1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
16 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
18 static const uint8_t THRESHOLD
= 123;
19 //test samples are not just noise
20 uint8_t justNoise1
= 1;
21 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
22 justNoise1
= BitStream
[idx
] < THRESHOLD
;
28 //get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
29 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
33 // get high and low thresholds
34 for (int i
=0; i
< size
; i
++){
35 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
36 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
38 if (*high
< 123) return -1; // just noise
39 *high
= (int)(((*high
-128)*(((float)fuzzHi
)/100))+128);
40 *low
= (int)(((*low
-128)*(((float)fuzzLo
)/100))+128);
45 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
46 // returns 1 if passed
47 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
50 for (uint8_t i
= 0; i
< bitLen
; i
++){
51 ans
^= ((bits
>> i
) & 1);
53 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
54 return (ans
== pType
);
58 //search for given preamble in given BitStream and return startIndex and length
59 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
62 for (int idx
=0; idx
< *size
- pLen
; idx
++){
63 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
70 *size
= idx
- *startIdx
;
80 //takes 1s and 0s and searches for EM410x format - output EM ID
81 uint64_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
)
83 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
84 // otherwise could be a void with no arguments
88 if (BitStream
[1]>1){ //allow only 1s and 0s
89 // PrintAndLog("no data found");
92 // 111111111 bit pattern represent start of frame
93 uint8_t preamble
[] = {1,1,1,1,1,1,1,1,1};
95 uint32_t parityBits
= 0;
98 for (uint8_t extraBitChk
=0; extraBitChk
<5; extraBitChk
++){
99 errChk
= preambleSearch(BitStream
+extraBitChk
+*startIdx
, preamble
, sizeof(preamble
), size
, startIdx
);
100 if (errChk
== 0) return 0;
102 for (i
=0; i
<10;i
++){ //loop through 10 sets of 5 bits (50-10p = 40 bits)
103 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
105 if (parityTest(parityBits
, 5, 0) == 0){
106 //parity failed try next bit (in the case of 1111111111) but last 9 = preamble
111 for (uint8_t ii
=0; ii
<4; ii
++){
112 lo
= (lo
<< 1LL) | (BitStream
[(i
*5)+ii
+idx
]);
115 if (errChk
!= 0) return lo
;
116 //skip last 5 bit parity test for simplicity.
123 //takes 2 arguments - clock and invert both as integers
124 //attempts to demodulate ask while decoding manchester
125 //prints binary found and saves in graphbuffer for further commands
126 int askmandemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
)
130 *clk
=DetectASKClock(BinStream
, *size
, *clk
); //clock default
132 // if autodetected too low then adjust //MAY NEED ADJUSTMENT
133 if (clk2
==0 && *clk
<8) *clk
=64;
134 if (clk2
==0 && *clk
<32) *clk
=32;
135 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
136 uint32_t initLoopMax
= 200;
137 if (initLoopMax
> *size
) initLoopMax
=*size
;
138 // Detect high and lows
139 // 25% fuzz in case highs and lows aren't clipped [marshmellow]
141 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75);
142 if (ans
<1) return -2; //just noise
144 // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
145 int lastBit
= 0; //set first clock check
146 uint32_t bitnum
= 0; //output counter
147 int tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
148 if (*clk
<=32)tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
150 uint32_t gLen
= *size
;
151 if (gLen
> 3000) gLen
=3000;
153 uint32_t bestStart
= *size
;
154 uint32_t bestErrCnt
= (*size
/1000);
155 uint32_t maxErr
= (*size
/1000);
156 // PrintAndLog("DEBUG - lastbit - %d",lastBit);
157 // loop to find first wave that works
158 for (iii
=0; iii
< gLen
; ++iii
){
159 if ((BinStream
[iii
] >= high
) || (BinStream
[iii
] <= low
)){
162 // loop through to see if this start location works
163 for (i
= iii
; i
< *size
; ++i
) {
164 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
166 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
167 //low found and we are expecting a bar
170 //mid value found or no bar supposed to be here
171 if ((i
-lastBit
)>(*clk
+tol
)){
172 //should have hit a high or low based on clock!!
175 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
178 lastBit
+=*clk
;//skip over until hit too many errors
179 if (errCnt
>(maxErr
)) break; //allow 1 error for every 1000 samples else start over
182 if ((i
-iii
) >(400 * *clk
)) break; //got plenty of bits
184 //we got more than 64 good bits and not all errors
185 if ((((i
-iii
)/ *clk
) > (64+errCnt
)) && (errCnt
<maxErr
)) {
190 break; //great read - finish
192 if (errCnt
<bestErrCnt
){ //set this as new best run
199 if (bestErrCnt
<maxErr
){
200 //best run is good enough set to best run and set overwrite BinStream
202 lastBit
= bestStart
- *clk
;
204 for (i
= iii
; i
< *size
; ++i
) {
205 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
207 BinStream
[bitnum
] = *invert
;
209 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
210 //low found and we are expecting a bar
212 BinStream
[bitnum
] = 1-*invert
;
215 //mid value found or no bar supposed to be here
216 if ((i
-lastBit
)>(*clk
+tol
)){
217 //should have hit a high or low based on clock!!
220 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
222 BinStream
[bitnum
]=77;
226 lastBit
+=*clk
;//skip over error
229 if (bitnum
>=400) break;
241 //encode binary data into binary manchester
242 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
244 size_t modIdx
=20000, i
=0;
245 if (size
>modIdx
) return -1;
246 for (size_t idx
=0; idx
< size
; idx
++){
247 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
248 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
250 for (; i
<(size
*2); i
++){
251 BitStream
[i
] = BitStream
[i
+20000];
257 //take 10 and 01 and manchester decode
258 //run through 2 times and take least errCnt
259 int manrawdecode(uint8_t * BitStream
, size_t *size
)
267 for (ii
=1;ii
<3;++ii
){
269 for (i
=i
+ii
;i
<*size
-2;i
+=2){
270 if(BitStream
[i
]==1 && (BitStream
[i
+1]==0)){
271 } else if((BitStream
[i
]==0)&& BitStream
[i
+1]==1){
275 if(bitnum
>300) break;
287 for (i
=i
+ii
;i
< *size
-2;i
+=2){
288 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
289 BitStream
[bitnum
++]=0;
290 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
291 BitStream
[bitnum
++]=1;
293 BitStream
[bitnum
++]=77;
296 if(bitnum
>300) break;
304 //take 01 or 10 = 0 and 11 or 00 = 1
305 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
311 for (;i
<*size
-2; i
+=2){
312 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
313 BitStream
[bitnum
++]=1^invert
;
314 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
315 BitStream
[bitnum
++]=invert
;
317 BitStream
[bitnum
++]=77;
320 if(bitnum
>250) break;
327 //takes 2 arguments - clock and invert both as integers
328 //attempts to demodulate ask only
329 //prints binary found and saves in graphbuffer for further commands
330 int askrawdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
)
333 // int invert=0; //invert default
335 *clk
=DetectASKClock(BinStream
, *size
, *clk
); //clock default
336 //uint8_t BitStream[502] = {0};
338 //HACK: if clock not detected correctly - default
339 if (clk2
==0 && *clk
<8) *clk
=64;
340 if (clk2
==0 && *clk
<32 && clk2
==0) *clk
=32;
341 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
342 uint32_t initLoopMax
= 200;
343 if (initLoopMax
> *size
) initLoopMax
=*size
;
344 // Detect high and lows
345 //25% fuzz in case highs and lows aren't clipped [marshmellow]
347 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75);
348 if (ans
<1) return -2; //just noise
350 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
351 int lastBit
= 0; //set first clock check
352 uint32_t bitnum
= 0; //output counter
353 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock
354 // if they fall + or - this value + clock from last valid wave
355 if (*clk
== 32) tol
=1; //clock tolerance may not be needed anymore currently set to
356 // + or - 1 but could be increased for poor waves or removed entirely
358 uint32_t gLen
= *size
;
359 if (gLen
> 500) gLen
=500;
361 uint32_t bestStart
= *size
;
362 uint32_t bestErrCnt
= (*size
/1000);
363 uint32_t maxErr
= bestErrCnt
;
365 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
366 //loop to find first wave that works
367 for (iii
=0; iii
< gLen
; ++iii
){
368 if ((BinStream
[iii
]>=high
) || (BinStream
[iii
]<=low
)){
370 //loop through to see if this start location works
371 for (i
= iii
; i
< *size
; ++i
) {
372 if ((BinStream
[i
] >= high
) && ((i
-lastBit
)>(*clk
-tol
))){
375 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
)>(*clk
-tol
))){
376 //low found and we are expecting a bar
379 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
382 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
385 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
389 //mid value found or no bar supposed to be here
391 if ((i
-lastBit
)>(*clk
+tol
)){
392 //should have hit a high or low based on clock!!
394 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
397 lastBit
+=*clk
;//skip over until hit too many errors
398 if (errCnt
> ((*size
/1000))){ //allow 1 error for every 1000 samples else start over
404 if ((i
-iii
)>(500 * *clk
)) break; //got enough bits
406 //we got more than 64 good bits and not all errors
407 if ((((i
-iii
)/ *clk
) > (64+errCnt
)) && (errCnt
<(*size
/1000))) {
412 break; //great read - finish
414 if (errCnt
<bestErrCnt
){ //set this as new best run
421 if (bestErrCnt
<maxErr
){
422 //best run is good enough - set to best run and overwrite BinStream
424 lastBit
= bestStart
- *clk
;
426 for (i
= iii
; i
< *size
; ++i
) {
427 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
429 BinStream
[bitnum
] = *invert
;
432 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
433 //low found and we are expecting a bar
435 BinStream
[bitnum
] = 1-*invert
;
438 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
441 BinStream
[bitnum
] = 1 - *invert
;
443 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
446 BinStream
[bitnum
] = *invert
;
448 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
451 if (bitnum
!=0) BinStream
[bitnum
] = BinStream
[bitnum
-1];
455 //mid value found or no bar supposed to be here
456 if ((i
-lastBit
)>(*clk
+tol
)){
457 //should have hit a high or low based on clock!!
460 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
462 BinStream
[bitnum
]=77;
466 lastBit
+=*clk
;//skip over error
469 if (bitnum
>=400) break;
479 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
480 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
482 uint32_t last_transition
= 0;
485 if (fchigh
==0) fchigh
=10;
486 if (fclow
==0) fclow
=8;
487 //set the threshold close to 0 (graph) or 128 std to avoid static
488 uint8_t threshold_value
= 123;
490 // sync to first lo-hi transition, and threshold
492 // Need to threshold first sample
494 if(dest
[0] < threshold_value
) dest
[0] = 0;
498 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
499 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
500 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
501 for(idx
= 1; idx
< size
; idx
++) {
502 // threshold current value
504 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
507 // Check for 0->1 transition
508 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
509 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
510 //do nothing with extra garbage
511 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
513 } else { //9+ = 10 waves
516 last_transition
= idx
;
520 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
523 uint32_t myround2(float f
)
525 if (f
>= 2000) return 2000;//something bad happened
526 return (uint32_t) (f
+ (float)0.5);
529 //translate 11111100000 to 10
530 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t maxConsequtiveBits
,
531 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
533 uint8_t lastval
=dest
[0];
538 for( idx
=1; idx
< size
; idx
++) {
540 if (dest
[idx
]==lastval
) {
544 //if lastval was 1, we have a 1->0 crossing
545 if ( dest
[idx
-1]==1 ) {
546 n
=myround2((float)(n
+1)/((float)(rfLen
)/(float)fclow
));
547 } else {// 0->1 crossing
548 n
=myround2((float)(n
+1)/((float)(rfLen
-1)/(float)fchigh
)); //-1 for fudge factor
552 if(n
< maxConsequtiveBits
) //Consecutive
554 if(invert
==0){ //invert bits
555 memset(dest
+numBits
, dest
[idx
-1] , n
);
557 memset(dest
+numBits
, dest
[idx
-1]^1 , n
);
566 //by marshmellow (from holiman's base)
567 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
568 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
571 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
572 size
= aggregate_bits(dest
, size
, rfLen
, 192, invert
, fchigh
, fclow
);
576 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
577 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
579 if (justNoise(dest
, *size
)) return -1;
581 size_t numStart
=0, size2
=*size
, startIdx
=0;
583 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
584 if (*size
< 96) return -2;
585 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
586 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
587 // find bitstring in array
588 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
589 if (errChk
== 0) return -3; //preamble not found
591 numStart
= startIdx
+ sizeof(preamble
);
592 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
593 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
594 if (dest
[idx
] == dest
[idx
+1]){
595 return -4; //not manchester data
597 *hi2
= (*hi2
<<1)|(*hi
>>31);
598 *hi
= (*hi
<<1)|(*lo
>>31);
599 //Then, shift in a 0 or one into low
600 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
605 return (int)startIdx
;
608 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
609 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
611 if (justNoise(dest
, *size
)) return -1;
613 size_t numStart
=0, size2
=*size
, startIdx
=0;
615 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
616 if (*size
< 96) return -2;
618 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
619 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
621 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
622 if (errChk
== 0) return -3; //preamble not found
624 numStart
= startIdx
+ sizeof(preamble
);
625 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
626 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
627 if (dest
[idx
] == dest
[idx
+1])
628 return -4; //not manchester data
629 *hi2
= (*hi2
<<1)|(*hi
>>31);
630 *hi
= (*hi
<<1)|(*lo
>>31);
631 //Then, shift in a 0 or one into low
632 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
637 return (int)startIdx
;
640 uint32_t bytebits_to_byte(uint8_t* src
, size_t numbits
)
643 for(int i
= 0 ; i
< numbits
; i
++)
645 num
= (num
<< 1) | (*src
);
651 int IOdemodFSK(uint8_t *dest
, size_t size
)
653 if (justNoise(dest
, size
)) return -1;
654 //make sure buffer has data
655 if (size
< 66*64) return -2;
657 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
658 if (size
< 65) return -3; //did we get a good demod?
660 //0 10 20 30 40 50 60
662 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
663 //-----------------------------------------------------------------------------
664 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
666 //XSF(version)facility:codeone+codetwo
669 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
670 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
671 if (errChk
== 0) return -4; //preamble not found
673 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
674 //confirmed proper separator bits found
675 //return start position
676 return (int) startIdx
;
682 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
683 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
684 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
686 uint32_t parityWd
= 0;
687 size_t j
= 0, bitCnt
= 0;
688 for (int word
= 0; word
< (bLen
); word
+=pLen
){
689 for (int bit
=0; bit
< pLen
; bit
++){
690 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
691 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
694 // if parity fails then return 0
695 if (parityTest(parityWd
, pLen
, pType
) == 0) return -1;
699 // if we got here then all the parities passed
700 //return ID start index and size
705 // FSK Demod then try to locate an AWID ID
706 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
708 //make sure buffer has enough data
709 if (*size
< 96*50) return -1;
711 if (justNoise(dest
, *size
)) return -2;
714 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
715 if (*size
< 96) return -3; //did we get a good demod?
717 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
719 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
720 if (errChk
== 0) return -4; //preamble not found
721 if (*size
!= 96) return -5;
722 return (int)startIdx
;
726 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
727 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
729 //make sure buffer has data
730 if (*size
< 128*50) return -5;
732 //test samples are not just noise
733 if (justNoise(dest
, *size
)) return -1;
736 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
737 if (*size
< 128) return -2; //did we get a good demod?
739 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
741 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
742 if (errChk
== 0) return -4; //preamble not found
743 if (*size
!= 128) return -3;
744 return (int)startIdx
;
748 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
749 // maybe somehow adjust peak trimming value based on samples to fix?
750 int DetectASKClock(uint8_t dest
[], size_t size
, int clock
)
753 int clk
[]={8,16,32,40,50,64,100,128,256};
754 int loopCnt
= 256; //don't need to loop through entire array...
755 if (size
<loopCnt
) loopCnt
= size
;
757 //if we already have a valid clock quit
760 if (clk
[i
] == clock
) return clock
;
762 //get high and low peak
764 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
769 int bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
771 //test each valid clock from smallest to greatest to see which lines up
772 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
773 if (clk
[clkCnt
] == 32){
778 bestErr
[clkCnt
]=1000;
779 //try lining up the peaks by moving starting point (try first 256)
780 for (ii
=0; ii
< loopCnt
; ++ii
){
781 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
783 // now that we have the first one lined up test rest of wave array
784 for (i
=0; i
<((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
785 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
786 }else if(dest
[ii
+(i
*clk
[clkCnt
])-tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])-tol
]<=low
){
787 }else if(dest
[ii
+(i
*clk
[clkCnt
])+tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])+tol
]<=low
){
788 }else{ //error no peak detected
792 //if we found no errors then we can stop here
793 // this is correct one - return this clock
794 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
795 if(errCnt
==0 && clkCnt
<6) return clk
[clkCnt
];
796 //if we found errors see if it is lowest so far and save it as best run
797 if(errCnt
<bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
803 for (iii
=0; iii
<8; ++iii
){
804 if (bestErr
[iii
]<bestErr
[best
]){
805 if (bestErr
[iii
]==0) bestErr
[iii
]=1;
806 // current best bit to error ratio vs new bit to error ratio
807 if (((size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
]) ){
816 //detect psk clock by reading #peaks vs no peaks(or errors)
817 int DetectpskNRZClock(uint8_t dest
[], size_t size
, int clock
)
820 int clk
[]={16,32,40,50,64,100,128,256};
821 int loopCnt
= 2048; //don't need to loop through entire array...
822 if (size
<loopCnt
) loopCnt
= size
;
824 //if we already have a valid clock quit
826 if (clk
[i
] == clock
) return clock
;
828 //get high and low peak
830 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
832 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
838 int bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000};
839 int peaksdet
[]={0,0,0,0,0,0,0,0};
840 //test each valid clock from smallest to greatest to see which lines up
841 for(clkCnt
=0; clkCnt
< 7; ++clkCnt
){
842 if (clk
[clkCnt
] <= 32){
847 //try lining up the peaks by moving starting point (try first 256)
848 for (ii
=0; ii
< loopCnt
; ++ii
){
849 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
852 // now that we have the first one lined up test rest of wave array
853 for (i
=0; i
< ((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
854 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
856 }else if(dest
[ii
+(i
*clk
[clkCnt
])-tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])-tol
]<=low
){
858 }else if(dest
[ii
+(i
*clk
[clkCnt
])+tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])+tol
]<=low
){
860 }else{ //error no peak detected
864 if(peakcnt
>peaksdet
[clkCnt
]) {
865 peaksdet
[clkCnt
]=peakcnt
;
866 bestErr
[clkCnt
]=errCnt
;
873 //int ratio2; //debug
876 for (iii
=0; iii
< 7; ++iii
){
878 //ratio2=1000; //debug
879 //bits=size/clk[iii]; //debug
880 if (peaksdet
[iii
] > 0){
881 ratio
=bestErr
[iii
]/peaksdet
[iii
];
882 if (((bestErr
[best
]/peaksdet
[best
]) > (ratio
)+1)){
885 //ratio2=bits/peaksdet[iii]; //debug
887 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
892 // by marshmellow (attempt to get rid of high immediately after a low)
893 void pskCleanWave(uint8_t *BitStream
, size_t size
)
900 getHiLo(BitStream
, size
, &high
, &low
, 80, 90);
902 for (i
=0; i
< size
; ++i
){
904 if (BitStream
[i
]>low
){
912 }else if (newHigh
== 1){
913 if (BitStream
[i
]<high
){
922 if (BitStream
[i
] <= low
) newLow
=1;
923 if (BitStream
[i
] >= high
) newHigh
=1;
929 // convert psk1 demod to psk2 demod
930 // only transition waves are 1s
931 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
934 uint8_t lastBit
=BitStream
[0];
936 if (lastBit
!=BitStream
[i
]){
937 lastBit
=BitStream
[i
];
946 // redesigned by marshmellow adjusted from existing decode functions
947 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
948 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
950 //26 bit 40134 format (don't know other formats)
952 int long_wait
=29;//29 leading zeros in format
958 // Finding the start of a UID
959 for (start
= 0; start
<= *size
- 250; start
++) {
960 first
= bitStream
[start
];
961 for (i
= start
; i
< start
+ long_wait
; i
++) {
962 if (bitStream
[i
] != first
) {
966 if (i
== (start
+ long_wait
)) {
970 if (start
== *size
- 250 + 1) {
971 // did not find start sequence
974 // Inverting signal if needed
976 for (i
= start
; i
< *size
; i
++) {
977 bitStream
[i
] = !bitStream
[i
];
983 //found start once now test length by finding next one
984 for (ii
=start
+29; ii
<= *size
- 250; ii
++) {
985 first2
= bitStream
[ii
];
986 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
987 if (bitStream
[iii
] != first2
) {
991 if (iii
== (ii
+ long_wait
)) {
995 if (ii
== *size
- 250 + 1){
996 // did not find second start sequence
1003 for (ii
= 0; ii
< bitCnt
; ii
++) {
1004 bitStream
[ii
] = bitStream
[i
++];
1010 // by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
1011 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1012 int pskNRZrawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
)
1014 if (justNoise(dest
, *size
)) return -1;
1015 pskCleanWave(dest
,*size
);
1016 int clk2
= DetectpskNRZClock(dest
, *size
, *clk
);
1020 ans
= getHiLo(dest
, 1260, &high
, &low
, 75, 80); //25% fuzz on high 20% fuzz on low
1021 if (ans
<1) return -2; //just noise
1022 uint32_t gLen
= *size
;
1023 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
1024 int lastBit
= 0; //set first clock check
1025 uint32_t bitnum
= 0; //output counter
1026 uint8_t tol
= 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1027 if (*clk
==32) tol
= 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
1030 uint32_t bestStart
= *size
;
1031 uint32_t maxErr
= (*size
/1000);
1032 uint32_t bestErrCnt
= maxErr
;
1035 uint8_t ignorewin
=*clk
/8;
1036 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
1037 //loop to find first wave that works - align to clock
1038 for (iii
=0; iii
< gLen
; ++iii
){
1039 if ((dest
[iii
]>=high
) || (dest
[iii
]<=low
)){
1041 //loop through to see if this start location works
1042 for (i
= iii
; i
< *size
; ++i
) {
1043 //if we found a high bar and we are at a clock bit
1044 if ((dest
[i
]>=high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1049 //else if low bar found and we are at a clock point
1050 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1055 //else if no bars found
1056 }else if(dest
[i
] < high
&& dest
[i
] > low
) {
1060 //if we are past a clock point
1061 if (i
>= lastBit
+*clk
+tol
){ //clock val
1065 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1066 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (i
<lastBit
+*clk
-tol
|| i
>lastBit
+*clk
+tol
) && (bitHigh
==0)){
1067 //error bar found no clock...
1070 if (bitnum
>=1000) break;
1072 //we got more than 64 good bits and not all errors
1073 if ((bitnum
> (64+errCnt
)) && (errCnt
< (maxErr
))) {
1074 //possible good read
1077 bestErrCnt
= errCnt
;
1078 break; //great read - finish
1080 if (errCnt
< bestErrCnt
){ //set this as new best run
1081 bestErrCnt
= errCnt
;
1087 if (bestErrCnt
< maxErr
){
1088 //best run is good enough set to best run and set overwrite BinStream
1090 lastBit
=bestStart
-*clk
;
1092 for (i
= iii
; i
< *size
; ++i
) {
1093 //if we found a high bar and we are at a clock bit
1094 if ((dest
[i
] >= high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1098 dest
[bitnum
]=curBit
;
1101 //else if low bar found and we are at a clock point
1102 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1106 dest
[bitnum
]=curBit
;
1109 //else if no bars found
1110 }else if(dest
[i
]<high
&& dest
[i
]>low
) {
1114 //if we are past a clock point
1115 if (i
>=lastBit
+*clk
+tol
){ //clock val
1117 dest
[bitnum
]=curBit
;
1120 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1121 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && ((i
<lastBit
+*clk
-tol
) || (i
>lastBit
+*clk
+tol
)) && (bitHigh
==0)){
1122 //error bar found no clock...
1128 if (bitnum
>=1000) break;
1144 //detects the bit clock for FSK given the high and low Field Clocks
1145 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1147 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1148 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1149 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1150 uint8_t rfLensFnd
= 0;
1151 uint8_t lastFCcnt
=0;
1152 uint32_t fcCounter
= 0;
1153 uint16_t rfCounter
= 0;
1154 uint8_t firstBitFnd
= 0;
1157 uint8_t fcTol
= (uint8_t)(0.5+(float)(fcHigh
-fcLow
)/2);
1162 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1163 // prime i to first up transition
1164 for (i
= 1; i
< size
-1; i
++)
1165 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1168 for (; i
< size
-1; i
++){
1169 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1]){
1173 // if we got less than the small fc + tolerance then set it to the small fc
1174 if (fcCounter
< fcLow
+fcTol
)
1176 else //set it to the large fc
1179 //look for bit clock (rf/xx)
1180 if ((fcCounter
<lastFCcnt
|| fcCounter
>lastFCcnt
)){
1181 //not the same size as the last wave - start of new bit sequence
1183 if (firstBitFnd
>1){ //skip first wave change - probably not a complete bit
1184 for (int ii
=0; ii
<15; ii
++){
1185 if (rfLens
[ii
]==rfCounter
){
1191 if (rfCounter
>0 && rfLensFnd
<15){
1192 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1193 rfCnts
[rfLensFnd
]++;
1194 rfLens
[rfLensFnd
++]=rfCounter
;
1200 lastFCcnt
=fcCounter
;
1209 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1211 for (i
=0; i
<15; i
++){
1212 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1213 //get highest 2 RF values (might need to get more values to compare or compare all?)
1214 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1215 rfHighest3
=rfHighest2
;
1216 rfHighest2
=rfHighest
;
1218 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1219 rfHighest3
=rfHighest2
;
1221 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1225 // set allowed clock remainder tolerance to be 1 large field clock length+1
1226 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1227 uint8_t tol1
= fcHigh
+1;
1229 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1231 // loop to find the highest clock that has a remainder less than the tolerance
1232 // compare samples counted divided by
1234 for (; ii
>=0; ii
--){
1235 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1236 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1237 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1244 if (ii
<0) return 0; // oops we went too far
1250 //countFC is to detect the field clock lengths.
1251 //counts and returns the 2 most common wave lengths
1252 uint16_t countFC(uint8_t *BitStream
, size_t size
)
1254 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1255 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1256 uint8_t fcLensFnd
= 0;
1257 uint8_t lastFCcnt
=0;
1258 uint32_t fcCounter
= 0;
1261 // prime i to first up transition
1262 for (i
= 1; i
< size
-1; i
++)
1263 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1266 for (; i
< size
-1; i
++){
1267 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1268 // new up transition
1271 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1272 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1273 //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
1274 if ((fcCounter
==9 && fcCounter
& 1) || fcCounter
==4) fcCounter
++;
1276 // save last field clock count (fc/xx)
1277 // find which fcLens to save it to:
1278 for (int ii
=0; ii
<10; ii
++){
1279 if (fcLens
[ii
]==fcCounter
){
1285 if (fcCounter
>0 && fcLensFnd
<10){
1287 fcCnts
[fcLensFnd
]++;
1288 fcLens
[fcLensFnd
++]=fcCounter
;
1297 uint8_t best1
=9, best2
=9, best3
=9;
1299 // go through fclens and find which ones are bigest 2
1300 for (i
=0; i
<10; i
++){
1301 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1302 // get the 3 best FC values
1303 if (fcCnts
[i
]>maxCnt1
) {
1308 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1311 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1315 uint8_t fcH
=0, fcL
=0;
1316 if (fcLens
[best1
]>fcLens
[best2
]){
1324 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1326 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1327 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);