3 let mut regress = liba::regress_simple::new(0.0, 0.0);
4 let x = [0.0, 2.0, 4.0, 6.0, 8.0];
5 let y = [1.0, 2.0, 3.0, 4.0, 5.0];
6 let x_mean = liba::float_mean(&x);
7 let y_mean = liba::float_mean(&y);
8 regress.ols_(&x, &y, x_mean, y_mean);
9 std::println!("y={}x+{}", regress.coef, regress.bias);
11 std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));
13 regress.olsx(&x, &y, x_mean);
14 std::println!("y={}x+{}", regress.coef, regress.bias);
16 std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));
18 regress.olsy(&x, &y, y_mean);
19 std::println!("y={}x+{}", regress.coef, regress.bias);
21 std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));
24 std::println!("y={}x+{}", regress.coef, regress.bias);
26 std::println!("{},{}", regress.evar(y[i]), regress.eval(x[i]));