Removed openssl from the mfu-stuff
[legacy-proxmark3.git] / armsrc / util.c
blob674f1b91f5ef76d129fa3b200eeb0605ef49b364
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Sept 2005
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Utility functions used in many places, not specific to any piece of code.
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
12 #include "util.h"
13 #include "string.h"
14 #include "apps.h"
18 void print_result(char *name, uint8_t *buf, size_t len) {
19 uint8_t *p = buf;
21 if ( len % 16 == 0 ) {
22 for(; p-buf < len; p += 16)
23 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
24 name,
25 p-buf,
26 len,
27 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
30 else {
31 for(; p-buf < len; p += 8)
32 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
36 size_t nbytes(size_t nbits) {
37 return (nbits/8)+((nbits%8)>0);
40 uint32_t SwapBits(uint32_t value, int nrbits) {
41 int i;
42 uint32_t newvalue = 0;
43 for(i = 0; i < nrbits; i++) {
44 newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
46 return newvalue;
49 void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
51 while (len--) {
52 dest[len] = (uint8_t) n;
53 n >>= 8;
57 uint64_t bytes_to_num(uint8_t* src, size_t len)
59 uint64_t num = 0;
60 while (len--)
62 num = (num << 8) | (*src);
63 src++;
65 return num;
68 // RotateLeft - Ultralight, Desfire
69 void rol(uint8_t *data, const size_t len){
70 uint8_t first = data[0];
71 for (size_t i = 0; i < len-1; i++) {
72 data[i] = data[i+1];
74 data[len-1] = first;
76 void lsl (uint8_t *data, size_t len) {
77 for (size_t n = 0; n < len - 1; n++) {
78 data[n] = (data[n] << 1) | (data[n+1] >> 7);
80 data[len - 1] <<= 1;
83 int32_t le24toh (uint8_t data[3])
85 return (data[2] << 16) | (data[1] << 8) | data[0];
88 void LEDsoff()
90 LED_A_OFF();
91 LED_B_OFF();
92 LED_C_OFF();
93 LED_D_OFF();
96 // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
97 void LED(int led, int ms)
99 if (led & LED_RED)
100 LED_C_ON();
101 if (led & LED_ORANGE)
102 LED_A_ON();
103 if (led & LED_GREEN)
104 LED_B_ON();
105 if (led & LED_RED2)
106 LED_D_ON();
108 if (!ms)
109 return;
111 SpinDelay(ms);
113 if (led & LED_RED)
114 LED_C_OFF();
115 if (led & LED_ORANGE)
116 LED_A_OFF();
117 if (led & LED_GREEN)
118 LED_B_OFF();
119 if (led & LED_RED2)
120 LED_D_OFF();
124 // Determine if a button is double clicked, single clicked,
125 // not clicked, or held down (for ms || 1sec)
126 // In general, don't use this function unless you expect a
127 // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
128 int BUTTON_CLICKED(int ms)
130 // Up to 500ms in between clicks to mean a double click
131 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
133 // If we're not even pressed, forget about it!
134 if (!BUTTON_PRESS())
135 return BUTTON_NO_CLICK;
137 // Borrow a PWM unit for my real-time clock
138 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
139 // 48 MHz / 1024 gives 46.875 kHz
140 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
141 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
142 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
144 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
146 int letoff = 0;
147 for(;;)
149 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
151 // We haven't let off the button yet
152 if (!letoff)
154 // We just let it off!
155 if (!BUTTON_PRESS())
157 letoff = 1;
159 // reset our timer for 500ms
160 start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
161 ticks = (48000 * (500)) >> 10;
164 // Still haven't let it off
165 else
166 // Have we held down a full second?
167 if (now == (uint16_t)(start + ticks))
168 return BUTTON_HOLD;
171 // We already let off, did we click again?
172 else
173 // Sweet, double click!
174 if (BUTTON_PRESS())
175 return BUTTON_DOUBLE_CLICK;
177 // Have we ran out of time to double click?
178 else
179 if (now == (uint16_t)(start + ticks))
180 // At least we did a single click
181 return BUTTON_SINGLE_CLICK;
183 WDT_HIT();
186 // We should never get here
187 return BUTTON_ERROR;
190 // Determine if a button is held down
191 int BUTTON_HELD(int ms)
193 // If button is held for one second
194 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
196 // If we're not even pressed, forget about it!
197 if (!BUTTON_PRESS())
198 return BUTTON_NO_CLICK;
200 // Borrow a PWM unit for my real-time clock
201 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
202 // 48 MHz / 1024 gives 46.875 kHz
203 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
204 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
205 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
207 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
209 for(;;)
211 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
213 // As soon as our button let go, we didn't hold long enough
214 if (!BUTTON_PRESS())
215 return BUTTON_SINGLE_CLICK;
217 // Have we waited the full second?
218 else
219 if (now == (uint16_t)(start + ticks))
220 return BUTTON_HOLD;
222 WDT_HIT();
225 // We should never get here
226 return BUTTON_ERROR;
229 // attempt at high resolution microsecond timer
230 // beware: timer counts in 21.3uS increments (1024/48Mhz)
231 void SpinDelayUs(int us)
233 int ticks = (48*us) >> 10;
235 // Borrow a PWM unit for my real-time clock
236 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
237 // 48 MHz / 1024 gives 46.875 kHz
238 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
239 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
240 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
242 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
244 for(;;) {
245 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
246 if (now == (uint16_t)(start + ticks))
247 return;
249 WDT_HIT();
253 void SpinDelay(int ms)
255 // convert to uS and call microsecond delay function
256 SpinDelayUs(ms*1000);
259 /* Similar to FpgaGatherVersion this formats stored version information
260 * into a string representation. It takes a pointer to the struct version_information,
261 * verifies the magic properties, then stores a formatted string, prefixed by
262 * prefix in dst.
264 void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
266 struct version_information *v = (struct version_information*)version_information;
267 dst[0] = 0;
268 strncat(dst, prefix, len-1);
269 if(v->magic != VERSION_INFORMATION_MAGIC) {
270 strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
271 return;
273 if(v->versionversion != 1) {
274 strncat(dst, "Version information not understood", len - strlen(dst) - 1);
275 return;
277 if(!v->present) {
278 strncat(dst, "Version information not available", len - strlen(dst) - 1);
279 return;
282 strncat(dst, v->gitversion, len - strlen(dst) - 1);
283 if(v->clean == 0) {
284 strncat(dst, "-unclean", len - strlen(dst) - 1);
285 } else if(v->clean == 2) {
286 strncat(dst, "-suspect", len - strlen(dst) - 1);
289 strncat(dst, " ", len - strlen(dst) - 1);
290 strncat(dst, v->buildtime, len - strlen(dst) - 1);
293 // -------------------------------------------------------------------------
294 // timer lib
295 // -------------------------------------------------------------------------
296 // test procedure:
298 // ti = GetTickCount();
299 // SpinDelay(1000);
300 // ti = GetTickCount() - ti;
301 // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
303 void StartTickCount()
305 // must be 0x40, but on my cpu - included divider is optimal
306 // 0x20 - 1 ms / bit
307 // 0x40 - 2 ms / bit
309 AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST + 0x001D; // was 0x003B
313 * Get the current count.
315 uint32_t RAMFUNC GetTickCount(){
316 return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
319 // -------------------------------------------------------------------------
320 // microseconds timer
321 // -------------------------------------------------------------------------
322 void StartCountUS()
324 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
325 // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
326 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
328 // fast clock
329 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
330 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
331 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
332 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
333 AT91C_BASE_TC0->TC_RA = 1;
334 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
336 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
337 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
339 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
340 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
341 AT91C_BASE_TCB->TCB_BCR = 1;
344 uint32_t RAMFUNC GetCountUS(){
345 return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
348 static uint32_t GlobalUsCounter = 0;
350 uint32_t RAMFUNC GetDeltaCountUS(){
351 uint32_t g_cnt = GetCountUS();
352 uint32_t g_res = g_cnt - GlobalUsCounter;
353 GlobalUsCounter = g_cnt;
354 return g_res;
358 // -------------------------------------------------------------------------
359 // Timer for iso14443 commands. Uses ssp_clk from FPGA
360 // -------------------------------------------------------------------------
361 void StartCountSspClk()
363 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
364 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
365 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
366 | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
368 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
369 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
370 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
371 | AT91C_TC_CPCSTOP // Stop clock on RC compare
372 | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
373 | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
374 | AT91C_TC_ENETRG // Enable external trigger event
375 | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
376 | AT91C_TC_WAVE // Waveform Mode
377 | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
378 | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
379 AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
381 // use TC0 to count TIOA1 pulses
382 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
383 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
384 | AT91C_TC_WAVE // Waveform Mode
385 | AT91C_TC_WAVESEL_UP // just count
386 | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
387 | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
388 AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
389 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
391 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
392 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
393 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
394 | AT91C_TC_WAVE // Waveform Mode
395 | AT91C_TC_WAVESEL_UP; // just count
397 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
398 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
399 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
402 // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
405 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
406 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
407 // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
408 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
409 AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
410 // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
411 // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
412 // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
413 // (just started with the transfer of the 4th Bit).
414 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
415 // we can use the counter.
416 while (AT91C_BASE_TC0->TC_CV < 0xFFF0);
420 uint32_t RAMFUNC GetCountSspClk(){
421 uint32_t tmp_count;
422 tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
423 if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2
424 return (AT91C_BASE_TC2->TC_CV << 16);
426 else {
427 return tmp_count;