support for installing liba.pyi during pip install
[liba.git] / python / test / 3rd / pid.py
bloba222c21b29c33e2308e49f9e6f6262426ff12dbf
1 #!/usr/bin/env python
2 import os, sys
4 base = os.path.dirname(__file__)
5 path = os.path.dirname(base)
6 path = os.path.dirname(path)
7 sys.path.insert(0, path)
8 try:
9 import numpy as np
10 import matplotlib.pyplot as plt
11 except Exception as e:
12 print(e)
13 exit()
15 Ts = 0.001
16 try:
17 import control.matlab as ct
19 sysc = ct.tf(133, [1, 25, 0])
20 sysd = ct.c2d(sysc, Ts)
21 print(sysc, sysd)
23 [[num]], [[den]] = ct.tfdata(sysd)
24 except ModuleNotFoundError:
25 num = [6.59492796e-05, 6.54019884e-05]
26 den = [1.0, -1.97530991, 0.97530991]
27 except Exception as e:
28 print(e)
29 exit()
30 import liba # type: ignore
32 MIN = -10
33 MAX = +10
35 kp = 10.0
36 ki = 0.01 * Ts
37 kd = 0.24 / Ts
39 tf = liba.tf(num, den[1:])
40 pid = liba.pid().kpid(kp, ki, kd)
41 pid.outmax = MAX
42 pid.outmin = MIN
44 r = 1.0
45 data = np.arange(0, 0.2, Ts)
46 setpoint = [r] * len(data)
48 title = "Proportional Integral Derivative Position"
50 y = 0.0
51 tf.zero()
52 error1 = []
53 feedback1 = []
54 pid.zero()
55 for i in data:
56 u = pid.pos(r, y)
57 y = tf(u)
58 feedback1.append(y)
59 error1.append(r - y)
61 y = 0.0
62 tf.zero()
63 error2 = []
64 feedback2 = []
65 e = [0.0, 0.0, 0.0]
66 x = [0.0, 0.0, 0.0]
67 for i in data:
68 e = np.roll(e, 1)
69 e[0] = r - y
70 x[0] = e[0]
71 x[1] += ki * e[0]
72 x[2] = e[0] - e[1]
73 u = kp * x[0] + x[1] + kd * x[2]
74 if u < MIN:
75 u = MIN
76 elif u > MAX:
77 u = MAX
78 y = tf(u)
79 feedback2.append(y)
80 error2.append(r - y)
82 plt.figure(title)
83 plt.subplot(211)
84 plt.title(title)
85 plt.plot(data, setpoint, "r-", data, feedback1, "b-", data, feedback2, "g-")
86 plt.ylabel("r - y")
87 plt.grid(True)
88 plt.subplot(212)
89 plt.plot(data, error1, "b-", data, error2, "g-")
90 plt.ylabel("error")
91 plt.xlabel("time(s)")
92 plt.grid(True)
93 plt.savefig(os.path.join(base, "pid_pos.png"))
95 title = "Proportional Integral Derivative Increment"
97 y = 0.0
98 tf.zero()
99 error1 = []
100 feedback1 = []
101 pid.zero()
102 for i in data:
103 u = pid.inc(r, y)
104 y = tf(u)
105 feedback1.append(y)
106 error1.append(r - y)
108 u = 0.0
109 y = 0.0
110 tf.zero()
111 error2 = []
112 feedback2 = []
113 e = [0.0, 0.0, 0.0]
114 x = [0.0, 0.0, 0.0]
115 for i in data:
116 e = np.roll(e, 1)
117 e[0] = r - y
118 x[0] = e[0] - e[1]
119 x[1] = e[0]
120 x[2] = e[0] - e[1] * 2 + e[2]
121 u += kp * x[0] + ki * x[1] + kd * x[2]
122 y = u
123 if y < MIN:
124 y = MIN
125 elif y > MAX:
126 y = MAX
127 y = tf(y)
128 feedback2.append(y)
129 error2.append(r - y)
131 plt.figure(title)
132 plt.subplot(211)
133 plt.title(title)
134 plt.plot(data, setpoint, "r-", data, feedback1, "b-", data, feedback2, "g-")
135 plt.ylabel("r - y")
136 plt.grid(True)
137 plt.subplot(212)
138 plt.plot(data, error1, "b-", data, error2, "g-")
139 plt.ylabel("error")
140 plt.xlabel("time(s)")
141 plt.grid(True)
142 plt.savefig(os.path.join(base, "pid_inc.png"))
144 plt.show()