Minor mod to 'hf iclass read', it now also reads and prints the configuration of...
[legacy-proxmark3.git] / armsrc / iclass.c
blob7b4daa36bb3b6541e5b77fffbceb84189639ce02
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "iso14443crc.h"
49 #include "iso15693tools.h"
50 #include "protocols.h"
51 #include "optimized_cipher.h"
53 static int timeout = 4096;
56 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
58 //-----------------------------------------------------------------------------
59 // The software UART that receives commands from the reader, and its state
60 // variables.
61 //-----------------------------------------------------------------------------
62 static struct {
63 enum {
64 STATE_UNSYNCD,
65 STATE_START_OF_COMMUNICATION,
66 STATE_RECEIVING
67 } state;
68 uint16_t shiftReg;
69 int bitCnt;
70 int byteCnt;
71 int byteCntMax;
72 int posCnt;
73 int nOutOfCnt;
74 int OutOfCnt;
75 int syncBit;
76 int samples;
77 int highCnt;
78 int swapper;
79 int counter;
80 int bitBuffer;
81 int dropPosition;
82 uint8_t *output;
83 } Uart;
85 static RAMFUNC int OutOfNDecoding(int bit)
87 //int error = 0;
88 int bitright;
90 if(!Uart.bitBuffer) {
91 Uart.bitBuffer = bit ^ 0xFF0;
92 return FALSE;
94 else {
95 Uart.bitBuffer <<= 4;
96 Uart.bitBuffer ^= bit;
99 /*if(Uart.swapper) {
100 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
101 Uart.byteCnt++;
102 Uart.swapper = 0;
103 if(Uart.byteCnt > 15) { return TRUE; }
105 else {
106 Uart.swapper = 1;
109 if(Uart.state != STATE_UNSYNCD) {
110 Uart.posCnt++;
112 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
113 bit = 0x00;
115 else {
116 bit = 0x01;
118 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
119 bitright = 0x00;
121 else {
122 bitright = 0x01;
124 if(bit != bitright) { bit = bitright; }
127 // So, now we only have to deal with *bit*, lets see...
128 if(Uart.posCnt == 1) {
129 // measurement first half bitperiod
130 if(!bit) {
131 // Drop in first half means that we are either seeing
132 // an SOF or an EOF.
134 if(Uart.nOutOfCnt == 1) {
135 // End of Communication
136 Uart.state = STATE_UNSYNCD;
137 Uart.highCnt = 0;
138 if(Uart.byteCnt == 0) {
139 // Its not straightforward to show single EOFs
140 // So just leave it and do not return TRUE
141 Uart.output[0] = 0xf0;
142 Uart.byteCnt++;
144 else {
145 return TRUE;
148 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
149 // When not part of SOF or EOF, it is an error
150 Uart.state = STATE_UNSYNCD;
151 Uart.highCnt = 0;
152 //error = 4;
156 else {
157 // measurement second half bitperiod
158 // Count the bitslot we are in... (ISO 15693)
159 Uart.nOutOfCnt++;
161 if(!bit) {
162 if(Uart.dropPosition) {
163 if(Uart.state == STATE_START_OF_COMMUNICATION) {
164 //error = 1;
166 else {
167 //error = 7;
169 // It is an error if we already have seen a drop in current frame
170 Uart.state = STATE_UNSYNCD;
171 Uart.highCnt = 0;
173 else {
174 Uart.dropPosition = Uart.nOutOfCnt;
178 Uart.posCnt = 0;
181 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
182 Uart.nOutOfCnt = 0;
184 if(Uart.state == STATE_START_OF_COMMUNICATION) {
185 if(Uart.dropPosition == 4) {
186 Uart.state = STATE_RECEIVING;
187 Uart.OutOfCnt = 256;
189 else if(Uart.dropPosition == 3) {
190 Uart.state = STATE_RECEIVING;
191 Uart.OutOfCnt = 4;
192 //Uart.output[Uart.byteCnt] = 0xdd;
193 //Uart.byteCnt++;
195 else {
196 Uart.state = STATE_UNSYNCD;
197 Uart.highCnt = 0;
199 Uart.dropPosition = 0;
201 else {
202 // RECEIVING DATA
203 // 1 out of 4
204 if(!Uart.dropPosition) {
205 Uart.state = STATE_UNSYNCD;
206 Uart.highCnt = 0;
207 //error = 9;
209 else {
210 Uart.shiftReg >>= 2;
212 // Swap bit order
213 Uart.dropPosition--;
214 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
215 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
217 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
218 Uart.bitCnt += 2;
219 Uart.dropPosition = 0;
221 if(Uart.bitCnt == 8) {
222 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
223 Uart.byteCnt++;
224 Uart.bitCnt = 0;
225 Uart.shiftReg = 0;
230 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
231 // RECEIVING DATA
232 // 1 out of 256
233 if(!Uart.dropPosition) {
234 Uart.state = STATE_UNSYNCD;
235 Uart.highCnt = 0;
236 //error = 3;
238 else {
239 Uart.dropPosition--;
240 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
241 Uart.byteCnt++;
242 Uart.bitCnt = 0;
243 Uart.shiftReg = 0;
244 Uart.nOutOfCnt = 0;
245 Uart.dropPosition = 0;
249 /*if(error) {
250 Uart.output[Uart.byteCnt] = 0xAA;
251 Uart.byteCnt++;
252 Uart.output[Uart.byteCnt] = error & 0xFF;
253 Uart.byteCnt++;
254 Uart.output[Uart.byteCnt] = 0xAA;
255 Uart.byteCnt++;
256 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
257 Uart.byteCnt++;
258 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
259 Uart.byteCnt++;
260 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
261 Uart.byteCnt++;
262 Uart.output[Uart.byteCnt] = 0xAA;
263 Uart.byteCnt++;
264 return TRUE;
269 else {
270 bit = Uart.bitBuffer & 0xf0;
271 bit >>= 4;
272 bit ^= 0x0F; // drops become 1s ;-)
273 if(bit) {
274 // should have been high or at least (4 * 128) / fc
275 // according to ISO this should be at least (9 * 128 + 20) / fc
276 if(Uart.highCnt == 8) {
277 // we went low, so this could be start of communication
278 // it turns out to be safer to choose a less significant
279 // syncbit... so we check whether the neighbour also represents the drop
280 Uart.posCnt = 1; // apparently we are busy with our first half bit period
281 Uart.syncBit = bit & 8;
282 Uart.samples = 3;
283 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
284 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
285 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
286 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
287 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
288 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
289 Uart.syncBit = 8;
291 // the first half bit period is expected in next sample
292 Uart.posCnt = 0;
293 Uart.samples = 3;
296 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
298 Uart.syncBit <<= 4;
299 Uart.state = STATE_START_OF_COMMUNICATION;
300 Uart.bitCnt = 0;
301 Uart.byteCnt = 0;
302 Uart.nOutOfCnt = 0;
303 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
304 Uart.dropPosition = 0;
305 Uart.shiftReg = 0;
306 //error = 0;
308 else {
309 Uart.highCnt = 0;
312 else {
313 if(Uart.highCnt < 8) {
314 Uart.highCnt++;
319 return FALSE;
322 //=============================================================================
323 // Manchester
324 //=============================================================================
326 static struct {
327 enum {
328 DEMOD_UNSYNCD,
329 DEMOD_START_OF_COMMUNICATION,
330 DEMOD_START_OF_COMMUNICATION2,
331 DEMOD_START_OF_COMMUNICATION3,
332 DEMOD_SOF_COMPLETE,
333 DEMOD_MANCHESTER_D,
334 DEMOD_MANCHESTER_E,
335 DEMOD_END_OF_COMMUNICATION,
336 DEMOD_END_OF_COMMUNICATION2,
337 DEMOD_MANCHESTER_F,
338 DEMOD_ERROR_WAIT
339 } state;
340 int bitCount;
341 int posCount;
342 int syncBit;
343 uint16_t shiftReg;
344 int buffer;
345 int buffer2;
346 int buffer3;
347 int buff;
348 int samples;
349 int len;
350 enum {
351 SUB_NONE,
352 SUB_FIRST_HALF,
353 SUB_SECOND_HALF,
354 SUB_BOTH
355 } sub;
356 uint8_t *output;
357 } Demod;
359 static RAMFUNC int ManchesterDecoding(int v)
361 int bit;
362 int modulation;
363 int error = 0;
365 bit = Demod.buffer;
366 Demod.buffer = Demod.buffer2;
367 Demod.buffer2 = Demod.buffer3;
368 Demod.buffer3 = v;
370 if(Demod.buff < 3) {
371 Demod.buff++;
372 return FALSE;
375 if(Demod.state==DEMOD_UNSYNCD) {
376 Demod.output[Demod.len] = 0xfa;
377 Demod.syncBit = 0;
378 //Demod.samples = 0;
379 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
381 if(bit & 0x08) {
382 Demod.syncBit = 0x08;
385 if(bit & 0x04) {
386 if(Demod.syncBit) {
387 bit <<= 4;
389 Demod.syncBit = 0x04;
392 if(bit & 0x02) {
393 if(Demod.syncBit) {
394 bit <<= 2;
396 Demod.syncBit = 0x02;
399 if(bit & 0x01 && Demod.syncBit) {
400 Demod.syncBit = 0x01;
403 if(Demod.syncBit) {
404 Demod.len = 0;
405 Demod.state = DEMOD_START_OF_COMMUNICATION;
406 Demod.sub = SUB_FIRST_HALF;
407 Demod.bitCount = 0;
408 Demod.shiftReg = 0;
409 Demod.samples = 0;
410 if(Demod.posCount) {
411 //if(trigger) LED_A_OFF(); // Not useful in this case...
412 switch(Demod.syncBit) {
413 case 0x08: Demod.samples = 3; break;
414 case 0x04: Demod.samples = 2; break;
415 case 0x02: Demod.samples = 1; break;
416 case 0x01: Demod.samples = 0; break;
418 // SOF must be long burst... otherwise stay unsynced!!!
419 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
420 Demod.state = DEMOD_UNSYNCD;
423 else {
424 // SOF must be long burst... otherwise stay unsynced!!!
425 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
426 Demod.state = DEMOD_UNSYNCD;
427 error = 0x88;
431 error = 0;
435 else {
436 modulation = bit & Demod.syncBit;
437 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
439 Demod.samples += 4;
441 if(Demod.posCount==0) {
442 Demod.posCount = 1;
443 if(modulation) {
444 Demod.sub = SUB_FIRST_HALF;
446 else {
447 Demod.sub = SUB_NONE;
450 else {
451 Demod.posCount = 0;
452 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
453 if(Demod.state!=DEMOD_ERROR_WAIT) {
454 Demod.state = DEMOD_ERROR_WAIT;
455 Demod.output[Demod.len] = 0xaa;
456 error = 0x01;
459 //else if(modulation) {
460 if(modulation) {
461 if(Demod.sub == SUB_FIRST_HALF) {
462 Demod.sub = SUB_BOTH;
464 else {
465 Demod.sub = SUB_SECOND_HALF;
468 else if(Demod.sub == SUB_NONE) {
469 if(Demod.state == DEMOD_SOF_COMPLETE) {
470 Demod.output[Demod.len] = 0x0f;
471 Demod.len++;
472 Demod.state = DEMOD_UNSYNCD;
473 // error = 0x0f;
474 return TRUE;
476 else {
477 Demod.state = DEMOD_ERROR_WAIT;
478 error = 0x33;
480 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
481 Demod.state = DEMOD_ERROR_WAIT;
482 Demod.output[Demod.len] = 0xaa;
483 error = 0x01;
487 switch(Demod.state) {
488 case DEMOD_START_OF_COMMUNICATION:
489 if(Demod.sub == SUB_BOTH) {
490 //Demod.state = DEMOD_MANCHESTER_D;
491 Demod.state = DEMOD_START_OF_COMMUNICATION2;
492 Demod.posCount = 1;
493 Demod.sub = SUB_NONE;
495 else {
496 Demod.output[Demod.len] = 0xab;
497 Demod.state = DEMOD_ERROR_WAIT;
498 error = 0xd2;
500 break;
501 case DEMOD_START_OF_COMMUNICATION2:
502 if(Demod.sub == SUB_SECOND_HALF) {
503 Demod.state = DEMOD_START_OF_COMMUNICATION3;
505 else {
506 Demod.output[Demod.len] = 0xab;
507 Demod.state = DEMOD_ERROR_WAIT;
508 error = 0xd3;
510 break;
511 case DEMOD_START_OF_COMMUNICATION3:
512 if(Demod.sub == SUB_SECOND_HALF) {
513 // Demod.state = DEMOD_MANCHESTER_D;
514 Demod.state = DEMOD_SOF_COMPLETE;
515 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
516 //Demod.len++;
518 else {
519 Demod.output[Demod.len] = 0xab;
520 Demod.state = DEMOD_ERROR_WAIT;
521 error = 0xd4;
523 break;
524 case DEMOD_SOF_COMPLETE:
525 case DEMOD_MANCHESTER_D:
526 case DEMOD_MANCHESTER_E:
527 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
528 // 00001111 = 1 (0 in 14443)
529 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
530 Demod.bitCount++;
531 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
532 Demod.state = DEMOD_MANCHESTER_D;
534 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
535 Demod.bitCount++;
536 Demod.shiftReg >>= 1;
537 Demod.state = DEMOD_MANCHESTER_E;
539 else if(Demod.sub == SUB_BOTH) {
540 Demod.state = DEMOD_MANCHESTER_F;
542 else {
543 Demod.state = DEMOD_ERROR_WAIT;
544 error = 0x55;
546 break;
548 case DEMOD_MANCHESTER_F:
549 // Tag response does not need to be a complete byte!
550 if(Demod.len > 0 || Demod.bitCount > 0) {
551 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
552 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
553 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
554 Demod.len++;
557 Demod.state = DEMOD_UNSYNCD;
558 return TRUE;
560 else {
561 Demod.output[Demod.len] = 0xad;
562 Demod.state = DEMOD_ERROR_WAIT;
563 error = 0x03;
565 break;
567 case DEMOD_ERROR_WAIT:
568 Demod.state = DEMOD_UNSYNCD;
569 break;
571 default:
572 Demod.output[Demod.len] = 0xdd;
573 Demod.state = DEMOD_UNSYNCD;
574 break;
577 /*if(Demod.bitCount>=9) {
578 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
579 Demod.len++;
581 Demod.parityBits <<= 1;
582 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
584 Demod.bitCount = 0;
585 Demod.shiftReg = 0;
587 if(Demod.bitCount>=8) {
588 Demod.shiftReg >>= 1;
589 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
590 Demod.len++;
591 Demod.bitCount = 0;
592 Demod.shiftReg = 0;
595 if(error) {
596 Demod.output[Demod.len] = 0xBB;
597 Demod.len++;
598 Demod.output[Demod.len] = error & 0xFF;
599 Demod.len++;
600 Demod.output[Demod.len] = 0xBB;
601 Demod.len++;
602 Demod.output[Demod.len] = bit & 0xFF;
603 Demod.len++;
604 Demod.output[Demod.len] = Demod.buffer & 0xFF;
605 Demod.len++;
606 // Look harder ;-)
607 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
608 Demod.len++;
609 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
610 Demod.len++;
611 Demod.output[Demod.len] = 0xBB;
612 Demod.len++;
613 return TRUE;
618 } // end (state != UNSYNCED)
620 return FALSE;
623 //=============================================================================
624 // Finally, a `sniffer' for iClass communication
625 // Both sides of communication!
626 //=============================================================================
628 //-----------------------------------------------------------------------------
629 // Record the sequence of commands sent by the reader to the tag, with
630 // triggering so that we start recording at the point that the tag is moved
631 // near the reader.
632 //-----------------------------------------------------------------------------
633 void RAMFUNC SnoopIClass(void)
637 // We won't start recording the frames that we acquire until we trigger;
638 // a good trigger condition to get started is probably when we see a
639 // response from the tag.
640 //int triggered = FALSE; // FALSE to wait first for card
642 // The command (reader -> tag) that we're receiving.
643 // The length of a received command will in most cases be no more than 18 bytes.
644 // So 32 should be enough!
645 #define ICLASS_BUFFER_SIZE 32
646 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
647 // The response (tag -> reader) that we're receiving.
648 uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
650 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
652 // free all BigBuf memory
653 BigBuf_free();
654 // The DMA buffer, used to stream samples from the FPGA
655 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
657 set_tracing(TRUE);
658 clear_trace();
659 iso14a_set_trigger(FALSE);
661 int lastRxCounter;
662 uint8_t *upTo;
663 int smpl;
664 int maxBehindBy = 0;
666 // Count of samples received so far, so that we can include timing
667 // information in the trace buffer.
668 int samples = 0;
669 rsamples = 0;
671 // Set up the demodulator for tag -> reader responses.
672 Demod.output = tagToReaderResponse;
673 Demod.len = 0;
674 Demod.state = DEMOD_UNSYNCD;
676 // Setup for the DMA.
677 FpgaSetupSsc();
678 upTo = dmaBuf;
679 lastRxCounter = DMA_BUFFER_SIZE;
680 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
682 // And the reader -> tag commands
683 memset(&Uart, 0, sizeof(Uart));
684 Uart.output = readerToTagCmd;
685 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
686 Uart.state = STATE_UNSYNCD;
688 // And put the FPGA in the appropriate mode
689 // Signal field is off with the appropriate LED
690 LED_D_OFF();
691 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
692 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
694 uint32_t time_0 = GetCountSspClk();
695 uint32_t time_start = 0;
696 uint32_t time_stop = 0;
698 int div = 0;
699 //int div2 = 0;
700 int decbyte = 0;
701 int decbyter = 0;
703 // And now we loop, receiving samples.
704 for(;;) {
705 LED_A_ON();
706 WDT_HIT();
707 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
708 (DMA_BUFFER_SIZE-1);
709 if(behindBy > maxBehindBy) {
710 maxBehindBy = behindBy;
711 if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
712 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
713 goto done;
716 if(behindBy < 1) continue;
718 LED_A_OFF();
719 smpl = upTo[0];
720 upTo++;
721 lastRxCounter -= 1;
722 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
723 upTo -= DMA_BUFFER_SIZE;
724 lastRxCounter += DMA_BUFFER_SIZE;
725 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
726 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
729 //samples += 4;
730 samples += 1;
732 if(smpl & 0xF) {
733 decbyte ^= (1 << (3 - div));
736 // FOR READER SIDE COMMUMICATION...
738 decbyter <<= 2;
739 decbyter ^= (smpl & 0x30);
741 div++;
743 if((div + 1) % 2 == 0) {
744 smpl = decbyter;
745 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
746 rsamples = samples - Uart.samples;
747 time_stop = (GetCountSspClk()-time_0) << 4;
748 LED_C_ON();
750 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
751 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
752 if(tracing) {
753 uint8_t parity[MAX_PARITY_SIZE];
754 GetParity(Uart.output, Uart.byteCnt, parity);
755 LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE);
759 /* And ready to receive another command. */
760 Uart.state = STATE_UNSYNCD;
761 /* And also reset the demod code, which might have been */
762 /* false-triggered by the commands from the reader. */
763 Demod.state = DEMOD_UNSYNCD;
764 LED_B_OFF();
765 Uart.byteCnt = 0;
766 }else{
767 time_start = (GetCountSspClk()-time_0) << 4;
769 decbyter = 0;
772 if(div > 3) {
773 smpl = decbyte;
774 if(ManchesterDecoding(smpl & 0x0F)) {
775 time_stop = (GetCountSspClk()-time_0) << 4;
777 rsamples = samples - Demod.samples;
778 LED_B_ON();
780 if(tracing) {
781 uint8_t parity[MAX_PARITY_SIZE];
782 GetParity(Demod.output, Demod.len, parity);
783 LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE);
786 // And ready to receive another response.
787 memset(&Demod, 0, sizeof(Demod));
788 Demod.output = tagToReaderResponse;
789 Demod.state = DEMOD_UNSYNCD;
790 LED_C_OFF();
791 }else{
792 time_start = (GetCountSspClk()-time_0) << 4;
795 div = 0;
796 decbyte = 0x00;
800 if(BUTTON_PRESS()) {
801 DbpString("cancelled_a");
802 goto done;
806 DbpString("COMMAND FINISHED");
808 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
809 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
811 done:
812 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
813 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
814 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
815 LED_A_OFF();
816 LED_B_OFF();
817 LED_C_OFF();
818 LED_D_OFF();
821 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
822 int i;
823 for(i = 0; i < 8; i++) {
824 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
828 //-----------------------------------------------------------------------------
829 // Wait for commands from reader
830 // Stop when button is pressed
831 // Or return TRUE when command is captured
832 //-----------------------------------------------------------------------------
833 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
835 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
836 // only, since we are receiving, not transmitting).
837 // Signal field is off with the appropriate LED
838 LED_D_OFF();
839 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
841 // Now run a `software UART' on the stream of incoming samples.
842 Uart.output = received;
843 Uart.byteCntMax = maxLen;
844 Uart.state = STATE_UNSYNCD;
846 for(;;) {
847 WDT_HIT();
849 if(BUTTON_PRESS()) return FALSE;
851 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
852 AT91C_BASE_SSC->SSC_THR = 0x00;
854 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
855 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
857 if(OutOfNDecoding(b & 0x0f)) {
858 *len = Uart.byteCnt;
859 return TRUE;
865 static uint8_t encode4Bits(const uint8_t b)
867 uint8_t c = b & 0xF;
868 // OTA, the least significant bits first
869 // The columns are
870 // 1 - Bit value to send
871 // 2 - Reversed (big-endian)
872 // 3 - Encoded
873 // 4 - Hex values
875 switch(c){
876 // 1 2 3 4
877 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
878 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
879 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
880 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
881 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
882 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
883 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
884 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
885 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
886 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
887 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
888 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
889 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
890 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
891 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
892 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
897 //-----------------------------------------------------------------------------
898 // Prepare tag messages
899 //-----------------------------------------------------------------------------
900 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
904 * SOF comprises 3 parts;
905 * * An unmodulated time of 56.64 us
906 * * 24 pulses of 423.75 KHz (fc/32)
907 * * A logic 1, which starts with an unmodulated time of 18.88us
908 * followed by 8 pulses of 423.75kHz (fc/32)
911 * EOF comprises 3 parts:
912 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
913 * time of 18.88us.
914 * - 24 pulses of fc/32
915 * - An unmodulated time of 56.64 us
918 * A logic 0 starts with 8 pulses of fc/32
919 * followed by an unmodulated time of 256/fc (~18,88us).
921 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
922 * 8 pulses of fc/32 (also 18.88us)
924 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
925 * works like this.
926 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
927 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
929 * In this mode the SOF can be written as 00011101 = 0x1D
930 * The EOF can be written as 10111000 = 0xb8
931 * A logic 1 is 01
932 * A logic 0 is 10
934 * */
936 int i;
938 ToSendReset();
940 // Send SOF
941 ToSend[++ToSendMax] = 0x1D;
943 for(i = 0; i < len; i++) {
944 uint8_t b = cmd[i];
945 ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
946 ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
949 // Send EOF
950 ToSend[++ToSendMax] = 0xB8;
951 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
952 // Convert from last byte pos to length
953 ToSendMax++;
956 // Only SOF
957 static void CodeIClassTagSOF()
959 //So far a dummy implementation, not used
960 //int lastProxToAirDuration =0;
962 ToSendReset();
963 // Send SOF
964 ToSend[++ToSendMax] = 0x1D;
965 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
967 // Convert from last byte pos to length
968 ToSendMax++;
970 #define MODE_SIM_CSN 0
971 #define MODE_EXIT_AFTER_MAC 1
972 #define MODE_FULLSIM 2
974 int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
976 * @brief SimulateIClass simulates an iClass card.
977 * @param arg0 type of simulation
978 * - 0 uses the first 8 bytes in usb data as CSN
979 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
980 * in the usb data. This mode collects MAC from the reader, in order to do an offline
981 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
982 * - Other : Uses the default CSN (031fec8af7ff12e0)
983 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
984 * @param arg2
985 * @param datain
987 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
989 uint32_t simType = arg0;
990 uint32_t numberOfCSNS = arg1;
991 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
993 // Enable and clear the trace
994 set_tracing(TRUE);
995 clear_trace();
996 //Use the emulator memory for SIM
997 uint8_t *emulator = BigBuf_get_EM_addr();
999 if(simType == 0) {
1000 // Use the CSN from commandline
1001 memcpy(emulator, datain, 8);
1002 doIClassSimulation(MODE_SIM_CSN,NULL);
1003 }else if(simType == 1)
1005 //Default CSN
1006 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1007 // Use the CSN from commandline
1008 memcpy(emulator, csn_crc, 8);
1009 doIClassSimulation(MODE_SIM_CSN,NULL);
1011 else if(simType == 2)
1014 uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
1015 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
1016 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1017 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1018 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1019 int i = 0;
1020 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1022 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1024 memcpy(emulator, datain+(i*8), 8);
1025 if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
1027 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1028 return; // Button pressed
1031 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1033 }else if(simType == 3){
1034 //This is 'full sim' mode, where we use the emulator storage for data.
1035 doIClassSimulation(MODE_FULLSIM, NULL);
1037 else{
1038 // We may want a mode here where we hardcode the csns to use (from proxclone).
1039 // That will speed things up a little, but not required just yet.
1040 Dbprintf("The mode is not implemented, reserved for future use");
1042 Dbprintf("Done...");
1045 void AppendCrc(uint8_t* data, int len)
1047 ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
1051 * @brief Does the actual simulation
1052 * @param csn - csn to use
1053 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1055 int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
1057 // free eventually allocated BigBuf memory
1058 BigBuf_free_keep_EM();
1060 State cipher_state;
1061 // State cipher_state_reserve;
1062 uint8_t *csn = BigBuf_get_EM_addr();
1063 uint8_t *emulator = csn;
1064 uint8_t sof_data[] = { 0x0F} ;
1065 // CSN followed by two CRC bytes
1066 uint8_t anticoll_data[10] = { 0 };
1067 uint8_t csn_data[10] = { 0 };
1068 memcpy(csn_data,csn,sizeof(csn_data));
1069 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1071 // Construct anticollision-CSN
1072 rotateCSN(csn_data,anticoll_data);
1074 // Compute CRC on both CSNs
1075 ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
1076 ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
1078 uint8_t diversified_key[8] = { 0 };
1079 // e-Purse
1080 uint8_t card_challenge_data[8] = { 0x00 };
1081 if(simulationMode == MODE_FULLSIM)
1083 //The diversified key should be stored on block 3
1084 //Get the diversified key from emulator memory
1085 memcpy(diversified_key, emulator+(8*3),8);
1087 //Card challenge, a.k.a e-purse is on block 2
1088 memcpy(card_challenge_data,emulator + (8 * 2) , 8);
1089 //Precalculate the cipher state, feeding it the CC
1090 cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
1094 int exitLoop = 0;
1095 // Reader 0a
1096 // Tag 0f
1097 // Reader 0c
1098 // Tag anticoll. CSN
1099 // Reader 81 anticoll. CSN
1100 // Tag CSN
1102 uint8_t *modulated_response;
1103 int modulated_response_size = 0;
1104 uint8_t* trace_data = NULL;
1105 int trace_data_size = 0;
1108 // Respond SOF -- takes 1 bytes
1109 uint8_t *resp_sof = BigBuf_malloc(2);
1110 int resp_sof_Len;
1112 // Anticollision CSN (rotated CSN)
1113 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1114 uint8_t *resp_anticoll = BigBuf_malloc(28);
1115 int resp_anticoll_len;
1117 // CSN
1118 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1119 uint8_t *resp_csn = BigBuf_malloc(30);
1120 int resp_csn_len;
1122 // e-Purse
1123 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1124 uint8_t *resp_cc = BigBuf_malloc(20);
1125 int resp_cc_len;
1127 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1128 memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
1129 int len;
1131 // Prepare card messages
1132 ToSendMax = 0;
1134 // First card answer: SOF
1135 CodeIClassTagSOF();
1136 memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
1138 // Anticollision CSN
1139 CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
1140 memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
1142 // CSN
1143 CodeIClassTagAnswer(csn_data, sizeof(csn_data));
1144 memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
1146 // e-Purse
1147 CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
1148 memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
1150 //This is used for responding to READ-block commands or other data which is dynamically generated
1151 //First the 'trace'-data, not encoded for FPGA
1152 uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1153 //Then storage for the modulated data
1154 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1155 uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
1157 // Start from off (no field generated)
1158 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1159 //SpinDelay(200);
1160 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1161 SpinDelay(100);
1162 StartCountSspClk();
1163 // We need to listen to the high-frequency, peak-detected path.
1164 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1165 FpgaSetupSsc();
1167 // To control where we are in the protocol
1168 int cmdsRecvd = 0;
1169 uint32_t time_0 = GetCountSspClk();
1170 uint32_t t2r_time =0;
1171 uint32_t r2t_time =0;
1173 LED_A_ON();
1174 bool buttonPressed = false;
1175 uint8_t response_delay = 1;
1176 while(!exitLoop) {
1177 response_delay = 1;
1178 LED_B_OFF();
1179 //Signal tracer
1180 // Can be used to get a trigger for an oscilloscope..
1181 LED_C_OFF();
1183 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1184 buttonPressed = true;
1185 break;
1187 r2t_time = GetCountSspClk();
1188 //Signal tracer
1189 LED_C_ON();
1191 // Okay, look at the command now.
1192 if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
1193 // Reader in anticollission phase
1194 modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
1195 trace_data = sof_data;
1196 trace_data_size = sizeof(sof_data);
1197 } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
1198 // Reader asks for anticollission CSN
1199 modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
1200 trace_data = anticoll_data;
1201 trace_data_size = sizeof(anticoll_data);
1202 //DbpString("Reader requests anticollission CSN:");
1203 } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
1204 // Reader selects anticollission CSN.
1205 // Tag sends the corresponding real CSN
1206 modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
1207 trace_data = csn_data;
1208 trace_data_size = sizeof(csn_data);
1209 //DbpString("Reader selects anticollission CSN:");
1210 } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
1211 // Read e-purse (88 02)
1212 modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
1213 trace_data = card_challenge_data;
1214 trace_data_size = sizeof(card_challenge_data);
1215 LED_B_ON();
1216 } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
1217 // Reader random and reader MAC!!!
1218 if(simulationMode == MODE_FULLSIM)
1220 //NR, from reader, is in receivedCmd +1
1221 opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
1223 trace_data = data_generic_trace;
1224 trace_data_size = 4;
1225 CodeIClassTagAnswer(trace_data , trace_data_size);
1226 memcpy(data_response, ToSend, ToSendMax);
1227 modulated_response = data_response;
1228 modulated_response_size = ToSendMax;
1229 response_delay = 0;//We need to hurry here...
1230 //exitLoop = true;
1231 }else
1232 { //Not fullsim, we don't respond
1233 // We do not know what to answer, so lets keep quiet
1234 modulated_response = resp_sof; modulated_response_size = 0;
1235 trace_data = NULL;
1236 trace_data_size = 0;
1237 if (simulationMode == MODE_EXIT_AFTER_MAC){
1238 // dbprintf:ing ...
1239 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1240 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1241 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1242 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1243 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1244 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1245 if (reader_mac_buf != NULL)
1247 memcpy(reader_mac_buf,receivedCmd+1,8);
1249 exitLoop = true;
1253 } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
1254 // Reader ends the session
1255 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1256 trace_data = NULL;
1257 trace_data_size = 0;
1258 } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
1259 //Read block
1260 uint16_t blk = receivedCmd[1];
1261 //Take the data...
1262 memcpy(data_generic_trace, emulator+(blk << 3),8);
1263 //Add crc
1264 AppendCrc(data_generic_trace, 8);
1265 trace_data = data_generic_trace;
1266 trace_data_size = 10;
1267 CodeIClassTagAnswer(trace_data , trace_data_size);
1268 memcpy(data_response, ToSend, ToSendMax);
1269 modulated_response = data_response;
1270 modulated_response_size = ToSendMax;
1271 }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
1272 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1273 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1274 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1275 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1277 //Take the data...
1278 memcpy(data_generic_trace, receivedCmd+2,8);
1279 //Add crc
1280 AppendCrc(data_generic_trace, 8);
1281 trace_data = data_generic_trace;
1282 trace_data_size = 10;
1283 CodeIClassTagAnswer(trace_data , trace_data_size);
1284 memcpy(data_response, ToSend, ToSendMax);
1285 modulated_response = data_response;
1286 modulated_response_size = ToSendMax;
1288 else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
1289 {//Pagesel
1290 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1291 //Chips with a single page will not answer to this command
1292 // It appears we're fine ignoring this.
1293 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1295 else {
1296 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1297 // Never seen this command before
1298 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1299 len,
1300 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1301 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1302 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1303 // Do not respond
1304 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1305 trace_data = NULL;
1306 trace_data_size = 0;
1309 if(cmdsRecvd > 100) {
1310 //DbpString("100 commands later...");
1311 //break;
1313 else {
1314 cmdsRecvd++;
1317 A legit tag has about 380us delay between reader EOT and tag SOF.
1319 if(modulated_response_size > 0) {
1320 SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
1321 t2r_time = GetCountSspClk();
1324 if (tracing) {
1325 uint8_t parity[MAX_PARITY_SIZE];
1326 GetParity(receivedCmd, len, parity);
1327 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
1329 if (trace_data != NULL) {
1330 GetParity(trace_data, trace_data_size, parity);
1331 LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
1333 if(!tracing) {
1334 DbpString("Trace full");
1335 //break;
1339 memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
1342 //Dbprintf("%x", cmdsRecvd);
1343 LED_A_OFF();
1344 LED_B_OFF();
1345 LED_C_OFF();
1347 if(buttonPressed)
1349 DbpString("Button pressed");
1351 return buttonPressed;
1354 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1356 int i = 0, d=0;//, u = 0, d = 0;
1357 uint8_t b = 0;
1359 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1360 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
1362 AT91C_BASE_SSC->SSC_THR = 0x00;
1363 FpgaSetupSsc();
1364 while(!BUTTON_PRESS()) {
1365 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1366 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1368 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1369 b = 0x00;
1370 if(d < delay) {
1371 d++;
1373 else {
1374 if( i < respLen){
1375 b = resp[i];
1376 //Hack
1377 //b = 0xAC;
1379 i++;
1381 AT91C_BASE_SSC->SSC_THR = b;
1384 // if (i > respLen +4) break;
1385 if (i > respLen +1) break;
1388 return 0;
1391 /// THE READER CODE
1393 //-----------------------------------------------------------------------------
1394 // Transmit the command (to the tag) that was placed in ToSend[].
1395 //-----------------------------------------------------------------------------
1396 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1398 int c;
1399 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1400 AT91C_BASE_SSC->SSC_THR = 0x00;
1401 FpgaSetupSsc();
1403 if (wait)
1405 if(*wait < 10) *wait = 10;
1407 for(c = 0; c < *wait;) {
1408 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1409 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1410 c++;
1412 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1413 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1414 (void)r;
1416 WDT_HIT();
1422 uint8_t sendbyte;
1423 bool firstpart = TRUE;
1424 c = 0;
1425 for(;;) {
1426 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1428 // DOUBLE THE SAMPLES!
1429 if(firstpart) {
1430 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1432 else {
1433 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1434 c++;
1436 if(sendbyte == 0xff) {
1437 sendbyte = 0xfe;
1439 AT91C_BASE_SSC->SSC_THR = sendbyte;
1440 firstpart = !firstpart;
1442 if(c >= len) {
1443 break;
1446 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1447 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1448 (void)r;
1450 WDT_HIT();
1452 if (samples) *samples = (c + *wait) << 3;
1456 //-----------------------------------------------------------------------------
1457 // Prepare iClass reader command to send to FPGA
1458 //-----------------------------------------------------------------------------
1459 void CodeIClassCommand(const uint8_t * cmd, int len)
1461 int i, j, k;
1462 uint8_t b;
1464 ToSendReset();
1466 // Start of Communication: 1 out of 4
1467 ToSend[++ToSendMax] = 0xf0;
1468 ToSend[++ToSendMax] = 0x00;
1469 ToSend[++ToSendMax] = 0x0f;
1470 ToSend[++ToSendMax] = 0x00;
1472 // Modulate the bytes
1473 for (i = 0; i < len; i++) {
1474 b = cmd[i];
1475 for(j = 0; j < 4; j++) {
1476 for(k = 0; k < 4; k++) {
1477 if(k == (b & 3)) {
1478 ToSend[++ToSendMax] = 0x0f;
1480 else {
1481 ToSend[++ToSendMax] = 0x00;
1484 b >>= 2;
1488 // End of Communication
1489 ToSend[++ToSendMax] = 0x00;
1490 ToSend[++ToSendMax] = 0x00;
1491 ToSend[++ToSendMax] = 0xf0;
1492 ToSend[++ToSendMax] = 0x00;
1494 // Convert from last character reference to length
1495 ToSendMax++;
1498 void ReaderTransmitIClass(uint8_t* frame, int len)
1500 int wait = 0;
1501 int samples = 0;
1503 // This is tied to other size changes
1504 CodeIClassCommand(frame,len);
1506 // Select the card
1507 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1508 if(trigger)
1509 LED_A_ON();
1511 // Store reader command in buffer
1512 if (tracing) {
1513 uint8_t par[MAX_PARITY_SIZE];
1514 GetParity(frame, len, par);
1515 LogTrace(frame, len, rsamples, rsamples, par, TRUE);
1519 //-----------------------------------------------------------------------------
1520 // Wait a certain time for tag response
1521 // If a response is captured return TRUE
1522 // If it takes too long return FALSE
1523 //-----------------------------------------------------------------------------
1524 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1526 // buffer needs to be 512 bytes
1527 int c;
1529 // Set FPGA mode to "reader listen mode", no modulation (listen
1530 // only, since we are receiving, not transmitting).
1531 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1533 // Now get the answer from the card
1534 Demod.output = receivedResponse;
1535 Demod.len = 0;
1536 Demod.state = DEMOD_UNSYNCD;
1538 uint8_t b;
1539 if (elapsed) *elapsed = 0;
1541 bool skip = FALSE;
1543 c = 0;
1544 for(;;) {
1545 WDT_HIT();
1547 if(BUTTON_PRESS()) return FALSE;
1549 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1550 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1551 if (elapsed) (*elapsed)++;
1553 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1554 if(c < timeout) { c++; } else { return FALSE; }
1555 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1556 skip = !skip;
1557 if(skip) continue;
1559 if(ManchesterDecoding(b & 0x0f)) {
1560 *samples = c << 3;
1561 return TRUE;
1567 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1569 int samples = 0;
1570 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1571 rsamples += samples;
1572 if (tracing) {
1573 uint8_t parity[MAX_PARITY_SIZE];
1574 GetParity(receivedAnswer, Demod.len, parity);
1575 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
1577 if(samples == 0) return FALSE;
1578 return Demod.len;
1581 void setupIclassReader()
1583 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1584 // Reset trace buffer
1585 set_tracing(TRUE);
1586 clear_trace();
1588 // Setup SSC
1589 FpgaSetupSsc();
1590 // Start from off (no field generated)
1591 // Signal field is off with the appropriate LED
1592 LED_D_OFF();
1593 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1594 SpinDelay(200);
1596 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1598 // Now give it time to spin up.
1599 // Signal field is on with the appropriate LED
1600 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1601 SpinDelay(200);
1602 LED_A_ON();
1606 size_t sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
1608 while(retries-- > 0)
1610 ReaderTransmitIClass(command, cmdsize);
1611 if(expected_size == ReaderReceiveIClass(resp)){
1612 return 0;
1615 return 1;//Error
1619 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1620 * @param card_data where the CSN and CC are stored for return
1621 * @return 0 = fail
1622 * 1 = Got CSN
1623 * 2 = Got CSN and CC
1625 uint8_t handshakeIclassTag(uint8_t *card_data)
1627 static uint8_t act_all[] = { 0x0a };
1628 static uint8_t identify[] = { 0x0c };
1629 static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1632 static uint8_t readcheck_cc[]= { 0x88, 0x02,};
1634 uint8_t resp[ICLASS_BUFFER_SIZE];
1636 uint8_t read_status = 0;
1638 // Send act_all
1639 ReaderTransmitIClass(act_all, 1);
1640 // Card present?
1641 if(!ReaderReceiveIClass(resp)) return read_status;//Fail
1642 //Send Identify
1643 ReaderTransmitIClass(identify, 1);
1644 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1645 uint8_t len = ReaderReceiveIClass(resp);
1646 if(len != 10) return read_status;//Fail
1648 //Copy the Anti-collision CSN to our select-packet
1649 memcpy(&select[1],resp,8);
1650 //Select the card
1651 ReaderTransmitIClass(select, sizeof(select));
1652 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1653 len = ReaderReceiveIClass(resp);
1654 if(len != 10) return read_status;//Fail
1656 //Success - level 1, we got CSN
1657 //Save CSN in response data
1658 memcpy(card_data,resp,8);
1660 //Flag that we got to at least stage 1, read CSN
1661 read_status = 1;
1663 // Card selected, now read e-purse (cc)
1664 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1665 if(ReaderReceiveIClass(resp) == 8) {
1666 //Save CC (e-purse) in response data
1667 memcpy(card_data+8,resp,8);
1668 read_status++;
1671 return read_status;
1675 // Reader iClass Anticollission
1676 void ReaderIClass(uint8_t arg0) {
1678 uint8_t card_data[6 * 8]={0xFF};
1679 uint8_t last_csn[8]={0};
1681 //Read conf block CRC(0x01) => 0xfa 0x22
1682 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
1683 //Read conf block CRC(0x05) => 0xde 0x64
1684 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
1687 int read_status= 0;
1688 uint8_t result_status = 0;
1689 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1691 set_tracing(TRUE);
1692 setupIclassReader();
1694 while(!BUTTON_PRESS())
1697 if(!tracing) {
1698 DbpString("Trace full");
1699 break;
1701 WDT_HIT();
1703 read_status = handshakeIclassTag(card_data);
1705 if(read_status == 0) continue;
1706 if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
1707 if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
1709 // handshakeIclass returns CSN|CC, but the actual block
1710 // layout is CSN|CONFIG|CC, so here we reorder the data,
1711 // moving CC forward 8 bytes
1712 memcpy(card_data+16,card_data+8, 8);
1713 //Read block 1, config
1714 if(arg0 & FLAG_ICLASS_READER_CONF)
1716 if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf),card_data+8, 10, 10))
1718 Dbprintf("Failed to dump config block");
1719 }else
1721 result_status |= FLAG_ICLASS_READER_CONF;
1725 //Read block 5, AA
1726 if(arg0 & FLAG_ICLASS_READER_AA){
1727 if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA),card_data+(8*4), 10, 10))
1729 // Dbprintf("Failed to dump AA block");
1730 }else
1732 result_status |= FLAG_ICLASS_READER_AA;
1736 // 0 : CSN
1737 // 1 : Configuration
1738 // 2 : e-purse
1739 // (3,4 write-only, kc and kd)
1740 // 5 Application issuer area
1742 //Then we can 'ship' back the 8 * 5 bytes of data,
1743 // with 0xFF:s in block 3 and 4.
1745 LED_B_ON();
1746 //Send back to client, but don't bother if we already sent this
1747 if(memcmp(last_csn, card_data, 8) != 0)
1749 // If caller requires that we get CC, continue until we got it
1750 if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC))
1752 cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
1753 if(abort_after_read) {
1754 LED_A_OFF();
1755 return;
1757 //Save that we already sent this....
1758 memcpy(last_csn, card_data, 8);
1762 LED_B_OFF();
1764 cmd_send(CMD_ACK,0,0,0,card_data, 0);
1765 LED_A_OFF();
1768 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1770 uint8_t card_data[USB_CMD_DATA_SIZE]={0};
1771 uint16_t block_crc_LUT[255] = {0};
1773 {//Generate a lookup table for block crc
1774 for(int block = 0; block < 255; block++){
1775 char bl = block;
1776 block_crc_LUT[block] = iclass_crc16(&bl ,1);
1779 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1781 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1782 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1784 uint16_t crc = 0;
1785 uint8_t cardsize=0;
1786 uint8_t mem=0;
1788 static struct memory_t{
1789 int k16;
1790 int book;
1791 int k2;
1792 int lockauth;
1793 int keyaccess;
1794 } memory;
1796 uint8_t resp[ICLASS_BUFFER_SIZE];
1798 setupIclassReader();
1799 set_tracing(TRUE);
1801 while(!BUTTON_PRESS()) {
1803 WDT_HIT();
1805 if(!tracing) {
1806 DbpString("Trace full");
1807 break;
1810 uint8_t read_status = handshakeIclassTag(card_data);
1811 if(read_status < 2) continue;
1813 //for now replay captured auth (as cc not updated)
1814 memcpy(check+5,MAC,4);
1816 if(sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
1818 Dbprintf("Error: Authentication Fail!");
1819 continue;
1822 //first get configuration block (block 1)
1823 crc = block_crc_LUT[1];
1824 read[1]=1;
1825 read[2] = crc >> 8;
1826 read[3] = crc & 0xff;
1828 if(sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
1830 Dbprintf("Dump config (block 1) failed");
1831 continue;
1834 mem=resp[5];
1835 memory.k16= (mem & 0x80);
1836 memory.book= (mem & 0x20);
1837 memory.k2= (mem & 0x8);
1838 memory.lockauth= (mem & 0x2);
1839 memory.keyaccess= (mem & 0x1);
1841 cardsize = memory.k16 ? 255 : 32;
1842 WDT_HIT();
1843 //Set card_data to all zeroes, we'll fill it with data
1844 memset(card_data,0x0,USB_CMD_DATA_SIZE);
1845 uint8_t failedRead =0;
1846 uint32_t stored_data_length =0;
1847 //then loop around remaining blocks
1848 for(int block=0; block < cardsize; block++){
1850 read[1]= block;
1851 crc = block_crc_LUT[block];
1852 read[2] = crc >> 8;
1853 read[3] = crc & 0xff;
1855 if(!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
1857 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1858 block, resp[0], resp[1], resp[2],
1859 resp[3], resp[4], resp[5],
1860 resp[6], resp[7]);
1862 //Fill up the buffer
1863 memcpy(card_data+stored_data_length,resp,8);
1864 stored_data_length += 8;
1865 if(stored_data_length +8 > USB_CMD_DATA_SIZE)
1866 {//Time to send this off and start afresh
1867 cmd_send(CMD_ACK,
1868 stored_data_length,//data length
1869 failedRead,//Failed blocks?
1870 0,//Not used ATM
1871 card_data, stored_data_length);
1872 //reset
1873 stored_data_length = 0;
1874 failedRead = 0;
1877 }else{
1878 failedRead = 1;
1879 stored_data_length +=8;//Otherwise, data becomes misaligned
1880 Dbprintf("Failed to dump block %d", block);
1884 //Send off any remaining data
1885 if(stored_data_length > 0)
1887 cmd_send(CMD_ACK,
1888 stored_data_length,//data length
1889 failedRead,//Failed blocks?
1890 0,//Not used ATM
1891 card_data, stored_data_length);
1893 //If we got here, let's break
1894 break;
1896 //Signal end of transmission
1897 cmd_send(CMD_ACK,
1898 0,//data length
1899 0,//Failed blocks?
1900 0,//Not used ATM
1901 card_data, 0);
1903 LED_A_OFF();
1906 //2. Create Read method (cut-down from above) based off responses from 1.
1907 // Since we have the MAC could continue to use replay function.
1908 //3. Create Write method
1910 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1911 uint8_t act_all[] = { 0x0a };
1912 uint8_t identify[] = { 0x0c };
1913 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1914 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1915 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1916 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1917 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1919 uint16_t crc = 0;
1921 uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
1923 // Reset trace buffer
1924 memset(trace, 0x44, RECV_CMD_OFFSET);
1925 traceLen = 0;
1927 // Setup SSC
1928 FpgaSetupSsc();
1929 // Start from off (no field generated)
1930 // Signal field is off with the appropriate LED
1931 LED_D_OFF();
1932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1933 SpinDelay(200);
1935 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1937 // Now give it time to spin up.
1938 // Signal field is on with the appropriate LED
1939 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1940 SpinDelay(200);
1942 LED_A_ON();
1944 for(int i=0;i<1;i++) {
1946 if(traceLen > TRACE_SIZE) {
1947 DbpString("Trace full");
1948 break;
1951 if (BUTTON_PRESS()) break;
1953 // Send act_all
1954 ReaderTransmitIClass(act_all, 1);
1955 // Card present?
1956 if(ReaderReceiveIClass(resp)) {
1957 ReaderTransmitIClass(identify, 1);
1958 if(ReaderReceiveIClass(resp) == 10) {
1959 // Select card
1960 memcpy(&select[1],resp,8);
1961 ReaderTransmitIClass(select, sizeof(select));
1963 if(ReaderReceiveIClass(resp) == 10) {
1964 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1965 resp[0], resp[1], resp[2],
1966 resp[3], resp[4], resp[5],
1967 resp[6], resp[7]);
1969 // Card selected
1970 Dbprintf("Readcheck on Sector 2");
1971 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1972 if(ReaderReceiveIClass(resp) == 8) {
1973 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1974 resp[0], resp[1], resp[2],
1975 resp[3], resp[4], resp[5],
1976 resp[6], resp[7]);
1977 }else return;
1978 Dbprintf("Authenticate");
1979 //for now replay captured auth (as cc not updated)
1980 memcpy(check+5,MAC,4);
1981 Dbprintf(" AA: %02x %02x %02x %02x",
1982 check[5], check[6], check[7],check[8]);
1983 ReaderTransmitIClass(check, sizeof(check));
1984 if(ReaderReceiveIClass(resp) == 4) {
1985 Dbprintf(" AR: %02x %02x %02x %02x",
1986 resp[0], resp[1], resp[2],resp[3]);
1987 }else {
1988 Dbprintf("Error: Authentication Fail!");
1989 return;
1991 Dbprintf("Write Block");
1993 //read configuration for max block number
1994 read_success=false;
1995 read[1]=1;
1996 uint8_t *blockno=&read[1];
1997 crc = iclass_crc16((char *)blockno,1);
1998 read[2] = crc >> 8;
1999 read[3] = crc & 0xff;
2000 while(!read_success){
2001 ReaderTransmitIClass(read, sizeof(read));
2002 if(ReaderReceiveIClass(resp) == 10) {
2003 read_success=true;
2004 mem=resp[5];
2005 memory.k16= (mem & 0x80);
2006 memory.book= (mem & 0x20);
2007 memory.k2= (mem & 0x8);
2008 memory.lockauth= (mem & 0x2);
2009 memory.keyaccess= (mem & 0x1);
2013 if (memory.k16){
2014 cardsize=255;
2015 }else cardsize=32;
2016 //check card_size
2018 memcpy(write+1,blockNo,1);
2019 memcpy(write+2,data,8);
2020 memcpy(write+10,mac,4);
2021 while(!send_success){
2022 ReaderTransmitIClass(write, sizeof(write));
2023 if(ReaderReceiveIClass(resp) == 10) {
2024 write_success=true;
2028 WDT_HIT();
2031 LED_A_OFF();