fix doc matrix to vector for regress_simple
[liba.git] / tests / regress_simple.rs
blob12dc64b3cabeae6207d1ae69a1116cdb089ba6be
1 #[test]
2 fn regress_simple() {
3     let mut regress = liba::regress_simple::new(0.0, 0.0);
4     let x = [0.0, 2.0, 4.0, 6.0, 8.0];
5     let y = [1.0, 2.0, 3.0, 4.0, 5.0];
6     let x_mean = liba::float_mean(&x);
7     let y_mean = liba::float_mean(&y);
8     regress.ols_(&x, &y, x_mean, y_mean);
9     std::println!("y={}x+{}", regress.coef, regress.bias);
10     for i in 0..x.len() {
11         std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));
12     }
13     regress.olsx(&x, &y, x_mean);
14     std::println!("y={}x+{}", regress.coef, regress.bias);
15     for i in 0..x.len() {
16         std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));
17     }
18     regress.olsy(&x, &y, y_mean);
19     std::println!("y={}x+{}", regress.coef, regress.bias);
20     for i in 0..x.len() {
21         std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));
22     }
23     regress.ols(&x, &y);
24     std::println!("y={}x+{}", regress.coef, regress.bias);
25     for i in 0..x.len() {
26         std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));
27     }
28     regress.zero();