LP-500 HoTT Telemetry added device definitions
[librepilot.git] / flight / modules / Actuator / actuator.c
blob6ad511fdc56725908bf739cdc36842807a15bf7e
1 /**
2 ******************************************************************************
3 * @addtogroup OpenPilotModules OpenPilot Modules
4 * @{
5 * @addtogroup ActuatorModule Actuator Module
6 * @brief Compute servo/motor settings based on @ref ActuatorDesired "desired actuator positions" and aircraft type.
7 * This is where all the mixing of channels is computed.
8 * @{
10 * @file actuator.c
11 * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2015.
12 * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
13 * @brief Actuator module. Drives the actuators (servos, motors etc).
15 * @see The GNU Public License (GPL) Version 3
17 *****************************************************************************/
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 3 of the License, or
22 * (at your option) any later version.
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
26 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
35 #include <openpilot.h>
37 #include "accessorydesired.h"
38 #include "actuator.h"
39 #include "actuatorsettings.h"
40 #include "systemsettings.h"
41 #include "actuatordesired.h"
42 #include "actuatorcommand.h"
43 #include "flightstatus.h"
44 #include <flightmodesettings.h>
45 #include "mixersettings.h"
46 #include "mixerstatus.h"
47 #include "cameradesired.h"
48 #include "hwsettings.h"
49 #include "manualcontrolcommand.h"
50 #include "taskinfo.h"
51 #include <systemsettings.h>
52 #include <sanitycheck.h>
53 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
54 #include <vtolpathfollowersettings.h>
55 #endif
56 #undef PIOS_INCLUDE_INSTRUMENTATION
57 #ifdef PIOS_INCLUDE_INSTRUMENTATION
58 #include <pios_instrumentation.h>
59 static int8_t counter;
60 // Counter 0xAC700001 total Actuator body execution time(excluding queue waits etc).
61 #endif
63 // Private constants
64 #define MAX_QUEUE_SIZE 2
66 #if defined(PIOS_ACTUATOR_STACK_SIZE)
67 #define STACK_SIZE_BYTES PIOS_ACTUATOR_STACK_SIZE
68 #else
69 #define STACK_SIZE_BYTES 1312
70 #endif
72 #define TASK_PRIORITY (tskIDLE_PRIORITY + 4) // device driver
73 #define FAILSAFE_TIMEOUT_MS 100
74 #define MAX_MIX_ACTUATORS ACTUATORCOMMAND_CHANNEL_NUMELEM
76 #define CAMERA_BOOT_DELAY_MS 7000
78 #define ACTUATOR_ONESHOT_CLOCK 12000000
79 #define ACTUATOR_ONESHOT125_PULSE_FACTOR 1.5f
80 #define ACTUATOR_ONESHOT42_PULSE_FACTOR 0.5f
81 #define ACTUATOR_MULTISHOT_PULSE_FACTOR 0.24f
82 #define ACTUATOR_PWM_CLOCK 1000000
83 // Private types
86 // Private variables
87 static xQueueHandle queue;
88 static xTaskHandle taskHandle;
89 static FrameType_t frameType = FRAME_TYPE_MULTIROTOR;
90 static SystemSettingsThrustControlOptions thrustType = SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE;
91 static bool camStabEnabled;
92 static bool camControlEnabled;
94 static uint8_t pinsMode[MAX_MIX_ACTUATORS];
95 // used to inform the actuator thread that actuator update rate is changed
96 static ActuatorSettingsData actuatorSettings;
97 static bool spinWhileArmed;
99 // used to inform the actuator thread that mixer settings are changed
100 static MixerSettingsData mixerSettings;
101 static int mixer_settings_count = 2;
103 // Private functions
104 static void actuatorTask(void *parameters);
105 static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral);
106 static int16_t scaleMotor(float value, int16_t max, int16_t min, int16_t neutral, float maxMotor, float minMotor, bool armed, bool alwaysStabilizeWhenArmed, float throttleDesired);
107 static void setFailsafe();
108 static float MixerCurveFullRangeProportional(const float input, const float *curve, uint8_t elements, bool multirotor);
109 static float MixerCurveFullRangeAbsolute(const float input, const float *curve, uint8_t elements, bool multirotor);
110 static bool set_channel(uint8_t mixer_channel, uint16_t value);
111 static void actuator_update_rate_if_changed(bool force_update);
112 static void MixerSettingsUpdatedCb(UAVObjEvent *ev);
113 static void ActuatorSettingsUpdatedCb(UAVObjEvent *ev);
114 static void SettingsUpdatedCb(UAVObjEvent *ev);
115 float ProcessMixer(const int index, const float curve1, const float curve2,
116 ActuatorDesiredData *desired,
117 bool multirotor, bool fixedwing);
119 // this structure is equivalent to the UAVObjects for one mixer.
120 typedef struct {
121 uint8_t type;
122 int8_t matrix[5];
123 } __attribute__((packed)) Mixer_t;
126 * @brief Module initialization
127 * @return 0
129 int32_t ActuatorStart()
131 // Start main task
132 xTaskCreate(actuatorTask, "Actuator", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
133 PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_ACTUATOR, taskHandle);
134 #ifdef PIOS_INCLUDE_WDG
135 PIOS_WDG_RegisterFlag(PIOS_WDG_ACTUATOR);
136 #endif
137 SettingsUpdatedCb(NULL);
138 MixerSettingsUpdatedCb(NULL);
139 ActuatorSettingsUpdatedCb(NULL);
140 return 0;
144 * @brief Module initialization
145 * @return 0
147 int32_t ActuatorInitialize()
149 // Register for notification of changes to ActuatorSettings
150 ActuatorSettingsInitialize();
151 ActuatorSettingsConnectCallback(ActuatorSettingsUpdatedCb);
153 // Register for notification of changes to MixerSettings
154 MixerSettingsInitialize();
155 MixerSettingsConnectCallback(MixerSettingsUpdatedCb);
157 // Listen for ActuatorDesired updates (Primary input to this module)
158 ActuatorDesiredInitialize();
159 queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
160 ActuatorDesiredConnectQueue(queue);
162 // Register AccessoryDesired (Secondary input to this module)
163 AccessoryDesiredInitialize();
165 // Check if CameraStab module is enabled
166 HwSettingsOptionalModulesData optionalModules;
167 HwSettingsInitialize();
168 HwSettingsOptionalModulesGet(&optionalModules);
169 camStabEnabled = (optionalModules.CameraStab == HWSETTINGS_OPTIONALMODULES_ENABLED);
170 camControlEnabled = (optionalModules.CameraControl == HWSETTINGS_OPTIONALMODULES_ENABLED);
171 // Primary output of this module
172 ActuatorCommandInitialize();
174 #ifdef DIAG_MIXERSTATUS
175 // UAVO only used for inspecting the internal status of the mixer during debug
176 MixerStatusInitialize();
177 #endif
179 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
180 VtolPathFollowerSettingsInitialize();
181 VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
182 #endif
183 SystemSettingsInitialize();
184 SystemSettingsConnectCallback(&SettingsUpdatedCb);
186 return 0;
188 MODULE_INITCALL(ActuatorInitialize, ActuatorStart);
191 * @brief Main Actuator module task
193 * Universal matrix based mixer for VTOL, helis and fixed wing.
194 * Converts desired roll,pitch,yaw and throttle to servo/ESC outputs.
196 * Because of how the Throttle ranges from 0 to 1, the motors should too!
198 * Note this code depends on the UAVObjects for the mixers being all being the same
199 * and in sequence. If you change the object definition, make sure you check the code!
201 * @return -1 if error, 0 if success
203 static void actuatorTask(__attribute__((unused)) void *parameters)
205 UAVObjEvent ev;
206 portTickType lastSysTime;
207 portTickType thisSysTime;
208 uint32_t dTMilliseconds;
210 ActuatorCommandData command;
211 ActuatorDesiredData desired;
212 MixerStatusData mixerStatus;
213 FlightModeSettingsData settings;
214 FlightStatusData flightStatus;
215 float throttleDesired;
216 float collectiveDesired;
218 #ifdef PIOS_INCLUDE_INSTRUMENTATION
219 counter = PIOS_Instrumentation_CreateCounter(0xAC700001);
220 #endif
221 /* Read initial values of ActuatorSettings */
223 ActuatorSettingsGet(&actuatorSettings);
225 /* Read initial values of MixerSettings */
226 MixerSettingsGet(&mixerSettings);
228 /* Force an initial configuration of the actuator update rates */
229 actuator_update_rate_if_changed(true);
231 // Go to the neutral (failsafe) values until an ActuatorDesired update is received
232 setFailsafe();
234 // Main task loop
235 lastSysTime = xTaskGetTickCount();
236 while (1) {
237 #ifdef PIOS_INCLUDE_WDG
238 PIOS_WDG_UpdateFlag(PIOS_WDG_ACTUATOR);
239 #endif
241 // Wait until the ActuatorDesired object is updated
242 uint8_t rc = xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS);
243 #ifdef PIOS_INCLUDE_INSTRUMENTATION
244 PIOS_Instrumentation_TimeStart(counter);
245 #endif
247 if (rc != pdTRUE) {
248 /* Update of ActuatorDesired timed out. Go to failsafe */
249 setFailsafe();
250 continue;
253 // Check how long since last update
254 thisSysTime = xTaskGetTickCount();
255 dTMilliseconds = (thisSysTime == lastSysTime) ? 1 : (thisSysTime - lastSysTime) * portTICK_RATE_MS;
256 lastSysTime = thisSysTime;
258 FlightStatusGet(&flightStatus);
259 FlightModeSettingsGet(&settings);
260 ActuatorDesiredGet(&desired);
261 ActuatorCommandGet(&command);
263 // read in throttle and collective -demultiplex thrust
264 switch (thrustType) {
265 case SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE:
266 throttleDesired = desired.Thrust;
267 ManualControlCommandCollectiveGet(&collectiveDesired);
268 break;
269 case SYSTEMSETTINGS_THRUSTCONTROL_COLLECTIVE:
270 ManualControlCommandThrottleGet(&throttleDesired);
271 collectiveDesired = desired.Thrust;
272 break;
273 default:
274 ManualControlCommandThrottleGet(&throttleDesired);
275 ManualControlCommandCollectiveGet(&collectiveDesired);
278 bool armed = flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED;
279 bool activeThrottle = (throttleDesired < -0.001f || throttleDesired > 0.001f); // for ground and reversible motors
280 bool positiveThrottle = (throttleDesired > 0.00f);
281 bool multirotor = (GetCurrentFrameType() == FRAME_TYPE_MULTIROTOR); // check if frame is a multirotor.
282 bool fixedwing = (GetCurrentFrameType() == FRAME_TYPE_FIXED_WING); // check if frame is a fixedwing.
283 bool alwaysArmed = settings.Arming == FLIGHTMODESETTINGS_ARMING_ALWAYSARMED;
284 bool alwaysStabilizeWhenArmed = flightStatus.AlwaysStabilizeWhenArmed == FLIGHTSTATUS_ALWAYSSTABILIZEWHENARMED_TRUE;
286 if (alwaysArmed) {
287 alwaysStabilizeWhenArmed = false; // Do not allow always stabilize when alwaysArmed is active. This is dangerous.
289 // safety settings
290 if (!armed) {
291 throttleDesired = 0.00f; // this also happens in scaleMotors as a per axis check
294 if ((frameType == FRAME_TYPE_GROUND && !activeThrottle) || (frameType != FRAME_TYPE_GROUND && throttleDesired <= 0.00f) || !armed) {
295 // throttleDesired should never be 0 or go below 0.
296 // force set all other controls to zero if throttle is cut (previously set in Stabilization)
297 // todo: can probably remove this
298 if (!(multirotor && alwaysStabilizeWhenArmed && armed)) { // we don't do this if this is a multirotor AND AlwaysStabilizeWhenArmed is true and the model is armed
299 if (actuatorSettings.LowThrottleZeroAxis.Roll == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
300 desired.Roll = 0.00f;
302 if (actuatorSettings.LowThrottleZeroAxis.Pitch == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
303 desired.Pitch = 0.00f;
305 if (actuatorSettings.LowThrottleZeroAxis.Yaw == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
306 desired.Yaw = 0.00f;
311 #ifdef DIAG_MIXERSTATUS
312 MixerStatusGet(&mixerStatus);
313 #endif
315 if ((mixer_settings_count < 2) && !ActuatorCommandReadOnly()) { // Nothing can fly with less than two mixers.
316 setFailsafe();
317 continue;
320 AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
322 float curve1 = 0.0f; // curve 1 is the throttle curve applied to all motors.
323 float curve2 = 0.0f;
325 // Interpolate curve 1 from throttleDesired as input.
326 // assume reversible motor/mixer initially. We can later reverse this. The difference is simply that -ve throttleDesired values
327 // map differently
328 curve1 = MixerCurveFullRangeProportional(throttleDesired, mixerSettings.ThrottleCurve1, MIXERSETTINGS_THROTTLECURVE1_NUMELEM, multirotor);
330 // The source for the secondary curve is selectable
331 AccessoryDesiredData accessory;
332 uint8_t curve2Source = mixerSettings.Curve2Source;
333 switch (curve2Source) {
334 case MIXERSETTINGS_CURVE2SOURCE_THROTTLE:
335 // assume reversible motor/mixer initially
336 curve2 = MixerCurveFullRangeProportional(throttleDesired, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
337 break;
338 case MIXERSETTINGS_CURVE2SOURCE_ROLL:
339 // Throttle curve contribution the same for +ve vs -ve roll
340 if (multirotor) {
341 curve2 = MixerCurveFullRangeProportional(desired.Roll, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
342 } else {
343 curve2 = MixerCurveFullRangeAbsolute(desired.Roll, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
345 break;
346 case MIXERSETTINGS_CURVE2SOURCE_PITCH:
347 // Throttle curve contribution the same for +ve vs -ve pitch
348 if (multirotor) {
349 curve2 = MixerCurveFullRangeProportional(desired.Pitch, mixerSettings.ThrottleCurve2,
350 MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
351 } else {
352 curve2 = MixerCurveFullRangeAbsolute(desired.Pitch, mixerSettings.ThrottleCurve2,
353 MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
355 break;
356 case MIXERSETTINGS_CURVE2SOURCE_YAW:
357 // Throttle curve contribution the same for +ve vs -ve yaw
358 if (multirotor) {
359 curve2 = MixerCurveFullRangeProportional(desired.Yaw, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
360 } else {
361 curve2 = MixerCurveFullRangeAbsolute(desired.Yaw, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
363 break;
364 case MIXERSETTINGS_CURVE2SOURCE_COLLECTIVE:
365 // assume reversible motor/mixer initially
366 curve2 = MixerCurveFullRangeProportional(collectiveDesired, mixerSettings.ThrottleCurve2,
367 MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
368 break;
369 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0:
370 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY1:
371 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY2:
372 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY3:
373 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY4:
374 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY5:
375 if (AccessoryDesiredInstGet(mixerSettings.Curve2Source - MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0, &accessory) == 0) {
376 // Throttle curve contribution the same for +ve vs -ve accessory....maybe not want we want.
377 curve2 = MixerCurveFullRangeAbsolute(accessory.AccessoryVal, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
378 } else {
379 curve2 = 0.0f;
381 break;
382 default:
383 curve2 = 0.0f;
384 break;
387 float *status = (float *)&mixerStatus; // access status objects as an array of floats
388 Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
389 float maxMotor = -1.0f; // highest motor value. Addition method needs this to be -1.0f, division method needs this to be 1.0f
390 float minMotor = 1.0f; // lowest motor value Addition method needs this to be 1.0f, division method needs this to be -1.0f
392 for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
393 // During boot all camera actuators should be completely disabled (PWM pulse = 0).
394 // command.Channel[i] is reused below as a channel PWM activity flag:
395 // 0 - PWM disabled, >0 - PWM set to real mixer value using scaleChannel() later.
396 // Setting it to 1 by default means "Rescale this channel and enable PWM on its output".
397 command.Channel[ct] = 1;
399 uint8_t mixer_type = mixers[ct].type;
401 if (mixer_type == MIXERSETTINGS_MIXER1TYPE_DISABLED) {
402 // Set to minimum if disabled. This is not the same as saying PWM pulse = 0 us
403 status[ct] = -1;
404 continue;
407 if ((mixer_type == MIXERSETTINGS_MIXER1TYPE_MOTOR)) {
408 float nonreversible_curve1 = curve1;
409 float nonreversible_curve2 = curve2;
410 if (nonreversible_curve1 < 0.0f) {
411 nonreversible_curve1 = 0.0f;
413 if (nonreversible_curve2 < 0.0f) {
414 if (!multirotor) { // allow negative throttle if multirotor. function scaleMotors handles the sanity checks.
415 nonreversible_curve2 = 0.0f;
418 status[ct] = ProcessMixer(ct, nonreversible_curve1, nonreversible_curve2, &desired, multirotor, fixedwing);
419 // If not armed or motors aren't meant to spin all the time
420 if (!armed ||
421 (!spinWhileArmed && !positiveThrottle)) {
422 status[ct] = -1; // force min throttle
424 // If armed meant to keep spinning,
425 else if ((spinWhileArmed && !positiveThrottle) ||
426 (status[ct] < 0)) {
427 if (!multirotor) {
428 status[ct] = 0;
429 // allow throttle values lower than 0 if multirotor.
430 // Values will be scaled to 0 if they need to be in the scaleMotor function
433 } else if (mixer_type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
434 status[ct] = ProcessMixer(ct, curve1, curve2, &desired, multirotor, fixedwing);
435 // Reversable Motors are like Motors but go to neutral instead of minimum
436 // If not armed or motor is inactive - no "spinwhilearmed" for this engine type
437 if (!armed || !activeThrottle) {
438 status[ct] = 0; // force neutral throttle
440 } else if (mixer_type == MIXERSETTINGS_MIXER1TYPE_SERVO) {
441 status[ct] = ProcessMixer(ct, curve1, curve2, &desired, multirotor, fixedwing);
442 } else {
443 status[ct] = -1;
445 // If an accessory channel is selected for direct bypass mode
446 // In this configuration the accessory channel is scaled and mapped
447 // directly to output. Note: THERE IS NO SAFETY CHECK HERE FOR ARMING
448 // these also will not be updated in failsafe mode. I'm not sure what
449 // the correct behavior is since it seems domain specific. I don't love
450 // this code
451 if ((mixer_type >= MIXERSETTINGS_MIXER1TYPE_ACCESSORY0) &&
452 (mixer_type <= MIXERSETTINGS_MIXER1TYPE_ACCESSORY5)) {
453 if (AccessoryDesiredInstGet(mixer_type - MIXERSETTINGS_MIXER1TYPE_ACCESSORY0, &accessory) == 0) {
454 status[ct] = accessory.AccessoryVal;
455 } else {
456 status[ct] = -1;
460 if ((mixer_type >= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1) &&
461 (mixer_type <= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW)) {
462 if (camStabEnabled) {
463 CameraDesiredData cameraDesired;
464 CameraDesiredGet(&cameraDesired);
465 switch (mixer_type) {
466 case MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1:
467 status[ct] = cameraDesired.RollOrServo1;
468 break;
469 case MIXERSETTINGS_MIXER1TYPE_CAMERAPITCHORSERVO2:
470 status[ct] = cameraDesired.PitchOrServo2;
471 break;
472 case MIXERSETTINGS_MIXER1TYPE_CAMERAYAW:
473 status[ct] = cameraDesired.Yaw;
474 break;
475 default:
476 break;
478 } else {
479 status[ct] = -1;
482 // Disable camera actuators for CAMERA_BOOT_DELAY_MS after boot
483 if (thisSysTime < (CAMERA_BOOT_DELAY_MS / portTICK_RATE_MS)) {
484 command.Channel[ct] = 0;
488 if (mixer_type == MIXERSETTINGS_MIXER1TYPE_CAMERATRIGGER) {
489 if (camControlEnabled) {
490 CameraDesiredTriggerGet(&status[ct]);
491 } else {
492 status[ct] = 0;
497 // If mixer type is motor we need to find which motor has the highest value and which motor has the lowest value.
498 // For use in function scaleMotor
499 if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
500 if (maxMotor < status[ct]) {
501 maxMotor = status[ct];
503 if (minMotor > status[ct]) {
504 minMotor = status[ct];
509 // Set real actuator output values scaling them from mixers. All channels
510 // will be set except explicitly disabled (which will have PWM pulse = 0).
511 for (int i = 0; i < MAX_MIX_ACTUATORS; i++) {
512 if (command.Channel[i]) {
513 if (mixers[i].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) { // If mixer is for a motor we need to find the highest value of all motors
514 command.Channel[i] = scaleMotor(status[i],
515 actuatorSettings.ChannelMax[i],
516 actuatorSettings.ChannelMin[i],
517 actuatorSettings.ChannelNeutral[i],
518 maxMotor,
519 minMotor,
520 armed,
521 alwaysStabilizeWhenArmed,
522 throttleDesired);
523 } else { // else we scale the channel
524 command.Channel[i] = scaleChannel(status[i],
525 actuatorSettings.ChannelMax[i],
526 actuatorSettings.ChannelMin[i],
527 actuatorSettings.ChannelNeutral[i]);
532 // Store update time
533 command.UpdateTime = dTMilliseconds;
534 if (command.UpdateTime > command.MaxUpdateTime) {
535 command.MaxUpdateTime = command.UpdateTime;
537 // Update output object
538 ActuatorCommandSet(&command);
539 // Update in case read only (eg. during servo configuration)
540 ActuatorCommandGet(&command);
542 #ifdef DIAG_MIXERSTATUS
543 MixerStatusSet(&mixerStatus);
544 #endif
547 // Update servo outputs
548 bool success = true;
550 for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
551 success &= set_channel(n, command.Channel[n]);
554 PIOS_Servo_Update();
556 if (!success) {
557 command.NumFailedUpdates++;
558 ActuatorCommandSet(&command);
559 AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
561 #ifdef PIOS_INCLUDE_INSTRUMENTATION
562 PIOS_Instrumentation_TimeEnd(counter);
563 #endif
569 * Process mixing for one actuator
571 float ProcessMixer(const int index, const float curve1, const float curve2,
572 ActuatorDesiredData *desired, bool multirotor, bool fixedwing)
574 const Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type; // pointer to array of mixers in UAVObjects
575 const Mixer_t *mixer = &mixers[index];
576 float differential = 1.0f;
578 // Apply differential only for fixedwing and Roll servos
579 if (fixedwing && (mixerSettings.FirstRollServo > 0) &&
580 (mixer->type == MIXERSETTINGS_MIXER1TYPE_SERVO) &&
581 (mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_ROLL] != 0)) {
582 // Positive differential
583 if (mixerSettings.RollDifferential > 0) {
584 // Check for first Roll servo (should be left aileron or elevon) and Roll desired (positive/negative)
585 if (((index == mixerSettings.FirstRollServo - 1) && (desired->Roll > 0.0f))
586 || ((index != mixerSettings.FirstRollServo - 1) && (desired->Roll < 0.0f))) {
587 differential -= (mixerSettings.RollDifferential * 0.01f);
589 } else if (mixerSettings.RollDifferential < 0) {
590 if (((index == mixerSettings.FirstRollServo - 1) && (desired->Roll < 0.0f))
591 || ((index != mixerSettings.FirstRollServo - 1) && (desired->Roll > 0.0f))) {
592 differential -= (-mixerSettings.RollDifferential * 0.01f);
597 float result = ((((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE1]) * curve1) +
598 (((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE2]) * curve2) +
599 (((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_ROLL]) * desired->Roll * differential) +
600 (((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_PITCH]) * desired->Pitch) +
601 (((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_YAW]) * desired->Yaw)) / 128.0f;
603 if (mixer->type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
604 if (!multirotor) { // we allow negative throttle with a multirotor
605 if (result < 0.0f) { // zero throttle
606 result = 0.0f;
611 return result;
616 * Interpolate a throttle curve
617 * Full range input (-1 to 1) for yaw, roll, pitch
618 * Output range (-1 to 1) reversible motor/throttle curve
620 * Input of -1 -> -lookup(1)
621 * Input of 0 -> lookup(0)
622 * Input of 1 -> lookup(1)
624 static float MixerCurveFullRangeProportional(const float input, const float *curve, uint8_t elements, bool multirotor)
626 float unsigned_value = MixerCurveFullRangeAbsolute(input, curve, elements, multirotor);
628 if (input < 0.0f) {
629 return -unsigned_value;
630 } else {
631 return unsigned_value;
636 * Interpolate a throttle curve
637 * Full range input (-1 to 1) for yaw, roll, pitch
638 * Output range (0 to 1) non-reversible motor/throttle curve
640 * Input of -1 -> lookup(1)
641 * Input of 0 -> lookup(0)
642 * Input of 1 -> lookup(1)
644 static float MixerCurveFullRangeAbsolute(const float input, const float *curve, uint8_t elements, bool multirotor)
646 float abs_input = fabsf(input);
647 float scale = abs_input * (float)(elements - 1);
648 int idx1 = scale;
650 scale -= (float)idx1; // remainder
651 if (curve[0] < -1) {
652 return abs_input;
654 int idx2 = idx1 + 1;
655 if (idx2 >= elements) {
656 idx2 = elements - 1; // clamp to highest entry in table
657 if (idx1 >= elements) {
658 if (multirotor) {
659 // if multirotor frame we can return throttle values higher than 100%.
660 // Since the we don't have elements in the curve higher than 100% we return
661 // the last element multiplied by the throttle float
662 if (input < 2.0f) { // this limits positive throttle to 200% of max value in table (Maybe this is too much allowance)
663 return curve[idx2] * input;
664 } else {
665 return curve[idx2] * 2.0f; // return 200% of max value in table
668 idx1 = elements - 1;
672 float unsigned_value = curve[idx1] * (1.0f - scale) + curve[idx2] * scale;
673 return unsigned_value;
678 * Convert channel from -1/+1 to servo pulse duration in microseconds
680 static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral)
682 int16_t valueScaled;
684 // Scale
685 if (value >= 0.0f) {
686 valueScaled = (int16_t)(value * ((float)(max - neutral))) + neutral;
687 } else {
688 valueScaled = (int16_t)(value * ((float)(neutral - min))) + neutral;
691 if (max > min) {
692 if (valueScaled > max) {
693 valueScaled = max;
695 if (valueScaled < min) {
696 valueScaled = min;
698 } else {
699 if (valueScaled < max) {
700 valueScaled = max;
702 if (valueScaled > min) {
703 valueScaled = min;
707 return valueScaled;
711 * Move and compress all motor outputs so that none goes below neutral,
712 * and all motors are below or equal to max.
714 static inline int16_t scaleMotorMoveAndCompress(float valueMotor, int16_t max, int16_t neutral, float maxMotor, float minMotor)
716 // The valueMotor parameter is the desired motor value somewhere in the
717 // [minMotor, maxMotor] range, which is [< -1.00, > 1.00].
719 // Before converting valueMotor to the [neutral, max] range, we scale
720 // valueMotor to a value in the [0.0f, 1.0f] range.
722 // This is done by, first, conceptually moving all three values valueMotor,
723 // minMotor, and maxMotor, equally so that the [minMotor, maxMotor] range,
724 // are contained or overlaps with the [0.0f, 1.0f] range.
726 // Then if the [minMotor, maxMotor] range is larger than 1.0f, the values
727 // are compressed enough to shrink the [minMotor + move, maxMotor + move]
728 // range to fit within the [0.0f, 1.0f] range.
730 // First move the values so that the source range [minMotor, maxMotor]
731 // covers the target range [0.0f, 1.0f] as much as possible.
732 float moveValue = 0.0f;
734 if (minMotor <= 0.0f) {
735 // Negative minMotor always adjust to 0.
736 moveValue = -minMotor;
737 } else if (maxMotor > 1.0f) {
738 // A too large maxMotor value adjust the range down towards, but not past, the minMotor value.
739 float beyondMax = maxMotor - 1.0f;
740 moveValue = -(beyondMax < minMotor ? beyondMax : minMotor);
743 // Then calculate the compress value, if the source range is greater than 1.0f.
744 float compressValue = 1.0f;
746 float rangeMotor = maxMotor - minMotor;
747 if (rangeMotor > 1.0f) {
748 compressValue = rangeMotor;
751 // Combine the movement and compression, to get the value within [0.0f, 1.0f]
752 float movedAndCompressedValue = (valueMotor + moveValue) / compressValue;
754 // And last, convert the value into the [neutral, max] range.
755 int16_t valueScaled = movedAndCompressedValue * ((float)(max - neutral)) + neutral;
757 if (valueScaled > max) {
758 valueScaled = max; // clamp to max value only after scaling is done.
761 PIOS_Assert(valueScaled >= neutral);
763 return valueScaled;
767 * Constrain motor values to keep any one motor value from going too far out of range of another motor
769 static int16_t scaleMotor(float value, int16_t max, int16_t min, int16_t neutral, float maxMotor, float minMotor, bool armed, bool alwaysStabilizeWhenArmed, float throttleDesired)
771 int16_t valueScaled;
773 if (max > min) {
774 valueScaled = scaleMotorMoveAndCompress(value, max, neutral, maxMotor, minMotor);
775 } else {
776 // not sure what to do about reversed polarity right now. Why would anyone do this?
777 valueScaled = scaleChannel(value, max, min, neutral);
780 // I've added the bool alwaysStabilizeWhenArmed to this function. Right now we command the motors at min or a range between neutral and max.
781 // NEVER should a motor be command at between min and neutral. I don't like the idea of stabilization ever commanding a motor to min, but we give people the option
782 // This prevents motors startup sync issues causing possible ESC failures.
784 // safety checks
785 if (!armed) {
786 // if not armed return min EVERYTIME!
787 valueScaled = min;
788 } else if (!alwaysStabilizeWhenArmed && (throttleDesired <= 0.0f) && spinWhileArmed) {
789 // all motors idle is alwaysStabilizeWhenArmed is false, throttle is less than or equal to neutral and spin while armed
790 // stabilize when armed?
791 valueScaled = neutral;
792 } else if (!spinWhileArmed && (throttleDesired <= 0.0f)) {
793 // soft disarm
794 valueScaled = min;
797 return valueScaled;
801 * Set actuator output to the neutral values (failsafe)
803 static void setFailsafe()
805 /* grab only the parts that we are going to use */
806 int16_t Channel[ACTUATORCOMMAND_CHANNEL_NUMELEM];
808 ActuatorCommandChannelGet(Channel);
810 const Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type; // pointer to array of mixers in UAVObjects
812 // Reset ActuatorCommand to safe values
813 for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
814 if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
815 Channel[n] = actuatorSettings.ChannelMin[n];
816 } else if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_SERVO || mixers[n].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
817 // reversible motors need calibration wizard that allows channel neutral to be the 0 velocity point
818 Channel[n] = actuatorSettings.ChannelNeutral[n];
819 } else {
820 Channel[n] = 0;
824 // Set alarm
825 AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
827 // Update servo outputs
828 for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
829 set_channel(n, Channel[n]);
831 // Send the updated command
832 PIOS_Servo_Update();
834 // Update output object's parts that we changed
835 ActuatorCommandChannelSet(Channel);
839 * determine buzzer or blink sequence
842 typedef enum { BUZZ_BUZZER = 0, BUZZ_ARMING = 1, BUZZ_INFO = 2, BUZZ_MAX = 3 } buzzertype;
844 static inline bool buzzerState(buzzertype type)
846 // This is for buzzers that take a PWM input
848 static uint32_t tune[BUZZ_MAX] = { 0 };
849 static uint32_t tunestate[BUZZ_MAX] = { 0 };
852 uint32_t newTune = 0;
854 if (type == BUZZ_BUZZER) {
855 // Decide what tune to play
856 if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY) > SYSTEMALARMS_ALARM_WARNING) {
857 newTune = 0b11110110110000; // pause, short, short, short, long
858 } else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS) >= SYSTEMALARMS_ALARM_WARNING) {
859 newTune = 0x80000000; // pause, short
860 } else {
861 newTune = 0;
863 } else { // BUZZ_ARMING || BUZZ_INFO
864 uint8_t arming;
865 FlightStatusArmedGet(&arming);
866 // base idle tune
867 newTune = 0x80000000; // 0b1000...
869 // Merge the error pattern for InfoLed
870 if (type == BUZZ_INFO) {
871 if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY) > SYSTEMALARMS_ALARM_WARNING) {
872 newTune |= 0b00000000001111111011111110000000;
873 } else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS) >= SYSTEMALARMS_ALARM_WARNING) {
874 newTune |= 0b00000000000000110110110000000000;
877 // fast double blink pattern if armed
878 if (arming == FLIGHTSTATUS_ARMED_ARMED) {
879 newTune |= 0xA0000000; // 0b101000...
883 // Do we need to change tune?
884 if (newTune != tune[type]) {
885 tune[type] = newTune;
886 // resynchronize all tunes on change, so they stay in sync
887 for (int i = 0; i < BUZZ_MAX; i++) {
888 tunestate[i] = tune[i];
892 // Play tune
893 bool buzzOn = false;
894 static portTickType lastSysTime = 0;
895 portTickType thisSysTime = xTaskGetTickCount();
896 portTickType dT = 0;
898 // For now, only look at the battery alarm, because functions like AlarmsHasCritical() can block for some time; to be discussed
899 if (tune[type]) {
900 if (thisSysTime > lastSysTime) {
901 dT = thisSysTime - lastSysTime;
902 } else {
903 lastSysTime = 0; // avoid the case where SysTimeMax-lastSysTime <80
906 buzzOn = (tunestate[type] & 1);
908 if (dT > 80) {
909 // Go to next bit in alarm_seq_state
910 for (int i = 0; i < BUZZ_MAX; i++) {
911 tunestate[i] >>= 1;
912 if (tunestate[i] == 0) { // All done, re-start the tune
913 tunestate[i] = tune[i];
916 lastSysTime = thisSysTime;
919 return buzzOn;
923 #if defined(ARCH_POSIX) || defined(ARCH_WIN32)
924 static bool set_channel(uint8_t mixer_channel, uint16_t value)
926 return true;
928 #else
929 static bool set_channel(uint8_t mixer_channel, uint16_t value)
931 switch (actuatorSettings.ChannelType[mixer_channel]) {
932 case ACTUATORSETTINGS_CHANNELTYPE_PWMALARMBUZZER:
933 PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
934 buzzerState(BUZZ_BUZZER) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
935 return true;
937 case ACTUATORSETTINGS_CHANNELTYPE_ARMINGLED:
938 PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
939 buzzerState(BUZZ_ARMING) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
940 return true;
942 case ACTUATORSETTINGS_CHANNELTYPE_INFOLED:
943 PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
944 buzzerState(BUZZ_INFO) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
945 return true;
947 case ACTUATORSETTINGS_CHANNELTYPE_PWM:
949 uint8_t mode = pinsMode[actuatorSettings.ChannelAddr[mixer_channel]];
950 switch (mode) {
951 case ACTUATORSETTINGS_BANKMODE_ONESHOT125:
952 // Remap 1000-2000 range to 125-250µs
953 PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value * ACTUATOR_ONESHOT125_PULSE_FACTOR);
954 break;
955 case ACTUATORSETTINGS_BANKMODE_ONESHOT42:
956 // Remap 1000-2000 range to 41,666-83,333µs
957 PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value * ACTUATOR_ONESHOT42_PULSE_FACTOR);
958 break;
959 case ACTUATORSETTINGS_BANKMODE_MULTISHOT:
960 // Remap 1000-2000 range to 5-25µs
961 PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], (value * ACTUATOR_MULTISHOT_PULSE_FACTOR) - 180);
962 break;
963 default:
964 PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value);
965 break;
967 return true;
970 #if defined(PIOS_INCLUDE_I2C_ESC)
971 case ACTUATORSETTINGS_CHANNELTYPE_MK:
972 return PIOS_SetMKSpeed(actuatorSettings->ChannelAddr[mixer_channel], value);
974 case ACTUATORSETTINGS_CHANNELTYPE_ASTEC4:
975 return PIOS_SetAstec4Speed(actuatorSettings->ChannelAddr[mixer_channel], value);
977 #endif
978 default:
979 return false;
982 return false;
984 #endif /* if defined(ARCH_POSIX) || defined(ARCH_WIN32) */
987 * @brief Update the servo update rate
989 static void actuator_update_rate_if_changed(bool force_update)
991 static uint16_t prevBankUpdateFreq[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM];
992 static uint8_t prevBankMode[ACTUATORSETTINGS_BANKMODE_NUMELEM];
993 bool updateMode = force_update || (memcmp(prevBankMode, actuatorSettings.BankMode, sizeof(prevBankMode)) != 0);
994 bool updateFreq = force_update || (memcmp(prevBankUpdateFreq, actuatorSettings.BankUpdateFreq, sizeof(prevBankUpdateFreq)) != 0);
996 // check if any setting is changed
997 if (updateMode || updateFreq) {
998 /* Something has changed, apply the settings to HW */
1000 uint16_t freq[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM];
1001 uint32_t clock[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM] = { 0 };
1002 for (uint8_t i = 0; i < ACTUATORSETTINGS_BANKMODE_NUMELEM; i++) {
1003 if (force_update || (actuatorSettings.BankMode[i] != prevBankMode[i])) {
1004 PIOS_Servo_SetBankMode(i,
1005 actuatorSettings.BankMode[i] ==
1006 ACTUATORSETTINGS_BANKMODE_PWM ?
1007 PIOS_SERVO_BANK_MODE_PWM :
1008 PIOS_SERVO_BANK_MODE_SINGLE_PULSE
1011 switch (actuatorSettings.BankMode[i]) {
1012 case ACTUATORSETTINGS_BANKMODE_ONESHOT125:
1013 case ACTUATORSETTINGS_BANKMODE_ONESHOT42:
1014 case ACTUATORSETTINGS_BANKMODE_MULTISHOT:
1015 freq[i] = 100; // Value must be small enough so CCr isn't update until the PIOS_Servo_Update is triggered
1016 clock[i] = ACTUATOR_ONESHOT_CLOCK; // Setup an 12MHz timer clock
1017 break;
1018 case ACTUATORSETTINGS_BANKMODE_PWMSYNC:
1019 freq[i] = 100;
1020 clock[i] = ACTUATOR_PWM_CLOCK;
1021 break;
1022 default: // PWM
1023 freq[i] = actuatorSettings.BankUpdateFreq[i];
1024 clock[i] = ACTUATOR_PWM_CLOCK;
1025 break;
1029 memcpy(prevBankMode,
1030 actuatorSettings.BankMode,
1031 sizeof(prevBankMode));
1033 PIOS_Servo_SetHz(freq, clock, ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM);
1035 memcpy(prevBankUpdateFreq,
1036 actuatorSettings.BankUpdateFreq,
1037 sizeof(prevBankUpdateFreq));
1038 // retrieve mode from related bank
1039 for (uint8_t i = 0; i < MAX_MIX_ACTUATORS; i++) {
1040 uint8_t bank = PIOS_Servo_GetPinBank(i);
1041 pinsMode[i] = actuatorSettings.BankMode[bank];
1046 static void ActuatorSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
1048 ActuatorSettingsGet(&actuatorSettings);
1049 spinWhileArmed = actuatorSettings.MotorsSpinWhileArmed == ACTUATORSETTINGS_MOTORSSPINWHILEARMED_TRUE;
1050 if (frameType == FRAME_TYPE_GROUND) {
1051 spinWhileArmed = false;
1053 actuator_update_rate_if_changed(false);
1056 static void MixerSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
1058 MixerSettingsGet(&mixerSettings);
1059 mixer_settings_count = 0;
1060 Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
1061 for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
1062 if (mixers[ct].type != MIXERSETTINGS_MIXER1TYPE_DISABLED) {
1063 mixer_settings_count++;
1067 static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
1069 frameType = GetCurrentFrameType();
1070 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
1071 uint8_t TreatCustomCraftAs;
1072 VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs);
1074 if (frameType == FRAME_TYPE_CUSTOM) {
1075 switch (TreatCustomCraftAs) {
1076 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
1077 frameType = FRAME_TYPE_FIXED_WING;
1078 break;
1079 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
1080 frameType = FRAME_TYPE_MULTIROTOR;
1081 break;
1082 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
1083 frameType = FRAME_TYPE_GROUND;
1084 break;
1087 #endif
1089 SystemSettingsThrustControlGet(&thrustType);
1093 * @}
1094 * @}