT found at wave: %i, skip: %i, j=%i", start
, skip
, j
);
1013 if (waveLen
[i
+2] > clk
*1+tol
)
1018 // skip over the remainder of ST
1019 skip
+= clk
*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1021 // now do it again to find the end
1025 if (!findST(&dummy1
, &end
, tmpbuff
, waveLen
, clk
, tol
, j
, &i
)) {
1026 //didn't find second ST - ERROR
1027 if (g_debugMode
==2) prnt("DEBUG STT: second STT not found - quitting");
1031 if (g_debugMode
==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip
, end
, end
-skip
, clk
, (end
-skip
)/clk
, phaseoff
);
1032 //now begin to trim out ST so we can use normal demod cmds
1034 size_t datalen
= end
- start
;
1035 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1036 if ( clk
- (datalen
% clk
) <= clk
/8) {
1037 // padd the amount off - could be problematic... but shouldn't happen often
1038 datalen
+= clk
- (datalen
% clk
);
1039 } else if ( (datalen
% clk
) <= clk
/8 ) {
1040 // padd the amount off - could be problematic... but shouldn't happen often
1041 datalen
-= datalen
% clk
;
1043 if (g_debugMode
==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen
, clk
, datalen
% clk
);
1046 // if datalen is less than one t55xx block - ERROR
1047 if (datalen
/clk
< 8*4) {
1048 if (g_debugMode
==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1051 size_t dataloc
= start
;
1052 if (buffer
[dataloc
-(clk
*4)-(clk
/4)] <= low
&& buffer
[dataloc
] <= low
&& buffer
[dataloc
-(clk
*4)] >= high
) {
1053 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1054 for ( i
=0; i
<= (clk
/4); ++i
) {
1055 if ( buffer
[dataloc
- (clk
*4) - i
] <= low
) {
1064 if (g_debugMode
==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc
, datalen
);
1065 bool firstrun
= true;
1066 // warning - overwriting buffer given with raw wave data with ST removed...
1067 while ( dataloc
< bufsize
-(clk
/2) ) {
1068 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1069 if (buffer
[dataloc
]<high
&& buffer
[dataloc
]>low
&& buffer
[dataloc
+clk
/4]<high
&& buffer
[dataloc
+clk
/4]>low
) {
1070 for(i
=0; i
< clk
/2-tol
; ++i
) {
1071 buffer
[dataloc
+i
] = high
+5;
1073 } //test for small spike outlier (high between two lows) in the case of very strong waves
1074 if (buffer
[dataloc
] > low
&& buffer
[dataloc
+clk
/4] <= low
) {
1075 for(i
=0; i
< clk
/4; ++i
) {
1076 buffer
[dataloc
+i
] = buffer
[dataloc
+clk
/4];
1081 *ststart
= dataloc
-(clk
*4);
1084 for (i
=0; i
<datalen
; ++i
) {
1085 if (i
+newloc
< bufsize
) {
1086 if (i
+newloc
< dataloc
)
1087 buffer
[i
+newloc
] = buffer
[dataloc
];
1093 //skip next ST - we just assume it will be there from now on...
1094 if (g_debugMode
==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc
, dataloc
+(clk
*4));
1102 //take 11 10 01 11 00 and make 01100 ... miller decoding
1103 //check for phase errors - should never have half a 1 or 0 by itself and should never exceed 1111 or 0000 in a row
1104 //decodes miller encoded binary
1105 //NOTE askrawdemod will NOT demod miller encoded ask unless the clock is manually set to 1/2 what it is detected as!
1106 int millerRawDecode(uint8_t *BitStream
, size_t *size
, int invert
) {
1107 if (*size
< 16) return -1;
1108 uint16_t MaxBits
= 512, errCnt
= 0;
1110 uint8_t alignCnt
= 0, curBit
= BitStream
[0], alignedIdx
= 0;
1111 uint8_t halfClkErr
= 0;
1112 //find alignment, needs 4 1s or 0s to properly align
1113 for (i
=1; i
< *size
-1; i
++) {
1114 alignCnt
= (BitStream
[i
] == curBit
) ? alignCnt
+1 : 0;
1115 curBit
= BitStream
[i
];
1116 if (alignCnt
== 4) break;
1118 // for now error if alignment not found. later add option to run it with multiple offsets...
1119 if (alignCnt
!= 4) {
1120 if (g_debugMode
) prnt("ERROR MillerDecode: alignment not found so either your bitstream is not miller or your data does not have a 101 in it");
1123 alignedIdx
= (i
-1) % 2;
1124 for (i
=alignedIdx
; i
< *size
-3; i
+=2) {
1125 halfClkErr
= (uint8_t)((halfClkErr
<< 1 | BitStream
[i
]) & 0xFF);
1126 if ( (halfClkErr
& 0x7) == 5 || (halfClkErr
& 0x7) == 2 || (i
> 2 && (halfClkErr
& 0x7) == 0) || (halfClkErr
& 0x1F) == 0x1F) {
1128 BitStream
[bitCnt
++] = 7;
1131 BitStream
[bitCnt
++] = BitStream
[i
] ^ BitStream
[i
+1] ^ invert
;
1133 if (bitCnt
> MaxBits
) break;
1140 //take 01 or 10 = 1 and 11 or 00 = 0
1141 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
1142 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
1143 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int *offset
, int invert
) {
1144 uint16_t bitnum
= 0;
1145 uint16_t errCnt
= 0;
1147 uint16_t MaxBits
=512;
1148 //if not enough samples - error
1149 if (*size
< 51) return -1;
1150 //check for phase change faults - skip one sample if faulty
1151 uint8_t offsetA
= 1, offsetB
= 1;
1153 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
1154 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
1156 if (!offsetA
&& offsetB
) *offset
+=1;
1157 for (i
=*offset
; i
<*size
-3; i
+=2){
1158 //check for phase error
1159 if (BitStream
[i
+1]==BitStream
[i
+2]) {
1160 BitStream
[bitnum
++]=7;
1163 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
1164 BitStream
[bitnum
++]=1^invert
;
1165 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
1166 BitStream
[bitnum
++]=invert
;
1168 BitStream
[bitnum
++]=7;
1171 if(bitnum
>MaxBits
) break;
1178 //take 10 and 01 and manchester decode
1179 //run through 2 times and take least errCnt
1180 int manrawdecode(uint8_t * BitStream
, size_t *size
, uint8_t invert
, uint8_t *alignPos
) {
1181 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
1183 uint16_t bestErr
= 1000, bestRun
= 0;
1184 if (*size
< 16) return -1;
1185 //find correct start position [alignment]
1186 for (ii
=0;ii
<2;++ii
){
1187 for (i
=ii
; i
<*size
-3; i
+=2)
1188 if (BitStream
[i
]==BitStream
[i
+1])
1191 if (bestErr
>errCnt
){
1199 for (i
=bestRun
; i
< *size
-3; i
+=2){
1200 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
1201 BitStream
[bitnum
++]=invert
;
1202 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
1203 BitStream
[bitnum
++]=invert
^1;
1205 BitStream
[bitnum
++]=7;
1207 if(bitnum
>MaxBits
) break;
1214 //demodulates strong heavily clipped samples
1215 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
, int *startIdx
)
1218 size_t bitCnt
=0, smplCnt
=1, errCnt
=0;
1219 bool waveHigh
= (BinStream
[0] >= high
);
1220 for (size_t i
=1; i
< *size
; i
++){
1221 if (BinStream
[i
] >= high
&& waveHigh
){
1223 } else if (BinStream
[i
] <= low
&& !waveHigh
){
1225 } else { //transition
1226 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
1227 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
1228 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
1230 if (g_debugMode
==2) prnt("DEBUG ASK: Modulation Error at: %u", i
);
1231 BinStream
[bitCnt
++] = 7;
1232 } else if (waveHigh
) {
1233 BinStream
[bitCnt
++] = invert
;
1234 BinStream
[bitCnt
++] = invert
;
1235 } else if (!waveHigh
) {
1236 BinStream
[bitCnt
++] = invert
^ 1;
1237 BinStream
[bitCnt
++] = invert
^ 1;
1239 if (*startIdx
==0) *startIdx
= i
-clk
;
1240 waveHigh
= !waveHigh
;
1242 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) { //half clock
1244 BinStream
[bitCnt
++] = invert
;
1245 } else if (!waveHigh
) {
1246 BinStream
[bitCnt
++] = invert
^ 1;
1248 if (*startIdx
==0) *startIdx
= i
-(clk
/2);
1249 waveHigh
= !waveHigh
;
1253 //transition bit oops
1255 } else { //haven't hit new high or new low yet
1265 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
1266 int askdemod_ext(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
, int *startIdx
) {
1267 if (*size
==0) return -1;
1268 int start
= DetectASKClock(BinStream
, *size
, clk
, maxErr
); //clock default
1269 if (*clk
==0 || start
< 0) return -3;
1270 if (*invert
!= 1) *invert
= 0;
1271 if (amp
==1) askAmp(BinStream
, *size
);
1272 if (g_debugMode
==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk
, start
, amp
);
1274 //start pos from detect ask clock is 1/2 clock offset
1275 // NOTE: can be negative (demod assumes rest of wave was there)
1276 *startIdx
= start
- (*clk
/2);
1277 uint8_t initLoopMax
= 255;
1278 if (initLoopMax
> *size
) initLoopMax
= *size
;
1279 // Detect high and lows
1280 //25% clip in case highs and lows aren't clipped [marshmellow]
1282 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1)
1283 return -2; //just noise
1286 // if clean clipped waves detected run alternate demod
1287 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
1288 if (g_debugMode
==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
1289 errCnt
= cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
, startIdx
);
1290 if (askType
) { //askman
1291 uint8_t alignPos
= 0;
1292 errCnt
= manrawdecode(BinStream
, size
, 0, &alignPos
);
1293 *startIdx
+= *clk
/2 * alignPos
;
1294 if (g_debugMode
) prnt("DEBUG ASK CLEAN: startIdx %i, alignPos %u", *startIdx
, alignPos
);
1300 if (g_debugMode
) prnt("DEBUG ASK WEAK: startIdx %i", *startIdx
);
1301 if (g_debugMode
==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
1303 int lastBit
; //set first clock check - can go negative
1304 size_t i
, bitnum
= 0; //output counter
1306 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1307 if (*clk
<= 32) tol
= 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
1308 size_t MaxBits
= 3072; //max bits to collect
1309 lastBit
= start
- *clk
;
1311 for (i
= start
; i
< *size
; ++i
) {
1312 if (i
-lastBit
>= *clk
-tol
){
1313 if (BinStream
[i
] >= high
) {
1314 BinStream
[bitnum
++] = *invert
;
1315 } else if (BinStream
[i
] <= low
) {
1316 BinStream
[bitnum
++] = *invert
^ 1;
1317 } else if (i
-lastBit
>= *clk
+tol
) {
1319 if (g_debugMode
==2) prnt("DEBUG ASK: Modulation Error at: %u", i
);
1320 BinStream
[bitnum
++]=7;
1323 } else { //in tolerance - looking for peak
1328 } else if (i
-lastBit
>= (*clk
/2-tol
) && !midBit
&& !askType
){
1329 if (BinStream
[i
] >= high
) {
1330 BinStream
[bitnum
++] = *invert
;
1331 } else if (BinStream
[i
] <= low
) {
1332 BinStream
[bitnum
++] = *invert
^ 1;
1333 } else if (i
-lastBit
>= *clk
/2+tol
) {
1334 BinStream
[bitnum
] = BinStream
[bitnum
-1];
1336 } else { //in tolerance - looking for peak
1341 if (bitnum
>= MaxBits
) break;
1347 int askdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
) {
1349 return askdemod_ext(BinStream
, size
, clk
, invert
, maxErr
, amp
, askType
, &start
);
1352 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1353 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1354 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int *startIdx
) {
1355 if (justNoise(dest
, *size
)) return -1;
1356 size_t clkStartIdx
= 0;
1357 *clk
= DetectNRZClock(dest
, *size
, *clk
, &clkStartIdx
);
1358 if (*clk
==0) return -2;
1359 size_t i
, gLen
= 4096;
1360 if (gLen
>*size
) gLen
= *size
-20;
1362 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1365 //convert wave samples to 1's and 0's
1366 for(i
=20; i
< *size
-20; i
++){
1367 if (dest
[i
] >= high
) bit
= 1;
1368 if (dest
[i
] <= low
) bit
= 0;
1371 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1374 for(i
=21; i
< *size
-20; i
++) {
1375 //if transition detected or large number of same bits - store the passed bits
1376 if (dest
[i
] != dest
[i
-1] || (i
-lastBit
) == (10 * *clk
)) {
1377 memset(dest
+numBits
, dest
[i
-1] ^ *invert
, (i
- lastBit
+ (*clk
/4)) / *clk
);
1378 numBits
+= (i
- lastBit
+ (*clk
/4)) / *clk
;
1380 *startIdx
= i
- (numBits
* *clk
);
1381 if (g_debugMode
==2) prnt("DEBUG NRZ: startIdx %i", *startIdx
);
1390 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
1391 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
, int *startIdx
) {
1392 size_t last_transition
= 0;
1394 if (fchigh
==0) fchigh
=10;
1395 if (fclow
==0) fclow
=8;
1396 //set the threshold close to 0 (graph) or 128 std to avoid static
1397 size_t preLastSample
= 0;
1398 size_t LastSample
= 0;
1399 size_t currSample
= 0;
1400 if ( size
< 1024 ) return 0; // not enough samples
1402 //find start of modulating data in trace
1403 idx
= findModStart(dest
, size
, fchigh
);
1404 // Need to threshold first sample
1405 if(dest
[idx
] < FSK_PSK_THRESHOLD
) dest
[0] = 0;
1408 last_transition
= idx
;
1411 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
1412 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
1413 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
1414 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
1415 for(; idx
< size
; idx
++) {
1416 // threshold current value
1417 if (dest
[idx
] < FSK_PSK_THRESHOLD
) dest
[idx
] = 0;
1420 // Check for 0->1 transition
1421 if (dest
[idx
-1] < dest
[idx
]) {
1422 preLastSample
= LastSample
;
1423 LastSample
= currSample
;
1424 currSample
= idx
-last_transition
;
1425 if (currSample
< (fclow
-2)) { //0-5 = garbage noise (or 0-3)
1426 //do nothing with extra garbage
1427 } else if (currSample
< (fchigh
-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
1428 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
1429 if (numBits
> 1 && LastSample
> (fchigh
-2) && (preLastSample
< (fchigh
-1))){
1433 if (numBits
> 0 && *startIdx
==0) *startIdx
= idx
- fclow
;
1434 } else if (currSample
> (fchigh
+1) && numBits
< 3) { //12 + and first two bit = unusable garbage
1435 //do nothing with beginning garbage and reset.. should be rare..
1437 } else if (currSample
== (fclow
+1) && LastSample
== (fclow
-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
1439 if (numBits
> 0 && *startIdx
==0) *startIdx
= idx
- fclow
;
1440 } else { //9+ = 10 sample waves (or 6+ = 7)
1442 if (numBits
> 0 && *startIdx
==0) *startIdx
= idx
- fchigh
;
1444 last_transition
= idx
;
1447 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
1450 //translate 11111100000 to 10
1451 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
1452 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int *startIdx
) {
1453 uint8_t lastval
=dest
[0];
1457 for( idx
=1; idx
< size
; idx
++) {
1459 if (dest
[idx
]==lastval
) continue; //skip until we hit a transition
1461 //find out how many bits (n) we collected (use 1/2 clk tolerance)
1462 //if lastval was 1, we have a 1->0 crossing
1463 if (dest
[idx
-1]==1) {
1464 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
1465 } else {// 0->1 crossing
1466 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
1470 //first transition - save startidx
1472 if (lastval
== 1) { //high to low
1473 *startIdx
+= (fclow
* idx
) - (n
*rfLen
);
1474 if (g_debugMode
==2) prnt("DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u", *startIdx
, fclow
*(idx
), n
*rfLen
);
1476 *startIdx
+= (fchigh
* idx
) - (n
*rfLen
);
1477 if (g_debugMode
==2) prnt("DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u", *startIdx
, fchigh
*(idx
), n
*rfLen
);
1481 //add to our destination the bits we collected
1482 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
1487 // if valid extra bits at the end were all the same frequency - add them in
1488 if (n
> rfLen
/fchigh
) {
1489 if (dest
[idx
-2]==1) {
1490 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
1492 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
1494 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
1500 //by marshmellow (from holiman's base)
1501 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
1502 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int *startIdx
) {
1503 if (justNoise(dest
, size
)) return 0;
1505 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
, startIdx
);
1506 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
, startIdx
);
1511 // convert psk1 demod to psk2 demod
1512 // only transition waves are 1s
1513 void psk1TOpsk2(uint8_t *BitStream
, size_t size
) {
1515 uint8_t lastBit
=BitStream
[0];
1516 for (; i
<size
; i
++){
1517 if (BitStream
[i
]==7){
1519 } else if (lastBit
!=BitStream
[i
]){
1520 lastBit
=BitStream
[i
];
1530 // convert psk2 demod to psk1 demod
1531 // from only transition waves are 1s to phase shifts change bit
1532 void psk2TOpsk1(uint8_t *BitStream
, size_t size
) {
1534 for (size_t i
=0; i
<size
; i
++){
1535 if (BitStream
[i
]==1){
1543 //by marshmellow - demodulate PSK1 wave
1544 //uses wave lengths (# Samples)
1545 int pskRawDemod_ext(uint8_t dest
[], size_t *size
, int *clock
, int *invert
, int *startIdx
) {
1546 if (*size
< 170) return -1;
1548 uint8_t curPhase
= *invert
;
1550 size_t i
=0, numBits
=0, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1551 uint16_t fullWaveLen
=0, waveLenCnt
=0, avgWaveVal
;
1552 uint16_t errCnt
=0, errCnt2
=0;
1554 *clock
= DetectPSKClock(dest
, *size
, *clock
, &firstFullWave
, &curPhase
, &fc
);
1555 if (*clock
<= 0) return -1;
1556 //if clock detect found firstfullwave...
1557 uint16_t tol
= fc
/2;
1558 if (firstFullWave
== 0) {
1559 //find start of modulating data in trace
1560 i
= findModStart(dest
, *size
, fc
);
1561 //find first phase shift
1562 firstFullWave
= pskFindFirstPhaseShift(dest
, *size
, &curPhase
, i
, fc
, &fullWaveLen
);
1563 if (firstFullWave
== 0) {
1564 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1565 // so skip a little to ensure we are past any Start Signal
1566 firstFullWave
= 160;
1567 memset(dest
, curPhase
, firstFullWave
/ *clock
);
1569 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1572 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1575 numBits
+= (firstFullWave
/ *clock
);
1576 *startIdx
= firstFullWave
- (*clock
* numBits
)+2;
1577 //set start of wave as clock align
1578 lastClkBit
= firstFullWave
;
1579 if (g_debugMode
==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u, startIdx %i",firstFullWave
,fullWaveLen
, *startIdx
);
1580 if (g_debugMode
==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock
, lastClkBit
,(unsigned int) fc
);
1582 dest
[numBits
++] = curPhase
; //set first read bit
1583 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
-3; i
++) {
1584 //top edge of wave = start of new wave
1585 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]) {
1586 if (waveStart
== 0) {
1589 avgWaveVal
= dest
[i
+1];
1592 waveLenCnt
= waveEnd
-waveStart
;
1593 if (waveLenCnt
> fc
) {
1594 //this wave is a phase shift
1595 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1596 if (i
+1 >= lastClkBit
+ *clock
- tol
) { //should be a clock bit
1598 dest
[numBits
++] = curPhase
;
1599 lastClkBit
+= *clock
;
1600 } else if (i
< lastClkBit
+10+fc
) {
1601 //noise after a phase shift - ignore
1602 } else { //phase shift before supposed to based on clock
1604 dest
[numBits
++] = 7;
1606 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
) {
1607 lastClkBit
+= *clock
; //no phase shift but clock bit
1608 dest
[numBits
++] = curPhase
;
1609 } else if (waveLenCnt
< fc
- 1) { //wave is smaller than field clock (shouldn't happen often)
1611 if(errCnt2
> 101) return errCnt2
;
1612 avgWaveVal
+= dest
[i
+1];
1619 avgWaveVal
+= dest
[i
+1];
1625 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
) {
1627 return pskRawDemod_ext(dest
, size
, clock
, invert
, &startIdx
);
1630 //**********************************************************************************************
1631 //-----------------Tag format detection section-------------------------------------------------
1632 //**********************************************************************************************
1635 // FSK Demod then try to locate an AWID ID
1636 int AWIDdemodFSK(uint8_t *dest
, size_t *size
, int *waveStartIdx
) {
1637 //make sure buffer has enough data
1638 if (*size
< 96*50) return -1;
1641 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8, waveStartIdx
); // fsk2a RF/50
1642 if (*size
< 96) return -3; //did we get a good demod?
1644 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
1645 size_t startIdx
= 0;
1646 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
1647 if (errChk
== 0) return -4; //preamble not found
1648 if (*size
!= 96) return -5;
1649 return (int)startIdx
;
1653 //takes 1s and 0s and searches for EM410x format - output EM ID
1654 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
1657 if (*size
< 64) return 0;
1658 if (BitStream
[1]>1) return 0; //allow only 1s and 0s
1660 // 111111111 bit pattern represent start of frame
1661 // include 0 in front to help get start pos
1662 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
1664 uint8_t FmtLen
= 10; // sets of 4 bits = end data
1666 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
1667 if ( errChk
== 0 || (*size
!= 64 && *size
!= 128) ) return 0;
1668 if (*size
== 128) FmtLen
= 22; // 22 sets of 4 bits
1670 //skip last 4bit parity row for simplicity
1671 *size
= removeParity(BitStream
, *startIdx
+ sizeof(preamble
), 5, 0, FmtLen
* 5);
1672 if (*size
== 40) { // std em410x format
1674 *lo
= ((uint64_t)(bytebits_to_byte(BitStream
, 8)) << 32) | (bytebits_to_byte(BitStream
+ 8, 32));
1675 } else if (*size
== 88) { // long em format
1676 *hi
= (bytebits_to_byte(BitStream
, 24));
1677 *lo
= ((uint64_t)(bytebits_to_byte(BitStream
+ 24, 32)) << 32) | (bytebits_to_byte(BitStream
+ 24 + 32, 32));
1679 if (g_debugMode
) prnt("Error removing parity: %u", *size
);
1685 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
1686 // BitStream must contain previously askrawdemod and biphasedemoded data
1687 int FDXBdemodBI(uint8_t *dest
, size_t *size
) {
1688 //make sure buffer has enough data
1689 if (*size
< 128) return -1;
1691 size_t startIdx
= 0;
1692 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,1};
1694 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
1695 if (errChk
== 0) return -2; //preamble not found
1696 if (*size
!= 128) return -3; //wrong size for fdxb
1697 //return start position
1698 return (int)startIdx
;
1702 // demod gProxIIDemod
1703 // error returns as -x
1704 // success returns start position in BitStream
1705 // BitStream must contain previously askrawdemod and biphasedemoded data
1706 int gProxII_Demod(uint8_t BitStream
[], size_t *size
) {
1708 uint8_t preamble
[] = {1,1,1,1,1,0};
1710 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
1711 if (errChk
== 0) return -3; //preamble not found
1712 if (*size
!= 96) return -2; //should have found 96 bits
1713 //check first 6 spacer bits to verify format
1714 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
1715 //confirmed proper separator bits found
1716 //return start position
1717 return (int) startIdx
;
1719 return -5; //spacer bits not found - not a valid gproxII
1722 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
1723 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
, int *waveStartIdx
) {
1724 size_t numStart
=0, size2
=*size
, startIdx
=0;
1725 // FSK demodulator fsk2a so invert and fc/10/8
1726 *size
= fskdemod(dest
, size2
, 50, 1, 10, 8, waveStartIdx
);
1727 if (*size
< 96*2) return -2;
1728 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
1729 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
1730 // find bitstring in array
1731 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
1732 if (errChk
== 0) return -3; //preamble not found
1734 numStart
= startIdx
+ sizeof(preamble
);
1735 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
1736 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
1737 if (dest
[idx
] == dest
[idx
+1]){
1738 return -4; //not manchester data
1740 *hi2
= (*hi2
<<1)|(*hi
>>31);
1741 *hi
= (*hi
<<1)|(*lo
>>31);
1742 //Then, shift in a 0 or one into low
1743 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
1748 return (int)startIdx
;
1751 int IOdemodFSK(uint8_t *dest
, size_t size
, int *waveStartIdx
) {
1752 //make sure buffer has data
1753 if (size
< 66*64) return -2;
1754 // FSK demodulator RF/64, fsk2a so invert, and fc/10/8
1755 size
= fskdemod(dest
, size
, 64, 1, 10, 8, waveStartIdx
);
1756 if (size
< 65) return -3; //did we get a good demod?
1758 //0 10 20 30 40 50 60
1760 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1761 //-----------------------------------------------------------------------------
1762 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1764 //XSF(version)facility:codeone+codetwo
1766 size_t startIdx
= 0;
1767 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
1768 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
1769 if (errChk
== 0) return -4; //preamble not found
1771 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
1772 //confirmed proper separator bits found
1773 //return start position
1774 return (int) startIdx
;
1779 // redesigned by marshmellow adjusted from existing decode functions
1780 // indala id decoding
1781 int indala64decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
) {
1782 //standard 64 bit indala formats including 26 bit 40134 format
1783 uint8_t preamble64
[] = {1,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1};
1784 uint8_t preamble64_i
[] = {0,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0};
1785 size_t startidx
= 0;
1786 size_t found_size
= *size
;
1787 bool found
= preambleSearch(bitStream
, preamble64
, sizeof(preamble64
), &found_size
, &startidx
);
1789 found
= preambleSearch(bitStream
, preamble64_i
, sizeof(preamble64_i
), &found_size
, &startidx
);
1790 if (!found
) return -1;
1793 if (found_size
!= 64) return -2;
1795 for (size_t i
= startidx
; i
< found_size
+ startidx
; i
++)
1798 // note: don't change *size until we are sure we got it...
1800 return (int) startidx
;
1803 int indala224decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
) {
1804 //large 224 bit indala formats (different preamble too...)
1805 uint8_t preamble224
[] = {1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1};
1806 uint8_t preamble224_i
[] = {0,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0};
1807 size_t startidx
= 0;
1808 size_t found_size
= *size
;
1809 bool found
= preambleSearch(bitStream
, preamble224
, sizeof(preamble224
), &found_size
, &startidx
);
1811 found
= preambleSearch(bitStream
, preamble224_i
, sizeof(preamble224_i
), &found_size
, &startidx
);
1812 if (!found
) return -1;
1815 if (found_size
!= 224) return -2;
1816 if (*invert
==1 && startidx
> 0)
1817 for (size_t i
= startidx
-1; i
< found_size
+ startidx
+ 2; i
++)
1820 // 224 formats are typically PSK2 (afaik 2017 Marshmellow)
1821 // note loses 1 bit at beginning of transformation...
1822 // don't need to verify array is big enough as to get here there has to be a full preamble after all of our data
1823 psk1TOpsk2(bitStream
+ (startidx
-1), found_size
+2);
1827 return (int) startidx
;
1830 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
1831 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
, int *waveStartIdx
) {
1832 size_t numStart
=0, size2
=*size
, startIdx
=0;
1834 *size
= fskdemod(dest
, size2
,50,1,10,8,waveStartIdx
); //fsk2a
1835 if (*size
< 96) return -2;
1837 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
1838 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
1840 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
1841 if (errChk
== 0) return -3; //preamble not found
1843 numStart
= startIdx
+ sizeof(preamble
);
1844 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
1845 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
1846 if (dest
[idx
] == dest
[idx
+1])
1847 return -4; //not manchester data
1848 *hi2
= (*hi2
<<1)|(*hi
>>31);
1849 *hi
= (*hi
<<1)|(*lo
>>31);
1850 //Then, shift in a 0 or one into low
1851 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
1856 return (int)startIdx
;
1859 // find presco preamble 0x10D in already demoded data
1860 int PrescoDemod(uint8_t *dest
, size_t *size
) {
1861 //make sure buffer has data
1862 if (*size
< 64*2) return -2;
1864 size_t startIdx
= 0;
1865 uint8_t preamble
[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
1866 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
1867 if (errChk
== 0) return -4; //preamble not found
1868 //return start position
1869 return (int) startIdx
;
1873 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
1874 int PyramiddemodFSK(uint8_t *dest
, size_t *size
, int *waveStartIdx
) {
1875 //make sure buffer has data
1876 if (*size
< 128*50) return -5;
1879 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8, waveStartIdx
); // fsk2a RF/50
1880 if (*size
< 128) return -2; //did we get a good demod?
1882 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1883 size_t startIdx
= 0;
1884 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
1885 if (errChk
== 0) return -4; //preamble not found
1886 if (*size
!= 128) return -3;
1887 return (int)startIdx
;
1891 // find viking preamble 0xF200 in already demoded data
1892 int VikingDemod_AM(uint8_t *dest
, size_t *size
) {
1893 //make sure buffer has data
1894 if (*size
< 64*2) return -2;
1896 size_t startIdx
= 0;
1897 uint8_t preamble
[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1898 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
1899 if (errChk
== 0) return -4; //preamble not found
1900 uint32_t checkCalc
= bytebits_to_byte(dest
+startIdx
,8) ^ bytebits_to_byte(dest
+startIdx
+8,8) ^ bytebits_to_byte(dest
+startIdx
+16,8)
1901 ^ bytebits_to_byte(dest
+startIdx
+24,8) ^ bytebits_to_byte(dest
+startIdx
+32,8) ^ bytebits_to_byte(dest
+startIdx
+40,8)
1902 ^ bytebits_to_byte(dest
+startIdx
+48,8) ^ bytebits_to_byte(dest
+startIdx
+56,8);
1903 if ( checkCalc
!= 0xA8 ) return -5;
1904 if (*size
!= 64) return -6;
1905 //return start position
1906 return (int) startIdx
;
1910 // find Visa2000 preamble in already demoded data
1911 int Visa2kDemod_AM(uint8_t *dest
, size_t *size
) {
1912 if (*size
< 96) return -1; //make sure buffer has data
1913 size_t startIdx
= 0;
1914 uint8_t preamble
[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0};
1915 if (preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
) == 0)
1916 return -2; //preamble not found
1917 if (*size
!= 96) return -3; //wrong demoded size
1918 //return start position
1919 return (int)startIdx
;