LP-500 HoTT Telemetry added device definitions
[librepilot.git] / flight / libraries / insgps13state.c
blob2631bdb5aeb3e51304d1713cee8732ed16b33510
1 /**
2 ******************************************************************************
3 * @addtogroup AHRS
4 * @{
5 * @addtogroup INSGPS
6 * @{
7 * @brief INSGPS is a joint attitude and position estimation EKF
9 * @file insgps.c
10 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
11 * @brief An INS/GPS algorithm implemented with an EKF.
13 * @see The GNU Public License (GPL) Version 3
15 *****************************************************************************/
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 3 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful, but
23 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
24 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include "insgps.h"
33 #include <math.h>
34 #include <stdint.h>
35 #include <pios_math.h>
36 #include <mathmisc.h>
38 // constants/macros/typdefs
39 #define NUMX 13 // number of states, X is the state vector
40 #define NUMW 9 // number of plant noise inputs, w is disturbance noise vector
41 #define NUMV 10 // number of measurements, v is the measurement noise vector
42 #define NUMU 6 // number of deterministic inputs, U is the input vector
43 #pragma GCC optimize "O3"
44 // Private functions
45 void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
46 float Q[NUMW], float dT, float P[NUMX][NUMX]);
47 static void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
48 float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
49 uint16_t SensorsUsed);
50 static void RungeKutta(float X[NUMX], float U[NUMU], float dT);
51 static void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX]);
52 static void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
53 float G[NUMX][NUMW]);
54 static void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV]);
55 static void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
57 // Private variables
59 // speed optimizations, describe matrix sparsity
60 // derived from state equations in
61 // LinearizeFG() and LinearizeH():
63 // usage F: usage G: usage H:
64 // -0123456789abc 012345678 0123456789abc
65 // 0...X......... ......... X............
66 // 1....X........ ......... .X...........
67 // 2.....X....... ......... ..X..........
68 // 3......XXXX... ...XXX... ...X.........
69 // 4......XXXX... ...XXX... ....X........
70 // 5......XXXX... ...XXX... .....X.......
71 // 6.....ooXXXXXX XXX...... ......XXXX...
72 // 7.....oXoXXXXX XXX...... ......XXXX...
73 // 8.....oXXoXXXX XXX...... ......XXXX...
74 // 9.....oXXXoXXX XXX...... ..X..........
75 // a............. ......Xoo
76 // b............. ......oXo
77 // c............. ......ooX
79 static int8_t FrowMin[NUMX] = { 3, 4, 5, 6, 6, 6, 5, 5, 5, 5, 13, 13, 13 };
80 static int8_t FrowMax[NUMX] = { 3, 4, 5, 9, 9, 9, 12, 12, 12, 12, -1, -1, -1 };
82 static int8_t GrowMin[NUMX] = { 9, 9, 9, 3, 3, 3, 0, 0, 0, 0, 6, 7, 8 };
83 static int8_t GrowMax[NUMX] = { -1, -1, -1, 5, 5, 5, 2, 2, 2, 2, 6, 7, 8 };
85 static int8_t HrowMin[NUMV] = { 0, 1, 2, 3, 4, 5, 6, 6, 6, 2 };
86 static int8_t HrowMax[NUMV] = { 0, 1, 2, 3, 4, 5, 9, 9, 9, 2 };
88 static struct EKFData {
89 // linearized system matrices
90 float F[NUMX][NUMX];
91 float G[NUMX][NUMW];
92 float H[NUMV][NUMX];
93 // local magnetic unit vector in NED frame
94 float Be[3];
95 float BeScaleFactor;
96 // covariance matrix and state vector
97 float P[NUMX][NUMX];
98 float X[NUMX];
99 // input noise and measurement noise variances
100 float Q[NUMW];
101 float R[NUMV];
102 } ekf;
104 // Global variables
105 struct NavStruct Nav;
107 // ************* Exposed Functions ****************
108 // *************************************************
110 uint16_t ins_get_num_states()
112 return NUMX;
115 void INSGPSInit() // pretty much just a place holder for now
117 ekf.Be[0] = 1.0f;
118 ekf.Be[1] = 0.0f;
119 ekf.Be[2] = 0.0f; // local magnetic unit vector
121 for (int i = 0; i < NUMX; i++) {
122 for (int j = 0; j < NUMX; j++) {
123 ekf.P[i][j] = 0.0f; // zero all terms
124 ekf.F[i][j] = 0.0f;
127 for (int j = 0; j < NUMW; j++) {
128 ekf.G[i][j] = 0.0f;
131 for (int j = 0; j < NUMV; j++) {
132 ekf.H[j][i] = 0.0f;
135 ekf.X[i] = 0.0f;
137 for (int i = 0; i < NUMW; i++) {
138 ekf.Q[i] = 0.0f;
140 for (int i = 0; i < NUMV; i++) {
141 ekf.R[i] = 0.0f;
145 ekf.P[0][0] = ekf.P[1][1] = ekf.P[2][2] = 25.0f; // initial position variance (m^2)
146 ekf.P[3][3] = ekf.P[4][4] = ekf.P[5][5] = 5.0f; // initial velocity variance (m/s)^2
147 ekf.P[6][6] = ekf.P[7][7] = ekf.P[8][8] = ekf.P[9][9] = 1e-5f; // initial quaternion variance
148 ekf.P[10][10] = ekf.P[11][11] = ekf.P[12][12] = 1e-9f; // initial gyro bias variance (rad/s)^2
150 ekf.X[0] = ekf.X[1] = ekf.X[2] = ekf.X[3] = ekf.X[4] = ekf.X[5] = 0.0f; // initial pos and vel (m)
151 ekf.X[6] = 1.0f;
152 ekf.X[7] = ekf.X[8] = ekf.X[9] = 0.0f; // initial quaternion (level and North) (m/s)
153 ekf.X[10] = ekf.X[11] = ekf.X[12] = 0.0f; // initial gyro bias (rad/s)
155 ekf.Q[0] = ekf.Q[1] = ekf.Q[2] = 50e-4f; // gyro noise variance (rad/s)^2
156 ekf.Q[3] = ekf.Q[4] = ekf.Q[5] = 0.00001f; // accelerometer noise variance (m/s^2)^2
157 ekf.Q[6] = ekf.Q[7] = ekf.Q[8] = 2e-8f; // gyro bias random walk variance (rad/s^2)^2
159 ekf.R[0] = ekf.R[1] = 0.004f; // High freq GPS horizontal position noise variance (m^2)
160 ekf.R[2] = 0.036f; // High freq GPS vertical position noise variance (m^2)
161 ekf.R[3] = ekf.R[4] = 0.004f; // High freq GPS horizontal velocity noise variance (m/s)^2
162 ekf.R[5] = 100.0f; // High freq GPS vertical velocity noise variance (m/s)^2
163 ekf.R[6] = ekf.R[7] = ekf.R[8] = 0.005f; // magnetometer unit vector noise variance
164 ekf.R[9] = .25f; // High freq altimeter noise variance (m^2)
167 // ! Set the current flight state
168 void INSSetArmed(bool armed)
170 return;
172 // Speed up convergence of accel and gyro bias when not armed
173 if (armed) {
174 ekf.Q[9] = 1e-4f;
175 ekf.Q[8] = 2e-9f;
176 } else {
177 ekf.Q[9] = 1e-2f;
178 ekf.Q[8] = 2e-8f;
182 void INSResetP(const float PDiag[NUMX])
184 uint8_t i, j;
186 // if PDiag[i] nonzero then clear row and column and set diagonal element
187 for (i = 0; i < NUMX; i++) {
188 if (PDiag != 0) {
189 for (j = 0; j < NUMX; j++) {
190 ekf.P[i][j] = ekf.P[j][i] = 0.0f;
192 ekf.P[i][i] = PDiag[i];
197 void INSGetVariance(float PDiag[NUMX])
199 uint8_t i;
201 // retrieve diagonal elements (aka state variance)
202 if (PDiag != 0) {
203 for (i = 0; i < NUMX; i++) {
204 PDiag[i] = ekf.P[i][i];
208 void INSSetState(const float pos[3], const float vel[3], const float q[4], const float gyro_bias[3], __attribute__((unused)) const float accel_bias[3])
210 /* Note: accel_bias not used in 13 state INS */
211 ekf.X[0] = pos[0];
212 ekf.X[1] = pos[1];
213 ekf.X[2] = pos[2];
214 ekf.X[3] = vel[0];
215 ekf.X[4] = vel[1];
216 ekf.X[5] = vel[2];
217 ekf.X[6] = q[0];
218 ekf.X[7] = q[1];
219 ekf.X[8] = q[2];
220 ekf.X[9] = q[3];
221 ekf.X[10] = gyro_bias[0];
222 ekf.X[11] = gyro_bias[1];
223 ekf.X[12] = gyro_bias[2];
226 void INSPosVelReset(const float pos[3], const float vel[3])
228 for (int i = 0; i < 6; i++) {
229 for (int j = i; j < NUMX; j++) {
230 ekf.P[i][j] = 0; // zero the first 6 rows and columns
231 ekf.P[j][i] = 0;
235 ekf.P[0][0] = ekf.P[1][1] = ekf.P[2][2] = 25; // initial position variance (m^2)
236 ekf.P[3][3] = ekf.P[4][4] = ekf.P[5][5] = 5; // initial velocity variance (m/s)^2
238 ekf.X[0] = pos[0];
239 ekf.X[1] = pos[1];
240 ekf.X[2] = pos[2];
241 ekf.X[3] = vel[0];
242 ekf.X[4] = vel[1];
243 ekf.X[5] = vel[2];
246 void INSSetPosVelVar(const float PosVar[3], const float VelVar[3])
248 ekf.R[0] = PosVar[0];
249 ekf.R[1] = PosVar[1];
250 ekf.R[2] = PosVar[2];
251 ekf.R[3] = VelVar[0];
252 ekf.R[4] = VelVar[1];
253 ekf.R[5] = VelVar[2];
256 void INSSetGyroBias(const float gyro_bias[3])
258 ekf.X[10] = gyro_bias[0];
259 ekf.X[11] = gyro_bias[1];
260 ekf.X[12] = gyro_bias[2];
263 void INSSetAccelVar(const float accel_var[3])
265 ekf.Q[3] = accel_var[0];
266 ekf.Q[4] = accel_var[1];
267 ekf.Q[5] = accel_var[2];
270 void INSSetGyroVar(const float gyro_var[3])
272 ekf.Q[0] = gyro_var[0];
273 ekf.Q[1] = gyro_var[1];
274 ekf.Q[2] = gyro_var[2];
277 void INSSetGyroBiasVar(const float gyro_bias_var[3])
279 ekf.Q[6] = gyro_bias_var[0];
280 ekf.Q[7] = gyro_bias_var[1];
281 ekf.Q[8] = gyro_bias_var[2];
284 // must be called AFTER SetMagNorth
285 void INSSetMagVar(const float mag_var[3])
287 ekf.R[6] = mag_var[0] * ekf.BeScaleFactor;
288 ekf.R[7] = mag_var[1] * ekf.BeScaleFactor;
289 ekf.R[8] = mag_var[2] * ekf.BeScaleFactor;
292 void INSSetBaroVar(float baro_var)
294 ekf.R[9] = baro_var;
297 void INSSetMagNorth(const float B[3])
299 ekf.BeScaleFactor = invsqrtf(B[0] * B[0] + B[1] * B[1] + B[2] * B[2]);
301 ekf.Be[0] = B[0] * ekf.BeScaleFactor;
302 ekf.Be[1] = B[1] * ekf.BeScaleFactor;
303 ekf.Be[2] = B[2] * ekf.BeScaleFactor;
306 void INSStatePrediction(const float gyro_data[3], const float accel_data[3], float dT)
308 float U[6];
309 float invqmag;
311 // rate gyro inputs in units of rad/s
312 U[0] = gyro_data[0];
313 U[1] = gyro_data[1];
314 U[2] = gyro_data[2];
316 // accelerometer inputs in units of m/s
317 U[3] = accel_data[0];
318 U[4] = accel_data[1];
319 U[5] = accel_data[2];
321 // EKF prediction step
322 LinearizeFG(ekf.X, U, ekf.F, ekf.G);
323 RungeKutta(ekf.X, U, dT);
324 invqmag = invsqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
325 ekf.X[6] *= invqmag;
326 ekf.X[7] *= invqmag;
327 ekf.X[8] *= invqmag;
328 ekf.X[9] *= invqmag;
329 // CovariancePrediction(ekf.F,ekf.G,ekf.Q,dT,ekf.P);
331 // Update Nav solution structure
332 Nav.Pos[0] = ekf.X[0];
333 Nav.Pos[1] = ekf.X[1];
334 Nav.Pos[2] = ekf.X[2];
335 Nav.Vel[0] = ekf.X[3];
336 Nav.Vel[1] = ekf.X[4];
337 Nav.Vel[2] = ekf.X[5];
338 Nav.q[0] = ekf.X[6];
339 Nav.q[1] = ekf.X[7];
340 Nav.q[2] = ekf.X[8];
341 Nav.q[3] = ekf.X[9];
342 Nav.gyro_bias[0] = ekf.X[10];
343 Nav.gyro_bias[1] = ekf.X[11];
344 Nav.gyro_bias[2] = ekf.X[12];
347 void INSCovariancePrediction(float dT)
349 CovariancePrediction(ekf.F, ekf.G, ekf.Q, dT, ekf.P);
352 float zeros[3] = { 0, 0, 0 };
354 void MagCorrection(float mag_data[3])
356 INSCorrection(mag_data, zeros, zeros, zeros[0], MAG_SENSORS);
359 void MagVelBaroCorrection(float mag_data[3], float Vel[3], float BaroAlt)
361 INSCorrection(mag_data, zeros, Vel, BaroAlt,
362 MAG_SENSORS | HORIZ_SENSORS | VERT_SENSORS |
363 BARO_SENSOR);
366 void GpsBaroCorrection(float Pos[3], float Vel[3], float BaroAlt)
368 INSCorrection(zeros, Pos, Vel, BaroAlt,
369 HORIZ_SENSORS | VERT_SENSORS | BARO_SENSOR);
372 void FullCorrection(float mag_data[3], float Pos[3], float Vel[3],
373 float BaroAlt)
375 INSCorrection(mag_data, Pos, Vel, BaroAlt, FULL_SENSORS);
378 void GpsMagCorrection(float mag_data[3], float Pos[3], float Vel[3])
380 INSCorrection(mag_data, Pos, Vel, zeros[0],
381 POS_SENSORS | HORIZ_SENSORS | MAG_SENSORS);
384 void VelBaroCorrection(float Vel[3], float BaroAlt)
386 INSCorrection(zeros, zeros, Vel, BaroAlt,
387 HORIZ_SENSORS | VERT_SENSORS | BARO_SENSOR);
390 void INSCorrection(const float mag_data[3], const float Pos[3], const float Vel[3],
391 const float BaroAlt, uint16_t SensorsUsed)
393 float Z[10] = { 0 };
394 float Y[10] = { 0 };
396 // GPS Position in meters and in local NED frame
397 Z[0] = Pos[0];
398 Z[1] = Pos[1];
399 Z[2] = Pos[2];
401 // GPS Velocity in meters and in local NED frame
402 Z[3] = Vel[0];
403 Z[4] = Vel[1];
404 Z[5] = Vel[2];
405 // magnetometer data in any units (use unit vector) and in body frame
408 if (SensorsUsed & MAG_SENSORS) {
409 // magnetometer data in any units (use unit vector) and in body frame
410 float invBmag = invsqrtf(mag_data[0] * mag_data[0] + mag_data[1] * mag_data[1] + mag_data[2] * mag_data[2]);
411 Z[6] = mag_data[0] * invBmag;
412 Z[7] = mag_data[1] * invBmag;
413 Z[8] = mag_data[2] * invBmag;
416 // barometric altimeter in meters and in local NED frame
417 Z[9] = BaroAlt;
419 // EKF correction step
420 LinearizeH(ekf.X, ekf.Be, ekf.H);
421 MeasurementEq(ekf.X, ekf.Be, Y);
422 SerialUpdate(ekf.H, ekf.R, Z, Y, ekf.P, ekf.X, SensorsUsed);
424 float invqmag = invsqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
425 ekf.X[6] *= invqmag;
426 ekf.X[7] *= invqmag;
427 ekf.X[8] *= invqmag;
428 ekf.X[9] *= invqmag;
429 // Update Nav solution structure
430 Nav.Pos[0] = ekf.X[0];
431 Nav.Pos[1] = ekf.X[1];
432 Nav.Pos[2] = ekf.X[2];
433 Nav.Vel[0] = ekf.X[3];
434 Nav.Vel[1] = ekf.X[4];
435 Nav.Vel[2] = ekf.X[5];
436 Nav.q[0] = ekf.X[6];
437 Nav.q[1] = ekf.X[7];
438 Nav.q[2] = ekf.X[8];
439 Nav.q[3] = ekf.X[9];
440 Nav.gyro_bias[0] = ekf.X[10];
441 Nav.gyro_bias[1] = ekf.X[11];
442 Nav.gyro_bias[2] = ekf.X[12];
445 // ************* CovariancePrediction *************
446 // Does the prediction step of the Kalman filter for the covariance matrix
447 // Output, Pnew, overwrites P, the input covariance
448 // Pnew = (I+F*T)*P*(I+F*T)' + T^2*G*Q*G'
449 // Q is the discrete time covariance of process noise
450 // Q is vector of the diagonal for a square matrix with
451 // dimensions equal to the number of disturbance noise variables
452 // The General Method is very inefficient,not taking advantage of the sparse F and G
453 // The first Method is very specific to this implementation
454 // ************************************************
456 void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
457 float Q[NUMW], float dT, float P[NUMX][NUMX])
459 // Pnew = (I+F*T)*P*(I+F*T)' + (T^2)*G*Q*G' = (T^2)[(P/T + F*P)*(I/T + F') + G*Q*G')]
461 const float dT1 = 1.0f / dT; // multiplication is faster than division on fpu.
462 const float dTsq = dT * dT;
464 float Dummy[NUMX][NUMX];
465 int8_t i;
466 int8_t k;
468 for (i = 0; i < NUMX; i++) { // Calculate Dummy = (P/T +F*P)
469 float *Firow = F[i];
470 float *Pirow = P[i];
471 float *Dirow = Dummy[i];
472 const int8_t Fistart = FrowMin[i];
473 const int8_t Fiend = FrowMax[i];
474 int8_t j;
476 for (j = 0; j < NUMX; j++) {
477 Dirow[j] = Pirow[j] * dT1; // Dummy = P / T ...
479 for (k = Fistart; k <= Fiend; k++) {
480 for (j = 0; j < NUMX; j++) {
481 Dirow[j] += Firow[k] * P[k][j]; // [] + F * P
485 for (i = 0; i < NUMX; i++) { // Calculate Pnew = (T^2) [Dummy/T + Dummy*F' + G*Qw*G']
486 float *Dirow = Dummy[i];
487 float *Girow = G[i];
488 float *Pirow = P[i];
489 const int8_t Gistart = GrowMin[i];
490 const int8_t Giend = GrowMax[i];
491 int8_t j;
494 for (j = i; j < NUMX; j++) { // Use symmetry, ie only find upper triangular
495 float Ptmp = Dirow[j] * dT1; // Pnew = Dummy / T ...
497 const float *Fjrow = F[j];
498 int8_t Fjstart = FrowMin[j];
499 int8_t Fjend = FrowMax[j];
500 k = Fjstart;
502 while (k <= Fjend - 3) {
503 Ptmp += Dirow[k] * Fjrow[k]; // [] + Dummy*F' ...
504 Ptmp += Dirow[k + 1] * Fjrow[k + 1];
505 Ptmp += Dirow[k + 2] * Fjrow[k + 2];
506 Ptmp += Dirow[k + 3] * Fjrow[k + 3];
507 k += 4;
509 while (k <= Fjend) {
510 Ptmp += Dirow[k] * Fjrow[k];
511 k++;
514 float *Gjrow = G[j];
515 const int8_t Gjstart = MAX(Gistart, GrowMin[j]);
516 const int8_t Gjend = MIN(Giend, GrowMax[j]);
517 k = Gjstart;
518 while (k <= Gjend - 2) {
519 Ptmp += Q[k] * Girow[k] * Gjrow[k]; // [] + G*Q*G' ...
520 Ptmp += Q[k + 1] * Girow[k + 1] * Gjrow[k + 1];
521 Ptmp += Q[k + 2] * Girow[k + 2] * Gjrow[k + 2];
522 k += 3;
524 if (k <= Gjend) {
525 Ptmp += Q[k] * Girow[k] * Gjrow[k];
526 if (k <= Gjend - 1) {
527 Ptmp += Q[k + 1] * Girow[k + 1] * Gjrow[k + 1];
531 P[j][i] = Pirow[j] = Ptmp * dTsq; // [] * (T^2)
536 // ************* SerialUpdate *******************
537 // Does the update step of the Kalman filter for the covariance and estimate
538 // Outputs are Xnew & Pnew, and are written over P and X
539 // Z is actual measurement, Y is predicted measurement
540 // Xnew = X + K*(Z-Y), Pnew=(I-K*H)*P,
541 // where K=P*H'*inv[H*P*H'+R]
542 // NOTE the algorithm assumes R (measurement covariance matrix) is diagonal
543 // i.e. the measurment noises are uncorrelated.
544 // It therefore uses a serial update that requires no matrix inversion by
545 // processing the measurements one at a time.
546 // Algorithm - see Grewal and Andrews, "Kalman Filtering,2nd Ed" p.121 & p.253
547 // - or see Simon, "Optimal State Estimation," 1st Ed, p.150
548 // The SensorsUsed variable is a bitwise mask indicating which sensors
549 // should be used in the update.
550 // ************************************************
551 void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
552 float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
553 uint16_t SensorsUsed)
555 float HP[NUMX], HPHR, Error;
556 uint8_t i, j, k, m;
557 float Km[NUMX];
559 for (m = 0; m < NUMV; m++) {
560 if (SensorsUsed & (0x01 << m)) { // use this sensor for update
561 for (j = 0; j < NUMX; j++) { // Find Hp = H*P
562 HP[j] = 0;
565 for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
566 for (j = 0; j < NUMX; j++) { // Find Hp = H*P
567 HP[j] += H[m][k] * P[k][j];
570 HPHR = R[m]; // Find HPHR = H*P*H' + R
571 for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
572 HPHR += HP[k] * H[m][k];
574 float invHPHR = 1.0f / HPHR;
575 for (k = 0; k < NUMX; k++) {
576 Km[k] = HP[k] * invHPHR; // find K = HP/HPHR
578 for (i = 0; i < NUMX; i++) { // Find P(m)= P(m-1) + K*HP
579 for (j = i; j < NUMX; j++) {
580 P[i][j] = P[j][i] = P[i][j] - Km[i] * HP[j];
584 Error = Z[m] - Y[m];
585 for (i = 0; i < NUMX; i++) { // Find X(m)= X(m-1) + K*Error
586 X[i] = X[i] + Km[i] * Error;
592 // ************* RungeKutta **********************
593 // Does a 4th order Runge Kutta numerical integration step
594 // Output, Xnew, is written over X
595 // NOTE the algorithm assumes time invariant state equations and
596 // constant inputs over integration step
597 // ************************************************
599 void RungeKutta(float X[NUMX], float U[NUMU], float dT)
601 const float dT2 = dT / 2.0f;
602 float K1[NUMX], K2[NUMX], K3[NUMX], K4[NUMX], Xlast[NUMX];
603 uint8_t i;
605 for (i = 0; i < NUMX; i++) {
606 Xlast[i] = X[i]; // make a working copy
608 StateEq(X, U, K1); // k1 = f(x,u)
609 for (i = 0; i < NUMX; i++) {
610 X[i] = Xlast[i] + dT2 * K1[i];
612 StateEq(X, U, K2); // k2 = f(x+0.5*dT*k1,u)
613 for (i = 0; i < NUMX; i++) {
614 X[i] = Xlast[i] + dT2 * K2[i];
616 StateEq(X, U, K3); // k3 = f(x+0.5*dT*k2,u)
617 for (i = 0; i < NUMX; i++) {
618 X[i] = Xlast[i] + dT * K3[i];
620 StateEq(X, U, K4); // k4 = f(x+dT*k3,u)
622 // Xnew = X + dT*(k1+2*k2+2*k3+k4)/6
623 for (i = 0; i < NUMX; i++) {
624 X[i] =
625 Xlast[i] + dT * (K1[i] + 2.0f * K2[i] + 2.0f * K3[i] +
626 K4[i]) * (1.0f / 6.0f);
630 // ************* Model Specific Stuff ***************************
631 // *** StateEq, MeasurementEq, LinerizeFG, and LinearizeH ********
633 // State Variables = [Pos Vel Quaternion GyroBias NO-AccelBias]
634 // Deterministic Inputs = [AngularVel Accel]
635 // Disturbance Noise = [GyroNoise AccelNoise GyroRandomWalkNoise NO-AccelRandomWalkNoise]
637 // Measurement Variables = [Pos Vel BodyFrameMagField Altimeter]
638 // Inputs to Measurement = [EarthFrameMagField]
640 // Notes: Pos and Vel in earth frame
641 // AngularVel and Accel in body frame
642 // MagFields are unit vectors
643 // Xdot is output of StateEq()
644 // F and G are outputs of LinearizeFG(), all elements not set should be zero
645 // y is output of OutputEq()
646 // H is output of LinearizeH(), all elements not set should be zero
647 // ************************************************
649 static void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX])
651 float ax, ay, az, wx, wy, wz, q0, q1, q2, q3;
653 // ax=U[3]-X[13]; ay=U[4]-X[14]; az=U[5]-X[15]; // subtract the biases on accels
654 ax = U[3];
655 ay = U[4];
656 az = U[5]; // NO BIAS STATES ON ACCELS
657 wx = U[0] - X[10];
658 wy = U[1] - X[11];
659 wz = U[2] - X[12]; // subtract the biases on gyros
660 q0 = X[6];
661 q1 = X[7];
662 q2 = X[8];
663 q3 = X[9];
665 // Pdot = V
666 Xdot[0] = X[3];
667 Xdot[1] = X[4];
668 Xdot[2] = X[5];
670 // Vdot = Reb*a
671 Xdot[3] =
672 (q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) * ax + 2.0f * (q1 * q2 -
673 q0 * q3) *
674 ay + 2.0f * (q1 * q3 + q0 * q2) * az;
675 Xdot[4] =
676 2.0f * (q1 * q2 + q0 * q3) * ax + (q0 * q0 - q1 * q1 + q2 * q2 -
677 q3 * q3) * ay + 2 * (q2 * q3 -
678 q0 * q1) *
680 Xdot[5] =
681 2.0f * (q1 * q3 - q0 * q2) * ax + 2 * (q2 * q3 + q0 * q1) * ay +
682 (q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) * az + 9.81f;
684 // qdot = Q*w
685 Xdot[6] = (-q1 * wx - q2 * wy - q3 * wz) / 2.0f;
686 Xdot[7] = (q0 * wx - q3 * wy + q2 * wz) / 2.0f;
687 Xdot[8] = (q3 * wx + q0 * wy - q1 * wz) / 2.0f;
688 Xdot[9] = (-q2 * wx + q1 * wy + q0 * wz) / 2.0f;
690 // best guess is that bias stays constant
691 Xdot[10] = Xdot[11] = Xdot[12] = 0;
694 void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
695 float G[NUMX][NUMW])
697 float ax, ay, az, wx, wy, wz, q0, q1, q2, q3;
699 // ax=U[3]-X[13]; ay=U[4]-X[14]; az=U[5]-X[15]; // subtract the biases on accels
700 ax = U[3];
701 ay = U[4];
702 az = U[5]; // NO BIAS STATES ON ACCELS
703 wx = U[0] - X[10];
704 wy = U[1] - X[11];
705 wz = U[2] - X[12]; // subtract the biases on gyros
706 q0 = X[6];
707 q1 = X[7];
708 q2 = X[8];
709 q3 = X[9];
711 // Pdot = V
712 F[0][3] = F[1][4] = F[2][5] = 1.0f;
714 // dVdot/dq
715 F[3][6] = 2.0f * (q0 * ax - q3 * ay + q2 * az);
716 F[3][7] = 2.0f * (q1 * ax + q2 * ay + q3 * az);
717 F[3][8] = 2.0f * (-q2 * ax + q1 * ay + q0 * az);
718 F[3][9] = 2.0f * (-q3 * ax - q0 * ay + q1 * az);
719 F[4][6] = 2.0f * (q3 * ax + q0 * ay - q1 * az);
720 F[4][7] = 2.0f * (q2 * ax - q1 * ay - q0 * az);
721 F[4][8] = 2.0f * (q1 * ax + q2 * ay + q3 * az);
722 F[4][9] = 2.0f * (q0 * ax - q3 * ay + q2 * az);
723 F[5][6] = 2.0f * (-q2 * ax + q1 * ay + q0 * az);
724 F[5][7] = 2.0f * (q3 * ax + q0 * ay - q1 * az);
725 F[5][8] = 2.0f * (-q0 * ax + q3 * ay - q2 * az);
726 F[5][9] = 2.0f * (q1 * ax + q2 * ay + q3 * az);
728 // dVdot/dabias & dVdot/dna - NO BIAS STATES ON ACCELS - S0 REPEAT FOR G BELOW
729 // F[3][13]=G[3][3]=-q0*q0-q1*q1+q2*q2+q3*q3; F[3][14]=G[3][4]=2*(-q1*q2+q0*q3); F[3][15]=G[3][5]=-2*(q1*q3+q0*q2);
730 // F[4][13]=G[4][3]=-2*(q1*q2+q0*q3); F[4][14]=G[4][4]=-q0*q0+q1*q1-q2*q2+q3*q3; F[4][15]=G[4][5]=2*(-q2*q3+q0*q1);
731 // F[5][13]=G[5][3]=2*(-q1*q3+q0*q2); F[5][14]=G[5][4]=-2*(q2*q3+q0*q1); F[5][15]=G[5][5]=-q0*q0+q1*q1+q2*q2-q3*q3;
733 // dqdot/dq
734 F[6][6] = 0;
735 F[6][7] = -wx / 2.0f;
736 F[6][8] = -wy / 2.0f;
737 F[6][9] = -wz / 2.0f;
738 F[7][6] = wx / 2.0f;
739 F[7][7] = 0;
740 F[7][8] = wz / 2.0f;
741 F[7][9] = -wy / 2.0f;
742 F[8][6] = wy / 2.0f;
743 F[8][7] = -wz / 2.0f;
744 F[8][8] = 0;
745 F[8][9] = wx / 2.0f;
746 F[9][6] = wz / 2.0f;
747 F[9][7] = wy / 2.0f;
748 F[9][8] = -wx / 2.0f;
749 F[9][9] = 0;
751 // dqdot/dwbias
752 F[6][10] = q1 / 2.0f;
753 F[6][11] = q2 / 2.0f;
754 F[6][12] = q3 / 2.0f;
755 F[7][10] = -q0 / 2.0f;
756 F[7][11] = q3 / 2.0f;
757 F[7][12] = -q2 / 2.0f;
758 F[8][10] = -q3 / 2.0f;
759 F[8][11] = -q0 / 2.0f;
760 F[8][12] = q1 / 2.0f;
761 F[9][10] = q2 / 2.0f;
762 F[9][11] = -q1 / 2.0f;
763 F[9][12] = -q0 / 2.0f;
765 // dVdot/dna - NO BIAS STATES ON ACCELS - S0 REPEAT FOR G HERE
766 G[3][3] = -q0 * q0 - q1 * q1 + q2 * q2 + q3 * q3;
767 G[3][4] = 2.0f * (-q1 * q2 + q0 * q3);
768 G[3][5] = -2.0f * (q1 * q3 + q0 * q2);
769 G[4][3] = -2.0f * (q1 * q2 + q0 * q3);
770 G[4][4] = -q0 * q0 + q1 * q1 - q2 * q2 + q3 * q3;
771 G[4][5] = 2.0f * (-q2 * q3 + q0 * q1);
772 G[5][3] = 2.0f * (-q1 * q3 + q0 * q2);
773 G[5][4] = -2.0f * (q2 * q3 + q0 * q1);
774 G[5][5] = -q0 * q0 + q1 * q1 + q2 * q2 - q3 * q3;
776 // dqdot/dnw
777 G[6][0] = q1 / 2.0f;
778 G[6][1] = q2 / 2.0f;
779 G[6][2] = q3 / 2.0f;
780 G[7][0] = -q0 / 2.0f;
781 G[7][1] = q3 / 2.0f;
782 G[7][2] = -q2 / 2.0f;
783 G[8][0] = -q3 / 2.0f;
784 G[8][1] = -q0 / 2.0f;
785 G[8][2] = q1 / 2.0f;
786 G[9][0] = q2 / 2.0f;
787 G[9][1] = -q1 / 2.0f;
788 G[9][2] = -q0 / 2.0f;
790 // dwbias = random walk noise
791 G[10][6] = G[11][7] = G[12][8] = 1.0f;
792 // dabias = random walk noise
793 // G[13][9]=G[14][10]=G[15][11]=1; // NO BIAS STATES ON ACCELS
796 void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV])
798 float q0, q1, q2, q3;
800 q0 = X[6];
801 q1 = X[7];
802 q2 = X[8];
803 q3 = X[9];
805 // first six outputs are P and V
806 Y[0] = X[0];
807 Y[1] = X[1];
808 Y[2] = X[2];
809 Y[3] = X[3];
810 Y[4] = X[4];
811 Y[5] = X[5];
813 // Bb=Rbe*Be
814 Y[6] =
815 (q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) * Be[0] +
816 2.0f * (q1 * q2 + q0 * q3) * Be[1] + 2.0f * (q1 * q3 -
817 q0 * q2) * Be[2];
818 Y[7] =
819 2.0f * (q1 * q2 - q0 * q3) * Be[0] + (q0 * q0 - q1 * q1 +
820 q2 * q2 - q3 * q3) * Be[1] +
821 2.0f * (q2 * q3 + q0 * q1) * Be[2];
822 Y[8] =
823 2.0f * (q1 * q3 + q0 * q2) * Be[0] + 2.0f * (q2 * q3 -
824 q0 * q1) * Be[1] +
825 (q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) * Be[2];
827 // Alt = -Pz
828 Y[9] = -1.0f * X[2];
831 void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX])
833 float q0, q1, q2, q3;
835 q0 = X[6];
836 q1 = X[7];
837 q2 = X[8];
838 q3 = X[9];
840 // dP/dP=I;
841 H[0][0] = H[1][1] = H[2][2] = 1.0f;
842 // dV/dV=I;
843 H[3][3] = H[4][4] = H[5][5] = 1.0f;
845 // dBb/dq
846 H[6][6] = 2.0f * (q0 * Be[0] + q3 * Be[1] - q2 * Be[2]);
847 H[6][7] = 2.0f * (q1 * Be[0] + q2 * Be[1] + q3 * Be[2]);
848 H[6][8] = 2.0f * (-q2 * Be[0] + q1 * Be[1] - q0 * Be[2]);
849 H[6][9] = 2.0f * (-q3 * Be[0] + q0 * Be[1] + q1 * Be[2]);
850 H[7][6] = 2.0f * (-q3 * Be[0] + q0 * Be[1] + q1 * Be[2]);
851 H[7][7] = 2.0f * (q2 * Be[0] - q1 * Be[1] + q0 * Be[2]);
852 H[7][8] = 2.0f * (q1 * Be[0] + q2 * Be[1] + q3 * Be[2]);
853 H[7][9] = 2.0f * (-q0 * Be[0] - q3 * Be[1] + q2 * Be[2]);
854 H[8][6] = 2.0f * (q2 * Be[0] - q1 * Be[1] + q0 * Be[2]);
855 H[8][7] = 2.0f * (q3 * Be[0] - q0 * Be[1] - q1 * Be[2]);
856 H[8][8] = 2.0f * (q0 * Be[0] + q3 * Be[1] - q2 * Be[2]);
857 H[8][9] = 2.0f * (q1 * Be[0] + q2 * Be[1] + q3 * Be[2]);
859 // dAlt/dPz = -1
860 H[9][2] = -1.0f;
864 * @}
865 * @}