aarch64: Add assembly support for -fsanitize=hwaddress tagged globals.
[libav.git] / libavcodec / cinepakenc.c
blobc323bde30f1b3fa8c56faa3e520306bcc2b27cf6
1 /*
2 * Cinepak encoder (c) 2011 Tomas Härdin
3 * http://titan.codemill.se/~tomhar/cinepakenc.patch
5 * Fixes and improvements, vintage decoders compatibility
6 * (c) 2013, 2014 Rl, Aetey Global Technologies AB
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
28 * TODO:
29 * - optimize: color space conversion (move conversion to libswscale), ...
30 * MAYBE:
31 * - "optimally" split the frame into several non-regular areas
32 * using a separate codebook pair for each area and approximating
33 * the area by several rectangular strips (generally not full width ones)
34 * (use quadtree splitting? a simple fixed-granularity grid?)
37 #include <string.h>
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/internal.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/lfg.h"
44 #include "libavutil/opt.h"
46 #include "avcodec.h"
47 #include "elbg.h"
48 #include "internal.h"
50 #define CVID_HEADER_SIZE 10
51 #define STRIP_HEADER_SIZE 12
52 #define CHUNK_HEADER_SIZE 4
54 #define MB_SIZE 4 //4x4 MBs
55 #define MB_AREA (MB_SIZE * MB_SIZE)
57 #define VECTOR_MAX 6 // six or four entries per vector depending on format
58 #define CODEBOOK_MAX 256 // size of a codebook
60 #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
61 #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious)
62 // MAX_STRIPS limits the maximum quality you can reach
63 // when you want high quality on high resolutions,
64 // MIN_STRIPS limits the minimum efficiently encodable bit rate
65 // on low resolutions
66 // the numbers are only used for brute force optimization for the first frame,
67 // for the following frames they are adaptively readjusted
68 // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
69 // of strips, currently 32
71 typedef enum CinepakMode {
72 MODE_V1_ONLY = 0,
73 MODE_V1_V4,
74 MODE_MC,
76 MODE_COUNT,
77 } CinepakMode;
79 typedef enum mb_encoding {
80 ENC_V1,
81 ENC_V4,
82 ENC_SKIP,
84 ENC_UNCERTAIN
85 } mb_encoding;
87 typedef struct mb_info {
88 int v1_vector; // index into v1 codebook
89 int v1_error; // error when using V1 encoding
90 int v4_vector[4]; // indices into v4 codebook
91 int v4_error; // error when using V4 encoding
92 int skip_error; // error when block is skipped (aka copied from last frame)
93 mb_encoding best_encoding; // last result from calculate_mode_score()
94 } mb_info;
96 typedef struct strip_info {
97 int v1_codebook[CODEBOOK_MAX * VECTOR_MAX];
98 int v4_codebook[CODEBOOK_MAX * VECTOR_MAX];
99 int v1_size;
100 int v4_size;
101 CinepakMode mode;
102 } strip_info;
104 typedef struct CinepakEncContext {
105 AVCodecContext *avctx;
106 unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
107 AVFrame *last_frame;
108 AVFrame *best_frame;
109 AVFrame *scratch_frame;
110 AVFrame *input_frame;
111 enum AVPixelFormat pix_fmt;
112 int w, h;
113 int frame_buf_size;
114 int curframe, keyint;
115 AVLFG randctx;
116 uint64_t lambda;
117 int *codebook_input;
118 int *codebook_closest;
119 mb_info *mb; // MB RD state
120 int min_strips; // the current limit
121 int max_strips; // the current limit
122 // options
123 int max_extra_cb_iterations;
124 int skip_empty_cb;
125 int min_min_strips;
126 int max_max_strips;
127 int strip_number_delta_range;
128 } CinepakEncContext;
130 #define OFFSET(x) offsetof(CinepakEncContext, x)
131 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
132 static const AVOption options[] = {
133 { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
134 OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE },
135 { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder",
136 OFFSET(skip_empty_cb), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
137 { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
138 OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE },
139 { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
140 OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE },
141 { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
142 OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE },
143 { NULL },
146 static const AVClass cinepak_class = {
147 .class_name = "cinepak",
148 .item_name = av_default_item_name,
149 .option = options,
150 .version = LIBAVUTIL_VERSION_INT,
153 static av_cold int cinepak_encode_init(AVCodecContext *avctx)
155 CinepakEncContext *s = avctx->priv_data;
156 int x, mb_count, strip_buf_size, frame_buf_size;
158 if (avctx->width & 3 || avctx->height & 3) {
159 av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
160 avctx->width, avctx->height);
161 return AVERROR(EINVAL);
164 if (s->min_min_strips > s->max_max_strips) {
165 av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
166 s->min_min_strips, s->max_max_strips);
167 return AVERROR(EINVAL);
170 if (!(s->last_frame = av_frame_alloc()))
171 return AVERROR(ENOMEM);
172 if (!(s->best_frame = av_frame_alloc()))
173 goto enomem;
174 if (!(s->scratch_frame = av_frame_alloc()))
175 goto enomem;
176 if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
177 if (!(s->input_frame = av_frame_alloc()))
178 goto enomem;
180 if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
181 goto enomem;
183 if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
184 goto enomem;
186 for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
187 if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
188 goto enomem;
190 mb_count = avctx->width * avctx->height / MB_AREA;
192 // the largest possible chunk is 0x31 with all MBs encoded in V4 mode
193 // and full codebooks being replaced in INTER mode,
194 // which is 34 bits per MB
195 // and 2*256 extra flag bits per strip
196 strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
198 frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
200 if (!(s->strip_buf = av_malloc(strip_buf_size)))
201 goto enomem;
203 if (!(s->frame_buf = av_malloc(frame_buf_size)))
204 goto enomem;
206 if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
207 goto enomem;
209 av_lfg_init(&s->randctx, 1);
210 s->avctx = avctx;
211 s->w = avctx->width;
212 s->h = avctx->height;
213 s->frame_buf_size = frame_buf_size;
214 s->curframe = 0;
215 s->keyint = avctx->keyint_min;
216 s->pix_fmt = avctx->pix_fmt;
218 // set up AVFrames
219 s->last_frame->data[0] = s->pict_bufs[0];
220 s->last_frame->linesize[0] = s->w;
221 s->best_frame->data[0] = s->pict_bufs[1];
222 s->best_frame->linesize[0] = s->w;
223 s->scratch_frame->data[0] = s->pict_bufs[2];
224 s->scratch_frame->linesize[0] = s->w;
226 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
227 s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h;
228 s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2);
229 s->last_frame->linesize[1] =
230 s->last_frame->linesize[2] = s->w >> 1;
232 s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h;
233 s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2);
234 s->best_frame->linesize[1] =
235 s->best_frame->linesize[2] = s->w >> 1;
237 s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h;
238 s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
239 s->scratch_frame->linesize[1] =
240 s->scratch_frame->linesize[2] = s->w >> 1;
242 s->input_frame->data[0] = s->pict_bufs[3];
243 s->input_frame->linesize[0] = s->w;
244 s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h;
245 s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2);
246 s->input_frame->linesize[1] =
247 s->input_frame->linesize[2] = s->w >> 1;
250 s->min_strips = s->min_min_strips;
251 s->max_strips = s->max_max_strips;
253 return 0;
255 enomem:
256 av_frame_free(&s->last_frame);
257 av_frame_free(&s->best_frame);
258 av_frame_free(&s->scratch_frame);
259 if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
260 av_frame_free(&s->input_frame);
261 av_freep(&s->codebook_input);
262 av_freep(&s->codebook_closest);
263 av_freep(&s->strip_buf);
264 av_freep(&s->frame_buf);
265 av_freep(&s->mb);
267 for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
268 av_freep(&s->pict_bufs[x]);
270 return AVERROR(ENOMEM);
273 static int64_t calculate_mode_score(CinepakEncContext *s, int h,
274 strip_info *info, int report,
275 int *training_set_v1_shrunk,
276 int *training_set_v4_shrunk)
278 // score = FF_LAMBDA_SCALE * error + lambda * bits
279 int x;
280 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
281 int mb_count = s->w * h / MB_AREA;
282 mb_info *mb;
283 int64_t score1, score2, score3;
284 int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
285 (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
286 CHUNK_HEADER_SIZE) << 3;
288 switch (info->mode) {
289 case MODE_V1_ONLY:
290 // one byte per MB
291 ret += s->lambda * 8 * mb_count;
293 // while calculating we assume all blocks are ENC_V1
294 for (x = 0; x < mb_count; x++) {
295 mb = &s->mb[x];
296 ret += FF_LAMBDA_SCALE * mb->v1_error;
297 // this function is never called for report in MODE_V1_ONLY
298 // if (!report)
299 mb->best_encoding = ENC_V1;
302 break;
303 case MODE_V1_V4:
304 // 9 or 33 bits per MB
305 if (report) {
306 // no moves between the corresponding training sets are allowed
307 *training_set_v1_shrunk = *training_set_v4_shrunk = 0;
308 for (x = 0; x < mb_count; x++) {
309 int mberr;
310 mb = &s->mb[x];
311 if (mb->best_encoding == ENC_V1)
312 score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
313 else
314 score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
315 ret += score1;
317 } else { // find best mode per block
318 for (x = 0; x < mb_count; x++) {
319 mb = &s->mb[x];
320 score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
321 score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
323 if (score1 <= score2) {
324 ret += score1;
325 mb->best_encoding = ENC_V1;
326 } else {
327 ret += score2;
328 mb->best_encoding = ENC_V4;
333 break;
334 case MODE_MC:
335 // 1, 10 or 34 bits per MB
336 if (report) {
337 int v1_shrunk = 0, v4_shrunk = 0;
338 for (x = 0; x < mb_count; x++) {
339 mb = &s->mb[x];
340 // it is OK to move blocks to ENC_SKIP here
341 // but not to any codebook encoding!
342 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
343 if (mb->best_encoding == ENC_SKIP) {
344 ret += score1;
345 } else if (mb->best_encoding == ENC_V1) {
346 if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
347 mb->best_encoding = ENC_SKIP;
348 ++v1_shrunk;
349 ret += score1;
350 } else {
351 ret += score2;
353 } else {
354 if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
355 mb->best_encoding = ENC_SKIP;
356 ++v4_shrunk;
357 ret += score1;
358 } else {
359 ret += score3;
363 *training_set_v1_shrunk = v1_shrunk;
364 *training_set_v4_shrunk = v4_shrunk;
365 } else { // find best mode per block
366 for (x = 0; x < mb_count; x++) {
367 mb = &s->mb[x];
368 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
369 score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
370 score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
372 if (score1 <= score2 && score1 <= score3) {
373 ret += score1;
374 mb->best_encoding = ENC_SKIP;
375 } else if (score2 <= score3) {
376 ret += score2;
377 mb->best_encoding = ENC_V1;
378 } else {
379 ret += score3;
380 mb->best_encoding = ENC_V4;
385 break;
388 return ret;
391 static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
393 buf[0] = chunk_type;
394 AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
395 return CHUNK_HEADER_SIZE;
398 static int encode_codebook(CinepakEncContext *s, int *codebook, int size,
399 int chunk_type_yuv, int chunk_type_gray,
400 unsigned char *buf)
402 int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
403 int incremental_codebook_replacement_mode = 0; // hardcoded here,
404 // the compiler should notice that this is a constant -- rl
406 ret = write_chunk_header(buf,
407 s->pix_fmt == AV_PIX_FMT_RGB24 ?
408 chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) :
409 chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
410 entry_size * size +
411 (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
413 // we do codebook encoding according to the "intra" mode
414 // but we keep the "dead" code for reference in case we will want
415 // to use incremental codebook updates (which actually would give us
416 // "kind of" motion compensation, especially in 1 strip/frame case) -- rl
417 // (of course, the code will be not useful as-is)
418 if (incremental_codebook_replacement_mode) {
419 int flags = 0;
420 int flagsind;
421 for (x = 0; x < size; x++) {
422 if (flags == 0) {
423 flagsind = ret;
424 ret += 4;
425 flags = 0x80000000;
426 } else
427 flags = ((flags >> 1) | 0x80000000);
428 for (y = 0; y < entry_size; y++)
429 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
430 if ((flags & 0xffffffff) == 0xffffffff) {
431 AV_WB32(&buf[flagsind], flags);
432 flags = 0;
435 if (flags)
436 AV_WB32(&buf[flagsind], flags);
437 } else
438 for (x = 0; x < size; x++)
439 for (y = 0; y < entry_size; y++)
440 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
442 return ret;
445 // sets out to the sub picture starting at (x,y) in in
446 static void get_sub_picture(CinepakEncContext *s, int x, int y,
447 uint8_t * in_data[4], int in_linesize[4],
448 uint8_t *out_data[4], int out_linesize[4])
450 out_data[0] = in_data[0] + x + y * in_linesize[0];
451 out_linesize[0] = in_linesize[0];
453 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
454 out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
455 out_linesize[1] = in_linesize[1];
457 out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
458 out_linesize[2] = in_linesize[2];
462 // decodes the V1 vector in mb into the 4x4 MB pointed to by data
463 static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4],
464 int linesize[4], int v1_vector, strip_info *info)
466 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
468 data[0][0] =
469 data[0][1] =
470 data[0][ linesize[0]] =
471 data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
473 data[0][2] =
474 data[0][3] =
475 data[0][2 + linesize[0]] =
476 data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
478 data[0][ 2 * linesize[0]] =
479 data[0][1 + 2 * linesize[0]] =
480 data[0][ 3 * linesize[0]] =
481 data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
483 data[0][2 + 2 * linesize[0]] =
484 data[0][3 + 2 * linesize[0]] =
485 data[0][2 + 3 * linesize[0]] =
486 data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
488 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
489 data[1][0] =
490 data[1][1] =
491 data[1][ linesize[1]] =
492 data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
494 data[2][0] =
495 data[2][1] =
496 data[2][ linesize[2]] =
497 data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
501 // decodes the V4 vectors in mb into the 4x4 MB pointed to by data
502 static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4],
503 int linesize[4], int *v4_vector, strip_info *info)
505 int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
507 for (i = y = 0; y < 4; y += 2) {
508 for (x = 0; x < 4; x += 2, i++) {
509 data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
510 data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
511 data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
512 data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
514 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
515 data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
516 data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
522 static void copy_mb(CinepakEncContext *s,
523 uint8_t *a_data[4], int a_linesize[4],
524 uint8_t *b_data[4], int b_linesize[4])
526 int y, p;
528 for (y = 0; y < MB_SIZE; y++)
529 memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
530 MB_SIZE);
532 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
533 for (p = 1; p <= 2; p++)
534 for (y = 0; y < MB_SIZE / 2; y++)
535 memcpy(a_data[p] + y * a_linesize[p],
536 b_data[p] + y * b_linesize[p],
537 MB_SIZE / 2);
541 static int encode_mode(CinepakEncContext *s, int h,
542 uint8_t *scratch_data[4], int scratch_linesize[4],
543 uint8_t *last_data[4], int last_linesize[4],
544 strip_info *info, unsigned char *buf)
546 int x, y, z, flags, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
547 int needs_extra_bit, should_write_temp;
548 unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
549 mb_info *mb;
550 uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
551 int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
553 // encode codebooks
554 ////// MacOS vintage decoder compatibility dictates the presence of
555 ////// the codebook chunk even when the codebook is empty - pretty dumb...
556 ////// and also the certain order of the codebook chunks -- rl
557 if (info->v4_size || !s->skip_empty_cb)
558 ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
560 if (info->v1_size || !s->skip_empty_cb)
561 ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
563 // update scratch picture
564 for (z = y = 0; y < h; y += MB_SIZE)
565 for (x = 0; x < s->w; x += MB_SIZE, z++) {
566 mb = &s->mb[z];
568 get_sub_picture(s, x, y, scratch_data, scratch_linesize,
569 sub_scratch_data, sub_scratch_linesize);
571 if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
572 get_sub_picture(s, x, y, last_data, last_linesize,
573 sub_last_data, sub_last_linesize);
574 copy_mb(s, sub_scratch_data, sub_scratch_linesize,
575 sub_last_data, sub_last_linesize);
576 } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
577 decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
578 mb->v1_vector, info);
579 else
580 decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
581 mb->v4_vector, info);
584 switch (info->mode) {
585 case MODE_V1_ONLY:
586 ret += write_chunk_header(buf + ret, 0x32, mb_count);
588 for (x = 0; x < mb_count; x++)
589 buf[ret++] = s->mb[x].v1_vector;
591 break;
592 case MODE_V1_V4:
593 // remember header position
594 header_ofs = ret;
595 ret += CHUNK_HEADER_SIZE;
597 for (x = 0; x < mb_count; x += 32) {
598 flags = 0;
599 for (y = x; y < FFMIN(x + 32, mb_count); y++)
600 if (s->mb[y].best_encoding == ENC_V4)
601 flags |= 1 << (31 - y + x);
603 AV_WB32(&buf[ret], flags);
604 ret += 4;
606 for (y = x; y < FFMIN(x + 32, mb_count); y++) {
607 mb = &s->mb[y];
609 if (mb->best_encoding == ENC_V1)
610 buf[ret++] = mb->v1_vector;
611 else
612 for (z = 0; z < 4; z++)
613 buf[ret++] = mb->v4_vector[z];
617 write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
619 break;
620 case MODE_MC:
621 // remember header position
622 header_ofs = ret;
623 ret += CHUNK_HEADER_SIZE;
624 flags = bits = temp_size = 0;
626 for (x = 0; x < mb_count; x++) {
627 mb = &s->mb[x];
628 flags |= (mb->best_encoding != ENC_SKIP) << (31 - bits++);
629 needs_extra_bit = 0;
630 should_write_temp = 0;
632 if (mb->best_encoding != ENC_SKIP) {
633 if (bits < 32)
634 flags |= (mb->best_encoding == ENC_V4) << (31 - bits++);
635 else
636 needs_extra_bit = 1;
639 if (bits == 32) {
640 AV_WB32(&buf[ret], flags);
641 ret += 4;
642 flags = bits = 0;
644 if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
645 memcpy(&buf[ret], temp, temp_size);
646 ret += temp_size;
647 temp_size = 0;
648 } else
649 should_write_temp = 1;
652 if (needs_extra_bit) {
653 flags = (mb->best_encoding == ENC_V4) << 31;
654 bits = 1;
657 if (mb->best_encoding == ENC_V1)
658 temp[temp_size++] = mb->v1_vector;
659 else if (mb->best_encoding == ENC_V4)
660 for (z = 0; z < 4; z++)
661 temp[temp_size++] = mb->v4_vector[z];
663 if (should_write_temp) {
664 memcpy(&buf[ret], temp, temp_size);
665 ret += temp_size;
666 temp_size = 0;
670 if (bits > 0) {
671 AV_WB32(&buf[ret], flags);
672 ret += 4;
673 memcpy(&buf[ret], temp, temp_size);
674 ret += temp_size;
677 write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
679 break;
682 return ret;
685 // computes distortion of 4x4 MB in b compared to a
686 static int compute_mb_distortion(CinepakEncContext *s,
687 uint8_t *a_data[4], int a_linesize[4],
688 uint8_t *b_data[4], int b_linesize[4])
690 int x, y, p, d, ret = 0;
692 for (y = 0; y < MB_SIZE; y++)
693 for (x = 0; x < MB_SIZE; x++) {
694 d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
695 ret += d * d;
698 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
699 for (p = 1; p <= 2; p++) {
700 for (y = 0; y < MB_SIZE / 2; y++)
701 for (x = 0; x < MB_SIZE / 2; x++) {
702 d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
703 ret += d * d;
708 return ret;
711 // return the possibly adjusted size of the codebook
712 #define CERTAIN(x) ((x) != ENC_UNCERTAIN)
713 static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
714 int linesize[4], int v1mode, strip_info *info,
715 mb_encoding encoding)
717 int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
718 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
719 int *codebook = v1mode ? info->v1_codebook : info->v4_codebook;
720 int size = v1mode ? info->v1_size : info->v4_size;
721 int64_t total_error = 0;
722 uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
723 uint8_t *sub_data[4], *vq_data[4];
724 int sub_linesize[4], vq_linesize[4];
726 for (mbn = i = y = 0; y < h; y += MB_SIZE) {
727 for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
728 int *base;
730 if (CERTAIN(encoding)) {
731 // use for the training only the blocks known to be to be encoded [sic:-]
732 if (s->mb[mbn].best_encoding != encoding)
733 continue;
736 base = s->codebook_input + i * entry_size;
737 if (v1mode) {
738 // subsample
739 for (j = y2 = 0; y2 < entry_size; y2 += 2)
740 for (x2 = 0; x2 < 4; x2 += 2, j++) {
741 plane = y2 < 4 ? 0 : 1 + (x2 >> 1);
742 shift = y2 < 4 ? 0 : 1;
743 x3 = shift ? 0 : x2;
744 y3 = shift ? 0 : y2;
745 base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] +
746 data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] +
747 data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] +
748 data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
750 } else {
751 // copy
752 for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
753 for (x2 = 0; x2 < MB_SIZE; x2 += 2)
754 for (k = 0; k < entry_size; k++, j++) {
755 plane = k >= 4 ? k - 3 : 0;
757 if (k >= 4) {
758 x3 = (x + x2) >> 1;
759 y3 = (y + y2) >> 1;
760 } else {
761 x3 = x + x2 + (k & 1);
762 y3 = y + y2 + (k >> 1);
765 base[j] = data[plane][x3 + y3 * linesize[plane]];
769 i += v1mode ? 1 : 4;
773 if (i == 0) // empty training set, nothing to do
774 return 0;
775 if (i < size)
776 size = i;
778 ff_init_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
779 ff_do_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
781 // set up vq_data, which contains a single MB
782 vq_data[0] = vq_pict_buf;
783 vq_linesize[0] = MB_SIZE;
784 vq_data[1] = &vq_pict_buf[MB_AREA];
785 vq_data[2] = vq_data[1] + (MB_AREA >> 2);
786 vq_linesize[1] =
787 vq_linesize[2] = MB_SIZE >> 1;
789 // copy indices
790 for (i = j = y = 0; y < h; y += MB_SIZE)
791 for (x = 0; x < s->w; x += MB_SIZE, j++) {
792 mb_info *mb = &s->mb[j];
793 // skip uninteresting blocks if we know their preferred encoding
794 if (CERTAIN(encoding) && mb->best_encoding != encoding)
795 continue;
797 // point sub_data to current MB
798 get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
800 if (v1mode) {
801 mb->v1_vector = s->codebook_closest[i];
803 // fill in vq_data with V1 data
804 decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
806 mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
807 vq_data, vq_linesize);
808 total_error += mb->v1_error;
809 } else {
810 for (k = 0; k < 4; k++)
811 mb->v4_vector[k] = s->codebook_closest[i + k];
813 // fill in vq_data with V4 data
814 decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
816 mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
817 vq_data, vq_linesize);
818 total_error += mb->v4_error;
820 i += v1mode ? 1 : 4;
822 // check that we did it right in the beginning of the function
823 av_assert0(i >= size); // training set is no smaller than the codebook
825 return size;
828 static void calculate_skip_errors(CinepakEncContext *s, int h,
829 uint8_t *last_data[4], int last_linesize[4],
830 uint8_t *data[4], int linesize[4],
831 strip_info *info)
833 int x, y, i;
834 uint8_t *sub_last_data [4], *sub_pict_data [4];
835 int sub_last_linesize[4], sub_pict_linesize[4];
837 for (i = y = 0; y < h; y += MB_SIZE)
838 for (x = 0; x < s->w; x += MB_SIZE, i++) {
839 get_sub_picture(s, x, y, last_data, last_linesize,
840 sub_last_data, sub_last_linesize);
841 get_sub_picture(s, x, y, data, linesize,
842 sub_pict_data, sub_pict_linesize);
844 s->mb[i].skip_error =
845 compute_mb_distortion(s,
846 sub_last_data, sub_last_linesize,
847 sub_pict_data, sub_pict_linesize);
851 static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
852 unsigned char *buf, int strip_size)
854 // actually we are exclusively using intra strip coding (how much can we win
855 // otherwise? how to choose which part of a codebook to update?),
856 // keyframes are different only because we disallow ENC_SKIP on them -- rl
857 // (besides, the logic here used to be inverted: )
858 // buf[0] = keyframe ? 0x11: 0x10;
859 buf[0] = keyframe ? 0x10 : 0x11;
860 AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
861 // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
862 AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
863 AV_WB16(&buf[6], 0);
864 // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
865 AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
866 AV_WB16(&buf[10], s->w);
869 static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
870 uint8_t *last_data[4], int last_linesize[4],
871 uint8_t *data[4], int linesize[4],
872 uint8_t *scratch_data[4], int scratch_linesize[4],
873 unsigned char *buf, int64_t *best_score)
875 int64_t score = 0;
876 int best_size = 0;
877 strip_info info;
878 // for codebook optimization:
879 int v1enough, v1_size, v4enough, v4_size;
880 int new_v1_size, new_v4_size;
881 int v1shrunk, v4shrunk;
883 if (!keyframe)
884 calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
885 &info);
887 // try some powers of 4 for the size of the codebooks
888 // constraint the v4 codebook to be no bigger than v1 one,
889 // (and no less than v1_size/4)
890 // thus making v1 preferable and possibly losing small details? should be ok
891 #define SMALLEST_CODEBOOK 1
892 for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
893 for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
894 CinepakMode mode;
895 // try all modes
896 for (mode = 0; mode < MODE_COUNT; mode++) {
897 // don't allow MODE_MC in intra frames
898 if (keyframe && mode == MODE_MC)
899 continue;
901 if (mode == MODE_V1_ONLY) {
902 info.v1_size = v1_size;
903 // the size may shrink even before optimizations if the input is short:
904 info.v1_size = quantize(s, h, data, linesize, 1,
905 &info, ENC_UNCERTAIN);
906 if (info.v1_size < v1_size)
907 // too few eligible blocks, no sense in trying bigger sizes
908 v1enough = 1;
910 info.v4_size = 0;
911 } else { // mode != MODE_V1_ONLY
912 // if v4 codebook is empty then only allow V1-only mode
913 if (!v4_size)
914 continue;
916 if (mode == MODE_V1_V4) {
917 info.v4_size = v4_size;
918 info.v4_size = quantize(s, h, data, linesize, 0,
919 &info, ENC_UNCERTAIN);
920 if (info.v4_size < v4_size)
921 // too few eligible blocks, no sense in trying bigger sizes
922 v4enough = 1;
926 info.mode = mode;
927 // choose the best encoding per block, based on current experience
928 score = calculate_mode_score(s, h, &info, 0,
929 &v1shrunk, &v4shrunk);
931 if (mode != MODE_V1_ONLY) {
932 int extra_iterations_limit = s->max_extra_cb_iterations;
933 // recompute the codebooks, omitting the extra blocks
934 // we assume we _may_ come here with more blocks to encode than before
935 info.v1_size = v1_size;
936 new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
937 if (new_v1_size < info.v1_size)
938 info.v1_size = new_v1_size;
939 // we assume we _may_ come here with more blocks to encode than before
940 info.v4_size = v4_size;
941 new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
942 if (new_v4_size < info.v4_size)
943 info.v4_size = new_v4_size;
944 // calculate the resulting score
945 // (do not move blocks to codebook encodings now, as some blocks may have
946 // got bigger errors despite a smaller training set - but we do not
947 // ever grow the training sets back)
948 for (;;) {
949 score = calculate_mode_score(s, h, &info, 1,
950 &v1shrunk, &v4shrunk);
951 // do we have a reason to reiterate? if so, have we reached the limit?
952 if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
953 break;
954 // recompute the codebooks, omitting the extra blocks
955 if (v1shrunk) {
956 info.v1_size = v1_size;
957 new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
958 if (new_v1_size < info.v1_size)
959 info.v1_size = new_v1_size;
961 if (v4shrunk) {
962 info.v4_size = v4_size;
963 new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
964 if (new_v4_size < info.v4_size)
965 info.v4_size = new_v4_size;
970 if (best_size == 0 || score < *best_score) {
971 *best_score = score;
972 best_size = encode_mode(s, h,
973 scratch_data, scratch_linesize,
974 last_data, last_linesize, &info,
975 s->strip_buf + STRIP_HEADER_SIZE);
977 write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
983 best_size += STRIP_HEADER_SIZE;
984 memcpy(buf, s->strip_buf, best_size);
986 return best_size;
989 static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
990 int num_strips, int data_size, int isakeyframe)
992 buf[0] = isakeyframe ? 0 : 1;
993 AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
994 AV_WB16(&buf[4], s->w);
995 AV_WB16(&buf[6], s->h);
996 AV_WB16(&buf[8], num_strips);
998 return CVID_HEADER_SIZE;
1001 static int rd_frame(CinepakEncContext *s, const AVFrame *frame,
1002 int isakeyframe, unsigned char *buf, int buf_size)
1004 int num_strips, strip, i, y, nexty, size, temp_size, best_size;
1005 uint8_t *last_data [4], *data [4], *scratch_data [4];
1006 int last_linesize[4], linesize[4], scratch_linesize[4];
1007 int64_t best_score = 0, score, score_temp;
1008 int best_nstrips;
1010 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
1011 int x;
1012 // build a copy of the given frame in the correct colorspace
1013 for (y = 0; y < s->h; y += 2)
1014 for (x = 0; x < s->w; x += 2) {
1015 uint8_t *ir[2];
1016 int32_t r, g, b, rr, gg, bb;
1017 ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
1018 ir[1] = ir[0] + frame->linesize[0];
1019 get_sub_picture(s, x, y,
1020 s->input_frame->data, s->input_frame->linesize,
1021 scratch_data, scratch_linesize);
1022 r = g = b = 0;
1023 for (i = 0; i < 4; ++i) {
1024 int i1, i2;
1025 i1 = (i & 1);
1026 i2 = (i >= 2);
1027 rr = ir[i2][i1 * 3 + 0];
1028 gg = ir[i2][i1 * 3 + 1];
1029 bb = ir[i2][i1 * 3 + 2];
1030 r += rr;
1031 g += gg;
1032 b += bb;
1033 // using fixed point arithmetic for portable repeatability, scaling by 2^23
1034 // "Y"
1035 // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
1036 rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
1037 if (rr < 0)
1038 rr = 0;
1039 else if (rr > 255)
1040 rr = 255;
1041 scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
1043 // let us scale down as late as possible
1044 // r /= 4; g /= 4; b /= 4;
1045 // "U"
1046 // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
1047 rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
1048 if (rr < -128)
1049 rr = -128;
1050 else if (rr > 127)
1051 rr = 127;
1052 scratch_data[1][0] = rr + 128; // quantize needs unsigned
1053 // "V"
1054 // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
1055 rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
1056 if (rr < -128)
1057 rr = -128;
1058 else if (rr > 127)
1059 rr = 127;
1060 scratch_data[2][0] = rr + 128; // quantize needs unsigned
1064 // would be nice but quite certainly incompatible with vintage players:
1065 // support encoding zero strips (meaning skip the whole frame)
1066 for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
1067 score = 0;
1068 size = 0;
1070 for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
1071 int strip_height;
1073 nexty = strip * s->h / num_strips; // <= s->h
1074 // make nexty the next multiple of 4 if not already there
1075 if (nexty & 3)
1076 nexty += 4 - (nexty & 3);
1078 strip_height = nexty - y;
1079 if (strip_height <= 0) { // can this ever happen?
1080 av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
1081 continue;
1084 if (s->pix_fmt == AV_PIX_FMT_RGB24)
1085 get_sub_picture(s, 0, y,
1086 s->input_frame->data, s->input_frame->linesize,
1087 data, linesize);
1088 else
1089 get_sub_picture(s, 0, y,
1090 (uint8_t **)frame->data, (int *)frame->linesize,
1091 data, linesize);
1092 get_sub_picture(s, 0, y,
1093 s->last_frame->data, s->last_frame->linesize,
1094 last_data, last_linesize);
1095 get_sub_picture(s, 0, y,
1096 s->scratch_frame->data, s->scratch_frame->linesize,
1097 scratch_data, scratch_linesize);
1099 if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
1100 last_data, last_linesize, data, linesize,
1101 scratch_data, scratch_linesize,
1102 s->frame_buf + size + CVID_HEADER_SIZE,
1103 &score_temp)) < 0)
1104 return temp_size;
1106 score += score_temp;
1107 size += temp_size;
1110 if (best_score == 0 || score < best_score) {
1111 best_score = score;
1112 best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, isakeyframe);
1114 FFSWAP(AVFrame *, s->best_frame, s->scratch_frame);
1115 memcpy(buf, s->frame_buf, best_size);
1116 best_nstrips = num_strips;
1118 // avoid trying too many strip numbers without a real reason
1119 // (this makes the processing of the very first frame faster)
1120 if (num_strips - best_nstrips > 4)
1121 break;
1124 // let the number of strips slowly adapt to the changes in the contents,
1125 // compared to full bruteforcing every time this will occasionally lead
1126 // to some r/d performance loss but makes encoding up to several times faster
1127 if (!s->strip_number_delta_range) {
1128 if (best_nstrips == s->max_strips) { // let us try to step up
1129 s->max_strips = best_nstrips + 1;
1130 if (s->max_strips >= s->max_max_strips)
1131 s->max_strips = s->max_max_strips;
1132 } else { // try to step down
1133 s->max_strips = best_nstrips;
1135 s->min_strips = s->max_strips - 1;
1136 if (s->min_strips < s->min_min_strips)
1137 s->min_strips = s->min_min_strips;
1138 } else {
1139 s->max_strips = best_nstrips + s->strip_number_delta_range;
1140 if (s->max_strips >= s->max_max_strips)
1141 s->max_strips = s->max_max_strips;
1142 s->min_strips = best_nstrips - s->strip_number_delta_range;
1143 if (s->min_strips < s->min_min_strips)
1144 s->min_strips = s->min_min_strips;
1147 return best_size;
1150 static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1151 const AVFrame *frame, int *got_packet)
1153 CinepakEncContext *s = avctx->priv_data;
1154 int ret;
1156 s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
1158 if ((ret = ff_alloc_packet(pkt, s->frame_buf_size)) < 0)
1159 return ret;
1160 ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size);
1161 pkt->size = ret;
1162 if (s->curframe == 0)
1163 pkt->flags |= AV_PKT_FLAG_KEY;
1164 *got_packet = 1;
1166 FFSWAP(AVFrame *, s->last_frame, s->best_frame);
1168 if (++s->curframe >= s->keyint)
1169 s->curframe = 0;
1171 return 0;
1174 static av_cold int cinepak_encode_end(AVCodecContext *avctx)
1176 CinepakEncContext *s = avctx->priv_data;
1177 int x;
1179 av_frame_free(&s->last_frame);
1180 av_frame_free(&s->best_frame);
1181 av_frame_free(&s->scratch_frame);
1182 if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
1183 av_frame_free(&s->input_frame);
1184 av_freep(&s->codebook_input);
1185 av_freep(&s->codebook_closest);
1186 av_freep(&s->strip_buf);
1187 av_freep(&s->frame_buf);
1188 av_freep(&s->mb);
1190 for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
1191 av_freep(&s->pict_bufs[x]);
1193 return 0;
1196 AVCodec ff_cinepak_encoder = {
1197 .name = "cinepak",
1198 .long_name = NULL_IF_CONFIG_SMALL("Cinepak"),
1199 .type = AVMEDIA_TYPE_VIDEO,
1200 .id = AV_CODEC_ID_CINEPAK,
1201 .priv_data_size = sizeof(CinepakEncContext),
1202 .init = cinepak_encode_init,
1203 .encode2 = cinepak_encode_frame,
1204 .close = cinepak_encode_end,
1205 .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE },
1206 .priv_class = &cinepak_class,