3 import java
.nio
.ByteBuffer
;
5 /** simple linear regression */
6 public class regress_simple
{
9 System
.loadLibrary("a");
13 static final native void clinit();
15 final native void init(double coef
, double bias
);
18 * construct a new {@link regress_simple} object
20 * @param coef regression coefficient
21 * @param bias intercept
23 public regress_simple(double coef
, double bias
) {
28 * get regression coefficient for simple linear regression
30 * @return regression coefficient
32 public final native double coef();
35 * set regression coefficient for simple linear regression
37 * @param coef regression coefficient
38 * @return {@link regress_simple}
40 public final native regress_simple
set_coef(double coef
);
43 * get intercept for simple linear regression
47 public final native double bias();
50 * set intercept for simple linear regression
52 * @param bias intercept
53 * @return {@link regress_simple}
55 public final native regress_simple
set_bias(double bias
);
58 * calculate predicted value for simple linear regression
60 * @param val independent variable
61 * @return predicted value
63 public final native double eval(double val
);
66 * calculate predicted value for simple linear regression
68 * @param val dependent variable
69 * @return predicted value
71 public final native double evar(double val
);
74 * calculate predicted value for simple linear regression
76 * @param x predictor data, specified as a numeric matrix
77 * @param y response data, specified as a numeric vector
78 * @param x_mean mean of predictor data
79 * @param y_mean mean of response data
80 * @return {@link regress_simple}
82 public final native regress_simple
ols_(double[] x
, double[] y
, double x_mean
, double y_mean
);
85 * calculate predicted value for simple linear regression
87 * @param x predictor data, specified as a numeric matrix
88 * @param y response data, specified as a numeric vector
89 * @param x_mean mean of predictor data
90 * @return {@link regress_simple}
92 public final native regress_simple
olsx(double[] x
, double[] y
, double x_mean
);
95 * calculate predicted value for simple linear regression
97 * @param x predictor data, specified as a numeric matrix
98 * @param y response data, specified as a numeric vector
99 * @param y_mean mean of response data
100 * @return {@link regress_simple}
102 public final native regress_simple
olsy(double[] x
, double[] y
, double y_mean
);
105 * calculate predicted value for simple linear regression
107 * @param x predictor data, specified as a numeric matrix
108 * @param y response data, specified as a numeric vector
109 * @return {@link regress_simple}
111 public final native regress_simple
ols(double[] x
, double[] y
);
114 * zeroing for simple linear regression
116 * @return {@link regress_simple}
118 public final native regress_simple
zero();