2 // people from mifare@nethemba.com, 2010
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
9 //-----------------------------------------------------------------------------
11 #include "mifarehost.h"
19 #include "crapto1/crapto1.h"
26 #include "iso14443crc.h"
27 #include "util_posix.h"
32 // mifare tracer flags used in mfTraceDecode()
33 #define TRACE_IDLE 0x00
34 #define TRACE_AUTH1 0x01
35 #define TRACE_AUTH2 0x02
36 #define TRACE_AUTH_OK 0x03
37 #define TRACE_READ_DATA 0x04
38 #define TRACE_WRITE_OK 0x05
39 #define TRACE_WRITE_DATA 0x06
40 #define TRACE_ERROR 0xFF
43 static int compare_uint64(const void *a
, const void *b
) {
44 // didn't work: (the result is truncated to 32 bits)
45 //return (*(int64_t*)b - *(int64_t*)a);
48 if (*(uint64_t*)b
== *(uint64_t*)a
) return 0;
49 else if (*(uint64_t*)b
< *(uint64_t*)a
) return 1;
54 // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
55 static uint32_t intersection(uint64_t *list1
, uint64_t *list2
)
57 if (list1
== NULL
|| list2
== NULL
) {
60 uint64_t *p1
, *p2
, *p3
;
64 while ( *p1
!= -1 && *p2
!= -1 ) {
65 if (compare_uint64(p1
, p2
) == 0) {
70 while (compare_uint64(p1
, p2
) < 0) ++p1
;
71 while (compare_uint64(p1
, p2
) > 0) ++p2
;
79 // Darkside attack (hf mf mifare)
80 static uint32_t nonce2key(uint32_t uid
, uint32_t nt
, uint32_t nr
, uint32_t ar
, uint64_t par_info
, uint64_t ks_info
, uint64_t **keys
) {
81 struct Crypto1State
*states
;
83 uint8_t bt
, ks3x
[8], par
[8][8];
84 uint64_t key_recovered
;
87 // Reset the last three significant bits of the reader nonce
90 for (pos
=0; pos
<8; pos
++) {
91 ks3x
[7-pos
] = (ks_info
>> (pos
*8)) & 0x0f;
92 bt
= (par_info
>> (pos
*8)) & 0xff;
94 par
[7-pos
][i
] = (bt
>> i
) & 0x01;
98 states
= lfsr_common_prefix(nr
, ar
, ks3x
, par
, (par_info
== 0));
100 if (states
== NULL
) {
105 keylist
= (uint64_t*)states
;
107 for (i
= 0; keylist
[i
]; i
++) {
108 lfsr_rollback_word(states
+i
, uid
^nt
, 0);
109 crypto1_get_lfsr(states
+i
, &key_recovered
);
110 keylist
[i
] = key_recovered
;
119 int mfDarkside(uint64_t *key
) {
121 uint32_t nt
= 0, nr
= 0, ar
= 0;
122 uint64_t par_list
= 0, ks_list
= 0;
123 uint64_t *keylist
= NULL
, *last_keylist
= NULL
;
124 uint32_t keycount
= 0;
127 UsbCommand c
= {CMD_READER_MIFARE
, {true, 0, 0}};
130 printf("-------------------------------------------------------------------------\n");
131 printf("Executing command. Expected execution time: 25sec on average\n");
132 printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
133 printf("-------------------------------------------------------------------------\n");
137 clearCommandBuffer();
142 int c
= getchar(); (void) c
;
155 if (WaitForResponseTimeout(CMD_ACK
, &resp
, 1000)) {
160 uid
= (uint32_t)bytes_to_num(resp
.d
.asBytes
+ 0, 4);
161 nt
= (uint32_t)bytes_to_num(resp
.d
.asBytes
+ 4, 4);
162 par_list
= bytes_to_num(resp
.d
.asBytes
+ 8, 8);
163 ks_list
= bytes_to_num(resp
.d
.asBytes
+ 16, 8);
164 nr
= (uint32_t)bytes_to_num(resp
.d
.asBytes
+ 24, 4);
165 ar
= (uint32_t)bytes_to_num(resp
.d
.asBytes
+ 28, 4);
170 if (par_list
== 0 && c
.arg
[0] == true) {
171 PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
175 keycount
= nonce2key(uid
, nt
, nr
, ar
, par_list
, ks_list
, &keylist
);
178 PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt
);
179 PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
184 qsort(keylist
, keycount
, sizeof(*keylist
), compare_uint64
);
185 keycount
= intersection(last_keylist
, keylist
);
188 last_keylist
= keylist
;
194 PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount
);
196 PrintAndLog("Found a possible key. Trying to authenticate...\n");
199 uint8_t *keys_to_chk
= malloc(keycount
* 6);
200 for (int i
= 0; i
< keycount
; i
++) {
201 num_to_bytes(keylist
[i
], 6, keys_to_chk
+i
);
205 mfCheckKeys(0, 0, 0, false, keycount
, keys_to_chk
, key
);
214 PrintAndLog("Authentication failed. Trying again...");
216 last_keylist
= keylist
;
224 static int mfCheckKeysEx(uint8_t blockNo
, uint8_t keyType
, uint16_t timeout14a
, bool clear_trace
, uint32_t keycnt
, uint8_t *keys
, uint64_t *found_key
, bool fixed_nonce
) {
226 bool display_progress
= false;
227 uint64_t start_time
= msclock();
228 uint64_t next_print_time
= start_time
+ 5 * 1000;
231 PrintAndLog("We have %d keys to check. This can take some time!", keycnt
);
232 PrintAndLog("Press button to abort.");
233 display_progress
= true;
236 uint8_t bytes_per_key
= fixed_nonce
? 5 : 6;
237 uint32_t max_keys
= keycnt
> USB_CMD_DATA_SIZE
/bytes_per_key
? USB_CMD_DATA_SIZE
/bytes_per_key
: keycnt
;
239 bool multisectorCheck
= false;
241 for (int i
= 0, ii
= 0; i
< keycnt
; i
+= max_keys
) {
243 if ((i
+ max_keys
) >= keycnt
) {
244 max_keys
= keycnt
- i
;
247 bool init
= (i
== 0);
248 bool drop_field
= (max_keys
== keycnt
);
249 uint8_t flags
= clear_trace
| multisectorCheck
<< 1 | init
<< 2 | drop_field
<< 3 | fixed_nonce
<< 4;
251 UsbCommand c
= {CMD_MIFARE_CHKKEYS
, {((blockNo
& 0xff) | ((keyType
& 0xff) << 8)), flags
| timeout14a
<< 16, max_keys
}};
252 memcpy(c
.d
.asBytes
, keys
+ i
* bytes_per_key
, max_keys
* bytes_per_key
);
256 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000))
259 if ((resp
.arg
[0] & 0xff) != 0x01) {
260 if ((int)resp
.arg
[1] < 0) { // error or user aborted
261 return (int)resp
.arg
[1];
262 } else { // nothing found yet
263 if (display_progress
&& msclock() >= next_print_time
) {
264 float brute_force_per_second
= (float)(i
- ii
) / (float)(msclock() - start_time
) * 1000.0;
266 start_time
= msclock();
267 next_print_time
= start_time
+ 10 * 1000;
268 PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt
- i
, brute_force_per_second
, (keycnt
-i
)/brute_force_per_second
);
273 *found_key
= i
+ resp
.arg
[1] - 1;
275 *found_key
= bytes_to_num(resp
.d
.asBytes
, 6);
281 return 2; // nothing found
285 int mfCheckKeys(uint8_t blockNo
, uint8_t keyType
, uint16_t timeout14a
, bool clear_trace
, uint32_t keycnt
, uint8_t *keys
, uint64_t *found_key
) {
286 return mfCheckKeysEx(blockNo
, keyType
, timeout14a
, clear_trace
, keycnt
, keys
, found_key
, false);
290 static int mfCheckKeysFixedNonce(uint8_t blockNo
, uint8_t keyType
, uint16_t timeout14a
, bool clear_trace
, uint32_t keycnt
, uint8_t *keys
, uint32_t *key_index
) {
291 return mfCheckKeysEx(blockNo
, keyType
, timeout14a
, clear_trace
, keycnt
, keys
, (uint64_t*)key_index
, true);
295 int mfCheckKeysSec(uint8_t sectorCnt
, uint8_t keyType
, uint16_t timeout14a
, bool clear_trace
, bool init
, bool drop_field
, uint8_t keycnt
, uint8_t *keyBlock
, sector_t
*e_sector
) {
299 if (e_sector
== NULL
)
302 bool multisectorCheck
= true;
303 uint8_t flags
= clear_trace
| multisectorCheck
<< 1 | init
<< 2 | drop_field
<< 3;
305 UsbCommand c
= {CMD_MIFARE_CHKKEYS
, {((sectorCnt
& 0xff) | ((keyType
& 0xff) << 8)), flags
| timeout14a
<< 16, keycnt
}};
306 memcpy(c
.d
.asBytes
, keyBlock
, 6 * keycnt
);
310 if (!WaitForResponseTimeoutW(CMD_ACK
, &resp
, MAX(3000, 1000 + 13 * sectorCnt
* keycnt
* (keyType
== 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth
311 if ((resp
.arg
[0] & 0xff) != 0x01) return 2;
313 bool foundAKey
= false;
314 for(int sec
= 0; sec
< sectorCnt
; sec
++){
315 for(int keyAB
= 0; keyAB
< 2; keyAB
++){
316 keyPtr
= *(resp
.d
.asBytes
+ keyAB
* 40 + sec
);
318 e_sector
[sec
].foundKey
[keyAB
] = true;
319 e_sector
[sec
].Key
[keyAB
] = bytes_to_num(keyBlock
+ (keyPtr
- 1) * 6, 6);
324 return foundAKey
? 0 : 3;
327 // Compare 16 Bits out of cryptostate
328 int Compare16Bits(const void * a
, const void * b
) {
329 if ((*(uint64_t*)b
& 0x00ff000000ff0000) == (*(uint64_t*)a
& 0x00ff000000ff0000)) return 0;
330 else if ((*(uint64_t*)b
& 0x00ff000000ff0000) > (*(uint64_t*)a
& 0x00ff000000ff0000)) return 1;
337 struct Crypto1State
*slhead
;
341 struct Crypto1State
*sltail
;
353 // wrapper function for multi-threaded lfsr_recovery32
355 #ifdef __has_attribute
356 #if __has_attribute(force_align_arg_pointer)
357 __attribute__((force_align_arg_pointer
))
360 *nested_worker_thread(void *arg
) {
361 struct Crypto1State
*p1
;
362 StateList_t
*statelist
= arg
;
364 statelist
->head
.slhead
= lfsr_recovery32(statelist
->ks1
, statelist
->nt
^ statelist
->uid
);
365 for (p1
= statelist
->head
.slhead
; *(uint64_t *)p1
!= 0; p1
++);
366 statelist
->len
= p1
- statelist
->head
.slhead
;
367 statelist
->tail
.sltail
= --p1
;
368 qsort(statelist
->head
.slhead
, statelist
->len
, sizeof(uint64_t), Compare16Bits
);
370 return statelist
->head
.slhead
;
374 static int nested_fixed_nonce(StateList_t statelist
, uint32_t fixed_nt
, uint32_t authentication_timeout
, uint8_t *resultKey
) {
375 // We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states.
376 // Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here.
377 uint8_t nr_enc
[4] = NESTED_FIXED_NR_ENC
; // we use a fixed {nr}
379 num_to_bytes(prng_successor(fixed_nt
, 64), 4, ar
); // ... and ar is fixed too
381 // create an array of possible {ar} and parity bits
382 uint32_t num_ar_par
= statelist
.len
;
383 uint8_t *ar_par
= calloc(num_ar_par
, 5);
384 if (ar_par
== NULL
) {
385 free(statelist
.head
.slhead
);
389 for (int i
= 0; i
< num_ar_par
; i
++) {
390 // roll back to initial state using the nt observed with the nested authentication
391 lfsr_rollback_word(statelist
.head
.slhead
+ i
, statelist
.nt
^ statelist
.uid
, 0);
392 // instead feed in the fixed_nt for the first authentication
393 struct Crypto1State cs
= *(statelist
.head
.slhead
+ i
);
394 crypto1_word(&cs
, fixed_nt
^ statelist
.uid
, 0);
395 // determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits
397 for (int j
= 0; j
< 4; j
++) {
398 uint8_t nr_byte
= crypto1_byte(&cs
, nr_enc
[j
], 1) ^ nr_enc
[j
];
399 par_enc
|= (((filter(cs
.odd
) ^ oddparity8(nr_byte
)) & 0x01) << (7-j
));
401 // calculate the encrypted reader response {ar} and its parity bits
402 for (int j
= 0; j
< 4; j
++) {
403 ar_par
[5*i
+ j
] = crypto1_byte(&cs
, 0, 0) ^ ar
[j
];
404 par_enc
|= ((filter(cs
.odd
) ^ oddparity8(ar
[j
])) & 0x01) << (3-j
);
406 ar_par
[5*i
+ 4] = par_enc
;
409 // test each {ar} response
412 int isOK
= mfCheckKeysFixedNonce(statelist
.blockNo
, statelist
.keyType
, authentication_timeout
, true, num_ar_par
, ar_par
, &key_index
);
414 if (isOK
== 0) { // success, key found
415 // key_index contains the index into the cypher state list
416 struct Crypto1State
*p1
= statelist
.head
.slhead
+ key_index
;
418 crypto1_get_lfsr(p1
, &key64
);
419 num_to_bytes(key64
, 6, resultKey
);
421 if (isOK
== 1) { // timeout
424 free(statelist
.head
.slhead
);
430 static int nested_standard(StateList_t statelists
[2], uint32_t authentication_timeout
, uint8_t *resultKey
) {
432 // the first 16 Bits of the crypto states already contain part of our key.
433 // Create the intersection of the two lists based on these 16 Bits and
434 // roll back the crypto state for the remaining states
435 struct Crypto1State
*p1
, *p2
, *p3
, *p4
;
436 p1
= p3
= statelists
[0].head
.slhead
;
437 p2
= p4
= statelists
[1].head
.slhead
;
438 while (p1
<= statelists
[0].tail
.sltail
&& p2
<= statelists
[1].tail
.sltail
) {
439 if (Compare16Bits(p1
, p2
) == 0) {
440 struct Crypto1State savestate
, *savep
= &savestate
;
442 while (Compare16Bits(p1
, savep
) == 0 && p1
<= statelists
[0].tail
.sltail
) {
444 lfsr_rollback_word(p3
, statelists
[0].nt
^ statelists
[0].uid
, 0);
449 while (Compare16Bits(p2
, savep
) == 0 && p2
<= statelists
[1].tail
.sltail
) {
451 lfsr_rollback_word(p4
, statelists
[1].nt
^ statelists
[1].uid
, 0);
457 while (Compare16Bits(p1
, p2
) == -1) p1
++;
458 while (Compare16Bits(p1
, p2
) == 1) p2
++;
463 statelists
[0].len
= p3
- statelists
[0].head
.slhead
;
464 statelists
[1].len
= p4
- statelists
[1].head
.slhead
;
465 statelists
[0].tail
.sltail
=--p3
;
466 statelists
[1].tail
.sltail
=--p4
;
468 // the statelists now contain possible crypto states initialized with the key. The key we are searching for
469 // must be in the intersection of both lists. Sort the lists and create the intersection:
470 qsort(statelists
[0].head
.keyhead
, statelists
[0].len
, sizeof(uint64_t), compare_uint64
);
471 qsort(statelists
[1].head
.keyhead
, statelists
[1].len
, sizeof(uint64_t), compare_uint64
);
472 statelists
[0].len
= intersection(statelists
[0].head
.keyhead
, statelists
[1].head
.keyhead
);
474 // create an array of the possible keys
475 uint32_t num_keys
= statelists
[0].len
;
476 uint8_t *keys
= calloc(num_keys
, 6);
478 free(statelists
[0].head
.slhead
);
479 free(statelists
[1].head
.slhead
);
484 for (int i
= 0; i
< num_keys
; i
++) {
485 crypto1_get_lfsr(statelists
[0].head
.slhead
+ i
, &key64
);
486 num_to_bytes(key64
, 6, keys
+ i
*6);
489 // and test each key with mfCheckKeys
490 int isOK
= mfCheckKeys(statelists
[0].blockNo
, statelists
[0].keyType
, authentication_timeout
, true, num_keys
, keys
, &key64
);
492 if (isOK
== 0) { // success, key found
493 num_to_bytes(key64
, 6, resultKey
);
495 if (isOK
== 1) { // timeout
498 free(statelists
[0].head
.slhead
);
499 free(statelists
[1].head
.slhead
);
505 int mfnested(uint8_t blockNo
, uint8_t keyType
, uint16_t timeout14a
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *resultKey
, bool calibrate
) {
508 clearCommandBuffer();
510 UsbCommand c
= {CMD_MIFARE_NESTED
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, calibrate
}};
511 memcpy(c
.d
.asBytes
, key
, 6);
515 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 1500)) {
519 if ((int)resp
.arg
[0]) {
520 return (int)resp
.arg
[0]; // error during nested
524 memcpy(&uid
, resp
.d
.asBytes
, 4);
525 PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid
, (uint16_t)resp
.arg
[2] & 0xff, (uint16_t)resp
.arg
[2] >> 8);
527 StateList_t statelists
[2];
528 for (int i
= 0; i
< 2; i
++) {
529 statelists
[i
].blockNo
= resp
.arg
[2] & 0xff;
530 statelists
[i
].keyType
= (resp
.arg
[2] >> 8) & 0xff;
531 statelists
[i
].uid
= uid
;
532 memcpy(&statelists
[i
].nt
, (void *)(resp
.d
.asBytes
+ 4 + i
* 8 + 0), 4);
533 memcpy(&statelists
[i
].ks1
, (void *)(resp
.d
.asBytes
+ 4 + i
* 8 + 4), 4);
536 uint32_t authentication_timeout
;
537 memcpy(&authentication_timeout
, resp
.d
.asBytes
+ 20, 4);
538 PrintAndLog("Setting authentication timeout to %" PRIu32
"us", authentication_timeout
* 1000 / 106);
540 uint8_t num_unique_nonces
;
541 uint32_t fixed_nt
= 0;
542 if (statelists
[0].nt
== statelists
[1].nt
&& statelists
[0].ks1
== statelists
[1].ks1
) {
543 num_unique_nonces
= 1;
544 memcpy(&fixed_nt
, resp
.d
.asBytes
+ 24, 4);
545 PrintAndLog("Fixed nt detected: %08" PRIx32
" on first authentication, %08" PRIx32
" on nested authentication", fixed_nt
, statelists
[0].nt
);
547 num_unique_nonces
= 2;
550 // create and run worker threads to calculate possible crypto states
551 pthread_t thread_id
[2];
552 for (int i
= 0; i
< num_unique_nonces
; i
++) {
553 pthread_create(thread_id
+ i
, NULL
, nested_worker_thread
, &statelists
[i
]);
555 // wait for threads to terminate:
556 for (int i
= 0; i
< num_unique_nonces
; i
++) {
557 pthread_join(thread_id
[i
], (void*)&statelists
[i
].head
.slhead
);
560 if (num_unique_nonces
== 2) {
561 return nested_standard(statelists
, authentication_timeout
, resultKey
);
563 return nested_fixed_nonce(statelists
[0], fixed_nt
, authentication_timeout
, resultKey
);
569 int mfReadSector(uint8_t sectorNo
, uint8_t keyType
, uint8_t *key
, uint8_t *data
) {
571 UsbCommand c
= {CMD_MIFARE_READSC
, {sectorNo
, keyType
, 0}};
572 memcpy(c
.d
.asBytes
, key
, 6);
573 clearCommandBuffer();
577 if (WaitForResponseTimeout(CMD_ACK
, &resp
, 1500)) {
578 uint8_t isOK
= resp
.arg
[0] & 0xff;
581 memcpy(data
, resp
.d
.asBytes
, mfNumBlocksPerSector(sectorNo
) * 16);
587 PrintAndLogEx(ERR
, "Command execute timeout");
596 int mfEmlGetMem(uint8_t *data
, int blockNum
, int blocksCount
) {
597 UsbCommand c
= {CMD_MIFARE_EML_MEMGET
, {blockNum
, blocksCount
, 0}};
601 if (!WaitForResponseTimeout(CMD_ACK
,&resp
,1500)) return 1;
602 memcpy(data
, resp
.d
.asBytes
, blocksCount
* 16);
606 int mfEmlSetMem(uint8_t *data
, int blockNum
, int blocksCount
) {
607 UsbCommand c
= {CMD_MIFARE_EML_MEMSET
, {blockNum
, blocksCount
, 0}};
608 memcpy(c
.d
.asBytes
, data
, blocksCount
* 16);
615 int mfCGetBlock(uint8_t blockNo
, uint8_t *data
, uint8_t params
) {
618 UsbCommand c
= {CMD_MIFARE_CGETBLOCK
, {params
, 0, blockNo
}};
622 if (WaitForResponseTimeout(CMD_ACK
,&resp
,1500)) {
623 isOK
= resp
.arg
[0] & 0xff;
624 memcpy(data
, resp
.d
.asBytes
, 16);
627 PrintAndLog("Command execute timeout");
633 int mfCSetBlock(uint8_t blockNo
, uint8_t *data
, uint8_t *uid
, bool wantWipe
, uint8_t params
) {
636 UsbCommand c
= {CMD_MIFARE_CSETBLOCK
, {wantWipe
, params
& (0xFE | (uid
== NULL
? 0:1)), blockNo
}};
637 memcpy(c
.d
.asBytes
, data
, 16);
641 if (WaitForResponseTimeout(CMD_ACK
, &resp
, 1500)) {
642 isOK
= resp
.arg
[0] & 0xff;
644 memcpy(uid
, resp
.d
.asBytes
, 4);
648 PrintAndLog("Command execute timeout");
655 int mfCWipe(uint32_t numSectors
, bool gen1b
, bool wantWipe
, bool wantFill
) {
657 uint8_t cmdParams
= wantWipe
+ wantFill
* 0x02 + gen1b
* 0x04;
658 UsbCommand c
= {CMD_MIFARE_CWIPE
, {numSectors
, cmdParams
, 0}};
662 WaitForResponse(CMD_ACK
,&resp
);
663 isOK
= resp
.arg
[0] & 0xff;
668 int mfCSetUID(uint8_t *uid
, uint8_t *atqa
, uint8_t *sak
, uint8_t *oldUID
) {
669 uint8_t oldblock0
[16] = {0x00};
670 uint8_t block0
[16] = {0x00};
675 /* generation 1a magic card by default */
676 uint8_t cmdParams
= CSETBLOCK_SINGLE_OPER
;
678 /* generation 1b magic card */
679 cmdParams
= CSETBLOCK_SINGLE_OPER
| CSETBLOCK_MAGIC_1B
;
682 res
= mfCGetBlock(0, oldblock0
, cmdParams
);
685 memcpy(block0
, oldblock0
, 16);
686 PrintAndLog("old block 0: %s", sprint_hex(block0
,16));
688 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
691 // fill in the new values
693 memcpy(block0
, uid
, 4);
695 block0
[4] = block0
[0] ^ block0
[1] ^ block0
[2] ^ block0
[3];
696 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
703 PrintAndLog("new block 0: %s", sprint_hex(block0
, 16));
705 res
= mfCSetBlock(0, block0
, oldUID
, false, cmdParams
);
707 PrintAndLog("Can't set block 0. Error: %d", res
);
715 UsbCommand c
= {CMD_MIFARE_CIDENT
, {0, 0, 0}};
718 WaitForResponse(CMD_ACK
,&resp
);
720 uint8_t isGeneration
= resp
.arg
[0] & 0xff;
721 switch( isGeneration
){
722 case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break;
723 case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break;
724 default: PrintAndLog("No chinese magic backdoor command detected"); break;
727 return (int) isGeneration
;
734 static uint8_t trailerAccessBytes
[4] = {0x08, 0x77, 0x8F, 0x00};
737 char logHexFileName
[FILE_PATH_SIZE
] = {0x00};
738 static uint8_t traceCard
[4096] = {0x00};
739 static char traceFileName
[FILE_PATH_SIZE
] = {0x00};
740 static int traceState
= TRACE_IDLE
;
741 static uint8_t traceCurBlock
= 0;
742 static uint8_t traceCurKey
= 0;
744 struct Crypto1State
*traceCrypto1
= NULL
;
746 struct Crypto1State
*revstate
;
752 uint32_t uid
; // serial number
753 uint32_t nt
; // tag challenge
754 uint32_t nt_enc
; // encrypted tag challenge
755 uint8_t nt_enc_par
; // encrypted tag challenge parity
756 uint32_t nr_enc
; // encrypted reader challenge
757 uint32_t ar_enc
; // encrypted reader response
758 uint8_t ar_enc_par
; // encrypted reader response parity
759 uint32_t at_enc
; // encrypted tag response
760 uint8_t at_enc_par
; // encrypted tag response parity
762 int isTraceCardEmpty(void) {
763 return ((traceCard
[0] == 0) && (traceCard
[1] == 0) && (traceCard
[2] == 0) && (traceCard
[3] == 0));
766 int isBlockEmpty(int blockN
) {
767 for (int i
= 0; i
< 16; i
++)
768 if (traceCard
[blockN
* 16 + i
] != 0) return 0;
773 int isBlockTrailer(int blockN
) {
774 return ((blockN
& 0x03) == 0x03);
777 int saveTraceCard(void) {
780 if ((!strlen(traceFileName
)) || (isTraceCardEmpty())) return 0;
782 f
= fopen(traceFileName
, "w+");
785 for (int i
= 0; i
< 64; i
++) { // blocks
786 for (int j
= 0; j
< 16; j
++) // bytes
787 fprintf(f
, "%02x", *(traceCard
+ i
* 16 + j
));
795 int loadTraceCard(uint8_t *tuid
) {
797 char buf
[64] = {0x00};
798 uint8_t buf8
[64] = {0x00};
801 if (!isTraceCardEmpty())
804 memset(traceCard
, 0x00, 4096);
805 memcpy(traceCard
, tuid
+ 3, 4);
807 FillFileNameByUID(traceFileName
, tuid
, ".eml", 7);
809 f
= fopen(traceFileName
, "r");
816 memset(buf
, 0, sizeof(buf
));
817 if (fgets(buf
, sizeof(buf
), f
) == NULL
) {
818 PrintAndLog("File reading error.");
823 if (strlen(buf
) < 32){
825 PrintAndLog("File content error. Block data must include 32 HEX symbols");
829 for (i
= 0; i
< 32; i
+= 2)
830 sscanf(&buf
[i
], "%02x", (unsigned int *)&buf8
[i
/ 2]);
832 memcpy(traceCard
+ blockNum
* 16, buf8
, 16);
841 int mfTraceInit(uint8_t *tuid
, uint8_t *atqa
, uint8_t sak
, bool wantSaveToEmlFile
) {
844 crypto1_destroy(traceCrypto1
);
848 if (wantSaveToEmlFile
)
851 traceCard
[4] = traceCard
[0] ^ traceCard
[1] ^ traceCard
[2] ^ traceCard
[3];
853 memcpy(&traceCard
[6], atqa
, 2);
855 uid
= bytes_to_num(tuid
+ 3, 4);
857 traceState
= TRACE_IDLE
;
862 void mf_crypto1_decrypt(struct Crypto1State
*pcs
, uint8_t *data
, int len
, bool isEncrypted
){
867 for (i
= 0; i
< len
; i
++)
868 data
[i
] = crypto1_byte(pcs
, 0x00, isEncrypted
) ^ data
[i
];
871 for (i
= 0; i
< 4; i
++)
872 bt
|= (crypto1_bit(pcs
, 0, isEncrypted
) ^ BIT(data
[0], i
)) << i
;
879 bool NTParityCheck(uint32_t ntx
) {
881 (oddparity8(ntx
>> 8 & 0xff) ^ (ntx
& 0x01) ^ ((nt_enc_par
>> 5) & 0x01) ^ (nt_enc
& 0x01)) ||
882 (oddparity8(ntx
>> 16 & 0xff) ^ (ntx
>> 8 & 0x01) ^ ((nt_enc_par
>> 6) & 0x01) ^ (nt_enc
>> 8 & 0x01)) ||
883 (oddparity8(ntx
>> 24 & 0xff) ^ (ntx
>> 16 & 0x01) ^ ((nt_enc_par
>> 7) & 0x01) ^ (nt_enc
>> 16 & 0x01))
887 uint32_t ar
= prng_successor(ntx
, 64);
889 (oddparity8(ar
>> 8 & 0xff) ^ (ar
& 0x01) ^ ((ar_enc_par
>> 5) & 0x01) ^ (ar_enc
& 0x01)) ||
890 (oddparity8(ar
>> 16 & 0xff) ^ (ar
>> 8 & 0x01) ^ ((ar_enc_par
>> 6) & 0x01) ^ (ar_enc
>> 8 & 0x01)) ||
891 (oddparity8(ar
>> 24 & 0xff) ^ (ar
>> 16 & 0x01) ^ ((ar_enc_par
>> 7) & 0x01) ^ (ar_enc
>> 16 & 0x01))
895 uint32_t at
= prng_successor(ntx
, 96);
897 (oddparity8(ar
& 0xff) ^ (at
>> 24 & 0x01) ^ ((ar_enc_par
>> 4) & 0x01) ^ (at_enc
>> 24 & 0x01)) ||
898 (oddparity8(at
>> 8 & 0xff) ^ (at
& 0x01) ^ ((at_enc_par
>> 5) & 0x01) ^ (at_enc
& 0x01)) ||
899 (oddparity8(at
>> 16 & 0xff) ^ (at
>> 8 & 0x01) ^ ((at_enc_par
>> 6) & 0x01) ^ (at_enc
>> 8 & 0x01)) ||
900 (oddparity8(at
>> 24 & 0xff) ^ (at
>> 16 & 0x01) ^ ((at_enc_par
>> 7) & 0x01) ^ (at_enc
>> 16 & 0x01))
908 int mfTraceDecode(uint8_t *data_src
, int len
, uint8_t parity
, bool wantSaveToEmlFile
) {
911 if (traceState
== TRACE_ERROR
) return 1;
913 traceState
= TRACE_ERROR
;
917 memcpy(data
, data_src
, len
);
918 if ((traceCrypto1
) && ((traceState
== TRACE_IDLE
) || (traceState
> TRACE_AUTH_OK
))) {
919 mf_crypto1_decrypt(traceCrypto1
, data
, len
, 0);
921 oddparitybuf(data
, len
, parity
);
922 PrintAndLog("dec> %s [%s]", sprint_hex(data
, len
), printBitsPar(parity
, len
));
923 AddLogHex(logHexFileName
, "dec> ", data
, len
);
926 switch (traceState
) {
928 // check packet crc16!
929 if ((len
>= 4) && (!CheckCrc14443(CRC_14443_A
, data
, len
))) {
930 PrintAndLog("dec> CRC ERROR!!!");
931 AddLogLine(logHexFileName
, "dec> ", "CRC ERROR!!!");
932 traceState
= TRACE_ERROR
; // do not decrypt the next commands
937 if ((len
==4) && ((data
[0] == 0x60) || (data
[0] == 0x61))) {
938 traceState
= TRACE_AUTH1
;
939 traceCurBlock
= data
[1];
940 traceCurKey
= data
[0] == 60 ? 1:0;
945 if ((len
==4) && ((data
[0] == 0x30))) {
946 traceState
= TRACE_READ_DATA
;
947 traceCurBlock
= data
[1];
952 if ((len
==4) && ((data
[0] == 0xA0))) {
953 traceState
= TRACE_WRITE_OK
;
954 traceCurBlock
= data
[1];
959 if ((len
==4) && ((data
[0] == 0x50) && (data
[1] == 0x00))) {
960 traceState
= TRACE_ERROR
; // do not decrypt the next commands
967 case TRACE_READ_DATA
:
969 traceState
= TRACE_IDLE
;
971 if (isBlockTrailer(traceCurBlock
)) {
972 memcpy(traceCard
+ traceCurBlock
* 16 + 6, data
+ 6, 4);
974 memcpy(traceCard
+ traceCurBlock
* 16, data
, 16);
976 if (wantSaveToEmlFile
) saveTraceCard();
979 traceState
= TRACE_ERROR
;
985 if ((len
== 1) && (data
[0] == 0x0a)) {
986 traceState
= TRACE_WRITE_DATA
;
990 traceState
= TRACE_ERROR
;
995 case TRACE_WRITE_DATA
:
997 traceState
= TRACE_IDLE
;
999 memcpy(traceCard
+ traceCurBlock
* 16, data
, 16);
1000 if (wantSaveToEmlFile
) saveTraceCard();
1003 traceState
= TRACE_ERROR
;
1010 traceState
= TRACE_AUTH2
;
1011 if (!traceCrypto1
) {
1012 nt
= bytes_to_num(data
, 4);
1014 nt_enc
= bytes_to_num(data
, 4);
1015 nt_enc_par
= parity
;
1019 traceState
= TRACE_ERROR
;
1026 traceState
= TRACE_AUTH_OK
;
1028 nr_enc
= bytes_to_num(data
, 4);
1029 ar_enc
= bytes_to_num(data
+ 4, 4);
1030 ar_enc_par
= parity
<< 4;
1033 traceState
= TRACE_ERROR
;
1040 traceState
= TRACE_IDLE
;
1042 at_enc
= bytes_to_num(data
, 4);
1043 at_enc_par
= parity
;
1044 if (!traceCrypto1
) {
1047 ks2
= ar_enc
^ prng_successor(nt
, 64);
1048 ks3
= at_enc
^ prng_successor(nt
, 96);
1049 revstate
= lfsr_recovery64(ks2
, ks3
);
1050 lfsr_rollback_word(revstate
, 0, 0);
1051 lfsr_rollback_word(revstate
, 0, 0);
1052 lfsr_rollback_word(revstate
, nr_enc
, 1);
1053 lfsr_rollback_word(revstate
, uid
^ nt
, 0);
1055 crypto1_get_lfsr(revstate
, &lfsr
);
1056 crypto1_destroy(revstate
);
1058 printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n",
1059 (unsigned int)((lfsr
& 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr
& 0xFFFFFFFF),
1060 validate_prng_nonce(nt
) ? "WEAK": "HARDEND",
1063 AddLogUint64(logHexFileName
, "key> ", lfsr
);
1065 if (validate_prng_nonce(nt
)) {
1066 struct Crypto1State
*pcs
;
1067 pcs
= crypto1_create(ui64Key
);
1068 uint32_t nt1
= crypto1_word(pcs
, nt_enc
^ uid
, 1) ^ nt_enc
;
1069 uint32_t ar
= prng_successor(nt1
, 64);
1070 uint32_t at
= prng_successor(nt1
, 96);
1071 printf("key> nested auth uid: %08x nt: %08x nt_parity: %s ar: %08x at: %08x\n", uid
, nt1
, printBitsPar(&nt_enc_par
, 4), ar
, at
);
1072 uint32_t nr1
= crypto1_word(pcs
, nr_enc
, 1) ^ nr_enc
;
1073 uint32_t ar1
= crypto1_word(pcs
, 0, 0) ^ ar_enc
;
1074 uint32_t at1
= crypto1_word(pcs
, 0, 0) ^ at_enc
;
1075 crypto1_destroy(pcs
);
1076 printf("key> the same key test. nr1: %08x ar1: %08x at1: %08x \n", nr1
, ar1
, at1
);
1078 if (NTParityCheck(nt1
))
1079 printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key
& 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key
& 0xFFFFFFFF));
1081 printf("key> the same key test. check nt parity error.\n");
1083 uint32_t ntc
= prng_successor(nt
, 90);
1086 for (int i
= 0; i
< 16383; i
++) {
1087 ntc
= prng_successor(ntc
, 1);
1088 if (NTParityCheck(ntc
)){
1095 printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx
, nonce_distance(nt
, ntx
), ntcnt
);
1097 printf("key> don't have any nt candidate( \n");
1100 ks2
= ar_enc
^ prng_successor(ntx
, 64);
1101 ks3
= at_enc
^ prng_successor(ntx
, 96);
1104 revstate
= lfsr_recovery64(ks2
, ks3
);
1105 lfsr_rollback_word(revstate
, 0, 0);
1106 lfsr_rollback_word(revstate
, 0, 0);
1107 lfsr_rollback_word(revstate
, nr_enc
, 1);
1108 lfsr_rollback_word(revstate
, uid
^ nt
, 0);
1110 crypto1_get_lfsr(revstate
, &lfsr
);
1111 crypto1_destroy(revstate
);
1113 printf("key> probable key:%x%x ks2:%08x ks3:%08x\n",
1114 (unsigned int)((lfsr
& 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr
& 0xFFFFFFFF),
1117 AddLogUint64(logHexFileName
, "key> ", lfsr
);
1119 printf("key> hardnested not implemented!\n");
1121 crypto1_destroy(traceCrypto1
);
1124 traceState
= TRACE_ERROR
;
1128 int blockShift
= ((traceCurBlock
& 0xFC) + 3) * 16;
1129 if (isBlockEmpty((traceCurBlock
& 0xFC) + 3)) memcpy(traceCard
+ blockShift
+ 6, trailerAccessBytes
, 4);
1132 num_to_bytes(lfsr
, 6, traceCard
+ blockShift
+ 10);
1134 num_to_bytes(lfsr
, 6, traceCard
+ blockShift
);
1136 if (wantSaveToEmlFile
) saveTraceCard();
1139 crypto1_destroy(traceCrypto1
);
1142 // set cryptosystem state
1143 traceCrypto1
= lfsr_recovery64(ks2
, ks3
);
1146 traceState
= TRACE_ERROR
;
1152 traceState
= TRACE_ERROR
;
1161 int tryDecryptWord(uint32_t nt
, uint32_t ar_enc
, uint32_t at_enc
, uint8_t *data
, int len
){
1163 uint32_t nt; // tag challenge
1164 uint32_t ar_enc; // encrypted reader response
1165 uint32_t at_enc; // encrypted tag response
1168 crypto1_destroy(traceCrypto1
);
1170 ks2
= ar_enc
^ prng_successor(nt
, 64);
1171 ks3
= at_enc
^ prng_successor(nt
, 96);
1172 traceCrypto1
= lfsr_recovery64(ks2
, ks3
);
1174 mf_crypto1_decrypt(traceCrypto1
, data
, len
, 0);
1176 PrintAndLog("Decrypted data: [%s]", sprint_hex(data
,len
) );
1177 crypto1_destroy(traceCrypto1
);
1181 /** validate_prng_nonce
1182 * Determine if nonce is deterministic. ie: Suspectable to Darkside attack.
1185 * false = hardend prng
1187 bool validate_prng_nonce(uint32_t nonce
) {
1191 dist
= malloc(2 << 16);
1196 for (x
= i
= 1; i
; ++i
) {
1197 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
1198 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
1201 uint32_t res
= (65535 - dist
[nonce
>> 16] + dist
[nonce
& 0xffff]) % 65535;
1208 * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce.
1209 * the tag nonce is check to see if it has a predictable PRNG.
1211 * TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
1212 * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
1214 int DetectClassicPrng(void){
1216 UsbCommand resp
, respA
;
1217 uint8_t cmd
[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA
1218 uint32_t flags
= ISO14A_CONNECT
| ISO14A_RAW
| ISO14A_APPEND_CRC
| ISO14A_NO_RATS
;
1220 UsbCommand c
= {CMD_READER_ISO_14443a
, {flags
, sizeof(cmd
), 0}};
1221 memcpy(c
.d
.asBytes
, cmd
, sizeof(cmd
));
1223 clearCommandBuffer();
1225 if (!WaitForResponseTimeout(CMD_NACK
, &resp
, 2000)) {
1226 PrintAndLog("PRNG UID: Reply timeout.");
1230 // if select tag failed.
1231 if (resp
.arg
[0] == 0) {
1232 PrintAndLog("PRNG error: selecting tag failed, can't detect prng.");
1236 if (!WaitForResponseTimeout(CMD_ACK
, &respA
, 5000)) {
1237 PrintAndLog("PRNG data: Reply timeout.");
1242 if (respA
.arg
[0] != 4) {
1243 PrintAndLog("PRNG data error: Wrong length: %d", respA
.arg
[0]);
1247 uint32_t nonce
= bytes_to_num(respA
.d
.asBytes
, respA
.arg
[0]);
1248 return validate_prng_nonce(nonce
);