aarch64: Add assembly support for -fsanitize=hwaddress tagged globals.
[libav.git] / libavcodec / iirfilter.c
blob4116d5c5032cec95f9b0e5c3ea0d6b89b0162b03
1 /*
2 * IIR filter
3 * Copyright (c) 2008 Konstantin Shishkov
5 * This file is part of Libav.
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file
24 * different IIR filters implementation
27 #include <math.h>
29 #include "libavutil/attributes.h"
30 #include "libavutil/common.h"
31 #include "libavutil/log.h"
33 #include "iirfilter.h"
35 /**
36 * IIR filter global parameters
38 typedef struct FFIIRFilterCoeffs {
39 int order;
40 float gain;
41 int *cx;
42 float *cy;
43 } FFIIRFilterCoeffs;
45 /**
46 * IIR filter state
48 typedef struct FFIIRFilterState {
49 float x[1];
50 } FFIIRFilterState;
52 /// maximum supported filter order
53 #define MAXORDER 30
55 static av_cold int butterworth_init_coeffs(void *avc,
56 struct FFIIRFilterCoeffs *c,
57 enum IIRFilterMode filt_mode,
58 int order, float cutoff_ratio,
59 float stopband)
61 int i, j;
62 double wa;
63 double p[MAXORDER + 1][2];
65 if (filt_mode != FF_FILTER_MODE_LOWPASS) {
66 av_log(avc, AV_LOG_ERROR, "Butterworth filter currently only supports "
67 "low-pass filter mode\n");
68 return -1;
70 if (order & 1) {
71 av_log(avc, AV_LOG_ERROR, "Butterworth filter currently only supports "
72 "even filter orders\n");
73 return -1;
76 wa = 2 * tan(M_PI * 0.5 * cutoff_ratio);
78 c->cx[0] = 1;
79 for (i = 1; i < (order >> 1) + 1; i++)
80 c->cx[i] = c->cx[i - 1] * (order - i + 1LL) / i;
82 p[0][0] = 1.0;
83 p[0][1] = 0.0;
84 for (i = 1; i <= order; i++)
85 p[i][0] = p[i][1] = 0.0;
86 for (i = 0; i < order; i++) {
87 double zp[2];
88 double th = (i + (order >> 1) + 0.5) * M_PI / order;
89 double a_re, a_im, c_re, c_im;
90 zp[0] = cos(th) * wa;
91 zp[1] = sin(th) * wa;
92 a_re = zp[0] + 2.0;
93 c_re = zp[0] - 2.0;
94 a_im =
95 c_im = zp[1];
96 zp[0] = (a_re * c_re + a_im * c_im) / (c_re * c_re + c_im * c_im);
97 zp[1] = (a_im * c_re - a_re * c_im) / (c_re * c_re + c_im * c_im);
99 for (j = order; j >= 1; j--) {
100 a_re = p[j][0];
101 a_im = p[j][1];
102 p[j][0] = a_re * zp[0] - a_im * zp[1] + p[j - 1][0];
103 p[j][1] = a_re * zp[1] + a_im * zp[0] + p[j - 1][1];
105 a_re = p[0][0] * zp[0] - p[0][1] * zp[1];
106 p[0][1] = p[0][0] * zp[1] + p[0][1] * zp[0];
107 p[0][0] = a_re;
109 c->gain = p[order][0];
110 for (i = 0; i < order; i++) {
111 c->gain += p[i][0];
112 c->cy[i] = (-p[i][0] * p[order][0] + -p[i][1] * p[order][1]) /
113 (p[order][0] * p[order][0] + p[order][1] * p[order][1]);
115 c->gain /= 1 << order;
117 return 0;
120 static av_cold int biquad_init_coeffs(void *avc, struct FFIIRFilterCoeffs *c,
121 enum IIRFilterMode filt_mode, int order,
122 float cutoff_ratio, float stopband)
124 double cos_w0, sin_w0;
125 double a0, x0, x1;
127 if (filt_mode != FF_FILTER_MODE_HIGHPASS &&
128 filt_mode != FF_FILTER_MODE_LOWPASS) {
129 av_log(avc, AV_LOG_ERROR, "Biquad filter currently only supports "
130 "high-pass and low-pass filter modes\n");
131 return -1;
133 if (order != 2) {
134 av_log(avc, AV_LOG_ERROR, "Biquad filter must have order of 2\n");
135 return -1;
138 cos_w0 = cos(M_PI * cutoff_ratio);
139 sin_w0 = sin(M_PI * cutoff_ratio);
141 a0 = 1.0 + (sin_w0 / 2.0);
143 if (filt_mode == FF_FILTER_MODE_HIGHPASS) {
144 c->gain = ((1.0 + cos_w0) / 2.0) / a0;
145 x0 = ((1.0 + cos_w0) / 2.0) / a0;
146 x1 = (-(1.0 + cos_w0)) / a0;
147 } else { // FF_FILTER_MODE_LOWPASS
148 c->gain = ((1.0 - cos_w0) / 2.0) / a0;
149 x0 = ((1.0 - cos_w0) / 2.0) / a0;
150 x1 = (1.0 - cos_w0) / a0;
152 c->cy[0] = (-1.0 + (sin_w0 / 2.0)) / a0;
153 c->cy[1] = (2.0 * cos_w0) / a0;
155 // divide by gain to make the x coeffs integers.
156 // during filtering, the delay state will include the gain multiplication
157 c->cx[0] = lrintf(x0 / c->gain);
158 c->cx[1] = lrintf(x1 / c->gain);
160 return 0;
163 av_cold struct FFIIRFilterCoeffs *ff_iir_filter_init_coeffs(void *avc,
164 enum IIRFilterType filt_type,
165 enum IIRFilterMode filt_mode,
166 int order, float cutoff_ratio,
167 float stopband, float ripple)
169 FFIIRFilterCoeffs *c;
170 int ret = 0;
172 if (order <= 0 || order > MAXORDER || cutoff_ratio >= 1.0)
173 return NULL;
175 FF_ALLOCZ_OR_GOTO(avc, c, sizeof(FFIIRFilterCoeffs),
176 init_fail);
177 FF_ALLOC_OR_GOTO(avc, c->cx, sizeof(c->cx[0]) * ((order >> 1) + 1),
178 init_fail);
179 FF_ALLOC_OR_GOTO(avc, c->cy, sizeof(c->cy[0]) * order,
180 init_fail);
181 c->order = order;
183 switch (filt_type) {
184 case FF_FILTER_TYPE_BUTTERWORTH:
185 ret = butterworth_init_coeffs(avc, c, filt_mode, order, cutoff_ratio,
186 stopband);
187 break;
188 case FF_FILTER_TYPE_BIQUAD:
189 ret = biquad_init_coeffs(avc, c, filt_mode, order, cutoff_ratio,
190 stopband);
191 break;
192 default:
193 av_log(avc, AV_LOG_ERROR, "filter type is not currently implemented\n");
194 goto init_fail;
197 if (!ret)
198 return c;
200 init_fail:
201 ff_iir_filter_free_coeffs(c);
202 return NULL;
205 av_cold struct FFIIRFilterState *ff_iir_filter_init_state(int order)
207 FFIIRFilterState *s = av_mallocz(sizeof(FFIIRFilterState) + sizeof(s->x[0]) * (order - 1));
208 return s;
211 #define CONV_S16(dest, source) dest = av_clip_int16(lrintf(source));
213 #define CONV_FLT(dest, source) dest = source;
215 #define FILTER_BW_O4_1(i0, i1, i2, i3, fmt) \
216 in = *src0 * c->gain + \
217 c->cy[0] * s->x[i0] + \
218 c->cy[1] * s->x[i1] + \
219 c->cy[2] * s->x[i2] + \
220 c->cy[3] * s->x[i3]; \
221 res = (s->x[i0] + in) * 1 + \
222 (s->x[i1] + s->x[i3]) * 4 + \
223 s->x[i2] * 6; \
224 CONV_ ## fmt(*dst0, res) \
225 s->x[i0] = in; \
226 src0 += sstep; \
227 dst0 += dstep;
229 #define FILTER_BW_O4(type, fmt) { \
230 int i; \
231 const type *src0 = src; \
232 type *dst0 = dst; \
233 for (i = 0; i < size; i += 4) { \
234 float in, res; \
235 FILTER_BW_O4_1(0, 1, 2, 3, fmt); \
236 FILTER_BW_O4_1(1, 2, 3, 0, fmt); \
237 FILTER_BW_O4_1(2, 3, 0, 1, fmt); \
238 FILTER_BW_O4_1(3, 0, 1, 2, fmt); \
242 #define FILTER_DIRECT_FORM_II(type, fmt) { \
243 int i; \
244 const type *src0 = src; \
245 type *dst0 = dst; \
246 for (i = 0; i < size; i++) { \
247 int j; \
248 float in, res; \
249 in = *src0 * c->gain; \
250 for (j = 0; j < c->order; j++) \
251 in += c->cy[j] * s->x[j]; \
252 res = s->x[0] + in + s->x[c->order >> 1] * c->cx[c->order >> 1]; \
253 for (j = 1; j < c->order >> 1; j++) \
254 res += (s->x[j] + s->x[c->order - j]) * c->cx[j]; \
255 for (j = 0; j < c->order - 1; j++) \
256 s->x[j] = s->x[j + 1]; \
257 CONV_ ## fmt(*dst0, res) \
258 s->x[c->order - 1] = in; \
259 src0 += sstep; \
260 dst0 += dstep; \
264 #define FILTER_O2(type, fmt) { \
265 int i; \
266 const type *src0 = src; \
267 type *dst0 = dst; \
268 for (i = 0; i < size; i++) { \
269 float in = *src0 * c->gain + \
270 s->x[0] * c->cy[0] + \
271 s->x[1] * c->cy[1]; \
272 CONV_ ## fmt(*dst0, s->x[0] + in + s->x[1] * c->cx[1]) \
273 s->x[0] = s->x[1]; \
274 s->x[1] = in; \
275 src0 += sstep; \
276 dst0 += dstep; \
280 void ff_iir_filter(const struct FFIIRFilterCoeffs *c,
281 struct FFIIRFilterState *s, int size,
282 const int16_t *src, ptrdiff_t sstep,
283 int16_t *dst, ptrdiff_t dstep)
285 if (c->order == 2) {
286 FILTER_O2(int16_t, S16)
287 } else if (c->order == 4) {
288 FILTER_BW_O4(int16_t, S16)
289 } else {
290 FILTER_DIRECT_FORM_II(int16_t, S16)
294 void ff_iir_filter_flt(const struct FFIIRFilterCoeffs *c,
295 struct FFIIRFilterState *s, int size,
296 const float *src, ptrdiff_t sstep,
297 float *dst, ptrdiff_t dstep)
299 if (c->order == 2) {
300 FILTER_O2(float, FLT)
301 } else if (c->order == 4) {
302 FILTER_BW_O4(float, FLT)
303 } else {
304 FILTER_DIRECT_FORM_II(float, FLT)
308 av_cold void ff_iir_filter_free_state(struct FFIIRFilterState *state)
310 av_free(state);
313 av_cold void ff_iir_filter_free_coeffs(struct FFIIRFilterCoeffs *coeffs)
315 if (coeffs) {
316 av_free(coeffs->cx);
317 av_free(coeffs->cy);
319 av_free(coeffs);