Merge branch 'master' into GenericTracing
[legacy-proxmark3.git] / fpga / lp20khz_1MSa_iir_filter.v
bloba227a902c63cd2267394e2b762c8d37aa0685cb3
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Butterworth low pass IIR filter
9 // input: 8bit ADC signal, 1MS/s
10 // output: 8bit value, Fc=20khz
12 // coef: (using http://www-users.cs.york.ac.uk/~fisher/mkfilter/trad.html)
13 // Recurrence relation:
14 // y[n] = ( 1 * x[n- 2])
15 // + ( 2 * x[n- 1])
16 // + ( 1 * x[n- 0])
18 // + ( -0.8371816513 * y[n- 2])
19 // + ( 1.8226949252 * y[n- 1])
21 // therefore:
22 // a = [1,2,1]
23 // b = [-0.8371816513, 1.8226949252]
24 // b is approximated to b = [-0xd6/0x100, 0x1d3 / 0x100] (for optimization)
25 // gain = 2.761139367e2
27 // See details about its design see
28 // https://fail0verflow.com/blog/2014/proxmark3-fpga-iir-filter.html
29 module lp20khz_1MSa_iir_filter(input clk, input [7:0] adc_d, output rdy, output [7:0] out);
31 // clk is 24Mhz, the IIR filter is designed for 1MS/s
32 // hence we need to divide it by 24
33 // using a shift register takes less area than a counter
34 reg [23:0] cnt = 1;
35 assign rdy = cnt[0];
36 always @(posedge clk)
37 cnt <= {cnt[22:0], cnt[23]};
39 reg [7:0] x0 = 0;
40 reg [7:0] x1 = 0;
41 reg [16:0] y0 = 0;
42 reg [16:0] y1 = 0;
44 always @(posedge clk)
45 begin
46 if (rdy)
47 begin
48 x0 <= x1;
49 x1 <= adc_d;
50 y0 <= y1;
51 y1 <=
52 // center the signal:
53 // input range is [0; 255]
54 // We want "128" to be at the center of the 17bit register
55 // (128+z)*gain = 17bit center
56 // z = (1<<16)/gain - 128 = 109
57 // We could use 9bit x registers for that, but that would be
58 // a waste, let's just add the constant during the computation
59 // (x0+109) + 2*(x1+109) + (x2+109) = x0 + 2*x1 + x2 + 436
60 x0 + {x1, 1'b0} + adc_d + 436
61 // we want "- y0 * 0xd6 / 0x100" using only shift and add
62 // 0xd6 == 0b11010110
63 // so *0xd6/0x100 is equivalent to
64 // ((x << 1) + (x << 2) + (x << 4) + (x << 6) + (x << 7)) >> 8
65 // which is also equivalent to
66 // (x >> 7) + (x >> 6) + (x >> 4) + (x >> 2) + (x >> 1)
67 - ((y0 >> 7) + (y0 >> 6) + (y0 >> 4) + (y0 >> 2) + (y0 >> 1)) // - y0 * 0xd6 / 0x100
68 // we want "+ y1 * 0x1d3 / 0x100"
69 // 0x1d3 == 0b111010011
70 // so this is equivalent to
71 // ((x << 0) + (x << 1) + (x << 4) + (x << 6) + (x << 7) + (x << 8)) >> 8
72 // which is also equivalent to
73 // (x >> 8) + (x >> 7) + (x >> 4) + (x >> 2) + (x >> 1) + (x >> 0)
74 + ((y1 >> 8) + (y1 >> 7) + (y1 >> 4) + (y1 >> 2) + (y1 >> 1) + y1);
75 end
76 end
78 // output: reduce to 8bit
79 assign out = y1[16:9];
81 endmodule