LP-500 HoTT Telemetry added device definitions
[librepilot.git] / flight / modules / Stabilization / outerloop.c
blob9fc3c6e4aee3c66ec43d4a449ff4c1dd1ffa17ae
1 /**
2 ******************************************************************************
3 * @addtogroup OpenPilotModules OpenPilot Modules
4 * @{
5 * @addtogroup StabilizationModule Stabilization Module
6 * @brief Stabilization PID loops in an airframe type independent manner
7 * @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
8 * PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State"
9 * @{
11 * @file outerloop.c
12 * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2015.
13 * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
14 * @brief Attitude stabilization module.
16 * @see The GNU Public License (GPL) Version 3
18 *****************************************************************************/
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 3 of the License, or
23 * (at your option) any later version.
25 * This program is distributed in the hope that it will be useful, but
26 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
27 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
28 * for more details.
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
35 #include <openpilot.h>
36 #include <pid.h>
37 #include <callbackinfo.h>
38 #include <ratedesired.h>
39 #include <stabilizationdesired.h>
40 #include <attitudestate.h>
41 #include <stabilizationstatus.h>
42 #include <flightstatus.h>
43 #include <manualcontrolcommand.h>
44 #include <stabilizationbank.h>
47 #include <stabilization.h>
48 #include <cruisecontrol.h>
49 #include <altitudeloop.h>
50 #include <CoordinateConversions.h>
52 // Private constants
54 #define CALLBACK_PRIORITY CALLBACK_PRIORITY_REGULAR
56 #define UPDATE_EXPECTED (1.0f / PIOS_SENSOR_RATE)
57 #define UPDATE_MIN 1.0e-6f
58 #define UPDATE_MAX 1.0f
59 #define UPDATE_ALPHA 1.0e-2f
61 // Private variables
62 static DelayedCallbackInfo *callbackHandle;
63 static AttitudeStateData attitude;
65 static uint8_t previous_mode[AXES] = { 255, 255, 255, 255 };
66 static PiOSDeltatimeConfig timeval;
67 static bool pitchMin = false;
68 static bool pitchMax = false;
69 static bool rollMin = false;
70 static bool rollMax = false;
72 // Private functions
73 static void stabilizationOuterloopTask();
74 static void AttitudeStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
76 void stabilizationOuterloopInit()
78 RateDesiredInitialize();
79 StabilizationDesiredInitialize();
80 AttitudeStateInitialize();
81 StabilizationStatusInitialize();
82 FlightStatusInitialize();
83 ManualControlCommandInitialize();
85 PIOS_DELTATIME_Init(&timeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
87 callbackHandle = PIOS_CALLBACKSCHEDULER_Create(&stabilizationOuterloopTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_STABILIZATION0, STACK_SIZE_BYTES);
88 AttitudeStateConnectCallback(AttitudeStateUpdatedCb);
92 /**
93 * WARNING! This callback executes with critical flight control priority every
94 * time a gyroscope update happens do NOT put any time consuming calculations
95 * in this loop unless they really have to execute with every gyro update
97 static void stabilizationOuterloopTask()
99 AttitudeStateData attitudeState;
100 RateDesiredData rateDesired;
101 StabilizationDesiredData stabilizationDesired;
102 StabilizationStatusOuterLoopData enabled;
104 AttitudeStateGet(&attitudeState);
105 StabilizationDesiredGet(&stabilizationDesired);
106 RateDesiredGet(&rateDesired);
107 StabilizationStatusOuterLoopGet(&enabled);
108 float *stabilizationDesiredAxis = &stabilizationDesired.Roll;
109 float *rateDesiredAxis = &rateDesired.Roll;
110 int t;
111 float dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);
112 StabilizationStatusOuterLoopOptions newThrustMode = StabilizationStatusOuterLoopToArray(enabled)[STABILIZATIONSTATUS_OUTERLOOP_THRUST];
113 bool reinit = (newThrustMode != previous_mode[STABILIZATIONSTATUS_OUTERLOOP_THRUST]);
115 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
116 // Trigger a disable message to the alt hold on reinit to prevent that loop from running when not in use.
117 if (reinit) {
118 if (previous_mode[STABILIZATIONSTATUS_OUTERLOOP_THRUST] == STABILIZATIONSTATUS_OUTERLOOP_ALTITUDE ||
119 previous_mode[STABILIZATIONSTATUS_OUTERLOOP_THRUST] == STABILIZATIONSTATUS_OUTERLOOP_ALTITUDEVARIO) {
120 if (newThrustMode != STABILIZATIONSTATUS_OUTERLOOP_ALTITUDE && newThrustMode != STABILIZATIONSTATUS_OUTERLOOP_ALTITUDEVARIO) {
121 // disable the altvario velocity control loop
122 stabilizationDisableAltitudeHold();
126 #endif
127 // update previous mode
128 previous_mode[STABILIZATIONSTATUS_OUTERLOOP_THRUST] = newThrustMode;
130 // calculate the thrust desired
131 switch (newThrustMode) {
132 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
133 case STABILIZATIONSTATUS_OUTERLOOP_ALTITUDE:
134 rateDesiredAxis[STABILIZATIONSTATUS_OUTERLOOP_THRUST] = stabilizationAltitudeHold(stabilizationDesiredAxis[STABILIZATIONSTATUS_OUTERLOOP_THRUST], ALTITUDEHOLD, reinit);
135 break;
136 case STABILIZATIONSTATUS_OUTERLOOP_ALTITUDEVARIO:
137 rateDesiredAxis[STABILIZATIONSTATUS_OUTERLOOP_THRUST] = stabilizationAltitudeHold(stabilizationDesiredAxis[STABILIZATIONSTATUS_OUTERLOOP_THRUST], ALTITUDEVARIO, reinit);
138 break;
139 #endif
140 case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
141 case STABILIZATIONSTATUS_OUTERLOOP_DIRECTWITHLIMITS:
142 default:
143 rateDesiredAxis[STABILIZATIONSTATUS_OUTERLOOP_THRUST] = stabilizationDesiredAxis[STABILIZATIONSTATUS_OUTERLOOP_THRUST];
144 break;
148 float local_error[3];
150 #if defined(PIOS_QUATERNION_STABILIZATION)
151 // Quaternion calculation of error in each axis. Uses more memory.
152 float rpy_desired[3];
153 float q_desired[4];
154 float q_error[4];
156 for (t = 0; t < 3; t++) {
157 switch (StabilizationStatusOuterLoopToArray(enabled)[t]) {
158 case STABILIZATIONSTATUS_OUTERLOOP_ATTITUDE:
159 case STABILIZATIONSTATUS_OUTERLOOP_RATTITUDE:
160 case STABILIZATIONSTATUS_OUTERLOOP_WEAKLEVELING:
161 rpy_desired[t] = stabilizationDesiredAxis[t];
162 break;
163 case STABILIZATIONSTATUS_OUTERLOOP_DIRECTWITHLIMITS:
164 case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
165 default:
166 rpy_desired[t] = ((float *)&attitudeState.Roll)[t];
167 break;
171 RPY2Quaternion(rpy_desired, q_desired);
172 quat_inverse(q_desired);
173 quat_mult(q_desired, &attitudeState.q1, q_error);
174 quat_inverse(q_error);
175 Quaternion2RPY(q_error, local_error);
177 #else /* if defined(PIOS_QUATERNION_STABILIZATION) */
178 // Simpler algorithm for CC, less memory
179 local_error[0] = stabilizationDesiredAxis[0] - attitudeState.Roll;
180 local_error[1] = stabilizationDesiredAxis[1] - attitudeState.Pitch;
181 local_error[2] = stabilizationDesiredAxis[2] - attitudeState.Yaw;
183 // find shortest way
184 float modulo = fmodf(local_error[2] + 180.0f, 360.0f);
185 if (modulo < 0) {
186 local_error[2] = modulo + 180.0f;
187 } else {
188 local_error[2] = modulo - 180.0f;
190 #endif /* if defined(PIOS_QUATERNION_STABILIZATION) */
194 for (t = STABILIZATIONSTATUS_OUTERLOOP_ROLL; t < STABILIZATIONSTATUS_OUTERLOOP_THRUST; t++) {
195 reinit = (StabilizationStatusOuterLoopToArray(enabled)[t] != previous_mode[t]);
196 previous_mode[t] = StabilizationStatusOuterLoopToArray(enabled)[t];
198 if (reinit) {
199 stabSettings.outerPids[t].iAccumulator = 0;
201 switch (StabilizationStatusOuterLoopToArray(enabled)[t]) {
202 case STABILIZATIONSTATUS_OUTERLOOP_ATTITUDE:
203 rateDesiredAxis[t] = pid_apply(&stabSettings.outerPids[t], local_error[t], dT);
204 break;
205 case STABILIZATIONSTATUS_OUTERLOOP_RATTITUDE:
207 float stickinput[3];
208 stickinput[0] = boundf(stabilizationDesiredAxis[0] / stabSettings.stabBank.RollMax, -1.0f, 1.0f);
209 stickinput[1] = boundf(stabilizationDesiredAxis[1] / stabSettings.stabBank.PitchMax, -1.0f, 1.0f);
210 stickinput[2] = boundf(stabilizationDesiredAxis[2] / stabSettings.stabBank.YawMax, -1.0f, 1.0f);
211 float rateDesiredAxisRate = stickinput[t] * StabilizationBankManualRateToArray(stabSettings.stabBank.ManualRate)[t];
212 // limit corrective rate to maximum rates to not give it overly large impact over manual rate when joined together
213 rateDesiredAxis[t] = boundf(pid_apply(&stabSettings.outerPids[t], local_error[t], dT),
214 -StabilizationBankManualRateToArray(stabSettings.stabBank.ManualRate)[t],
215 StabilizationBankManualRateToArray(stabSettings.stabBank.ManualRate)[t]
217 // Compute the weighted average rate desired
218 // Using max() rather than sqrt() for cpu speed;
219 // - this makes the stick region into a square;
220 // - this is a feature!
221 // - hold a roll angle and add just pitch without the stick sensitivity changing
222 float magnitude = fabsf(stickinput[t]);
223 if (t < 2) {
224 magnitude = fmaxf(fabsf(stickinput[0]), fabsf(stickinput[1]));
227 // modify magnitude to move the Att to Rate transition to the place
228 // specified by the user
229 // we are looking for where the stick angle == transition angle
230 // and the Att rate equals the Rate rate
231 // that's where Rate x (1-StickAngle) [Attitude pulling down max X Ratt proportion]
232 // == Rate x StickAngle [Rate pulling up according to stick angle]
233 // * StickAngle [X Ratt proportion]
234 // so 1-x == x*x or x*x+x-1=0 where xE(0,1)
235 // (-1+-sqrt(1+4))/2 = (-1+sqrt(5))/2
236 // and quadratic formula says that is 0.618033989f
237 // I tested 14.01 and came up with .61 without even remembering this number
238 // I thought that moving the P,I, and maxangle terms around would change this value
239 // and that I would have to take these into account, but varying
240 // all P's and I's by factors of 1/2 to 2 didn't change it noticeably
241 // and varying maxangle from 4 to 120 didn't either.
242 // so for now I'm not taking these into account
243 // while working with this, it occurred to me that Attitude mode,
244 // set up with maxangle=190 would be similar to Ratt, and it is.
245 #define STICK_VALUE_AT_MODE_TRANSITION 0.618033989f
247 // the following assumes the transition would otherwise be at 0.618033989f
248 // and THAT assumes that Att ramps up to max roll rate
249 // when a small number of degrees off of where it should be
251 // if below the transition angle (still in attitude mode)
252 // '<=' instead of '<' keeps rattitude_mode_transition_stick_position==1.0 from causing DZ
253 if (magnitude <= stabSettings.rattitude_mode_transition_stick_position) {
254 magnitude *= STICK_VALUE_AT_MODE_TRANSITION / stabSettings.rattitude_mode_transition_stick_position;
255 } else {
256 magnitude = (magnitude - stabSettings.rattitude_mode_transition_stick_position)
257 * (1.0f - STICK_VALUE_AT_MODE_TRANSITION)
258 / (1.0f - stabSettings.rattitude_mode_transition_stick_position)
259 + STICK_VALUE_AT_MODE_TRANSITION;
261 rateDesiredAxis[t] = (1.0f - magnitude) * rateDesiredAxis[t] + magnitude * rateDesiredAxisRate;
263 break;
264 case STABILIZATIONSTATUS_OUTERLOOP_WEAKLEVELING:
265 // FIXME: local_error[] is rate - attitude for Weak Leveling
266 // The only ramifications are:
267 // Weak Leveling Kp is off by a factor of 3 to 12 and may need a different default in GCS
268 // Changing Rate mode max rate currently requires a change to Kp
269 // That would be changed to Attitude mode max angle affecting Kp
270 // Also does not take dT into account
272 float stickinput[3];
273 stickinput[0] = boundf(stabilizationDesiredAxis[0] / stabSettings.stabBank.RollMax, -1.0f, 1.0f);
274 stickinput[1] = boundf(stabilizationDesiredAxis[1] / stabSettings.stabBank.PitchMax, -1.0f, 1.0f);
275 stickinput[2] = boundf(stabilizationDesiredAxis[2] / stabSettings.stabBank.YawMax, -1.0f, 1.0f);
276 float rate_input = stickinput[t] * StabilizationBankManualRateToArray(stabSettings.stabBank.ManualRate)[t];
277 float weak_leveling = local_error[t] * stabSettings.settings.WeakLevelingKp;
278 weak_leveling = boundf(weak_leveling, -stabSettings.settings.MaxWeakLevelingRate, stabSettings.settings.MaxWeakLevelingRate);
280 // Compute desired rate as input biased towards leveling
281 rateDesiredAxis[t] = rate_input + weak_leveling;
283 break;
284 case STABILIZATIONSTATUS_OUTERLOOP_DIRECTWITHLIMITS:
285 rateDesiredAxis[t] = stabilizationDesiredAxis[t]; // default for all axes
286 // now test limits for pitch and/or roll
287 if (t == 1) { // pitch
288 if ((attitudeState.Pitch < -stabSettings.stabBank.PitchMax) || pitchMin) {
289 pitchMin = true;
290 // Attitude exceeds pitch min,
291 // Do Attitude stabilisation at min pitch angle while user still maintain negative pitch
292 if (stabilizationDesiredAxis[t] < 0.0f) {
293 local_error[t] = -stabSettings.stabBank.PitchMax - attitudeState.Pitch;
294 rateDesiredAxis[t] = pid_apply(&stabSettings.outerPids[t], local_error[t], dT);
295 } else {
296 // Stop Attitude stabilization and return to Rate
297 pitchMin = false;
299 } else if ((attitudeState.Pitch > stabSettings.stabBank.PitchMax) || pitchMax) {
300 pitchMax = true;
301 // Attitude exceeds pitch max
302 // Do Attitude stabilisation at max pitch angle while user still maintain positive pitch
303 if (stabilizationDesiredAxis[t] > 0.0f) {
304 local_error[t] = stabSettings.stabBank.PitchMax - attitudeState.Pitch;
305 rateDesiredAxis[t] = pid_apply(&stabSettings.outerPids[t], local_error[t], dT);
306 } else {
307 // Stop Attitude stabilization and return to Rate
308 pitchMax = false;
311 } else if (t == 0) { // roll
312 if ((attitudeState.Roll < -stabSettings.stabBank.RollMax) || rollMin) {
313 rollMin = true;
314 // Attitude exceeds roll min,
315 // Do Attitude stabilisation at min roll angle while user still maintain negative roll
316 if (stabilizationDesiredAxis[t] < 0.0f) {
317 local_error[t] = -stabSettings.stabBank.RollMax - attitudeState.Roll;
318 rateDesiredAxis[t] = pid_apply(&stabSettings.outerPids[t], local_error[t], dT);
319 } else {
320 // Stop Attitude stabilization and return to Rate
321 rollMin = false;
323 } else if ((attitudeState.Roll > stabSettings.stabBank.RollMax) || rollMax) {
324 rollMax = true;
325 // Attitude exceeds roll max
326 // Do Attitude stabilisation at max roll angle while user still maintain positive roll
327 if (stabilizationDesiredAxis[t] > 0.0f) {
328 local_error[t] = stabSettings.stabBank.RollMax - attitudeState.Roll;
329 rateDesiredAxis[t] = pid_apply(&stabSettings.outerPids[t], local_error[t], dT);
330 } else {
331 // Stop Attitude stabilization and return to Rate
332 rollMax = false;
336 break;
338 case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
339 default:
340 rateDesiredAxis[t] = stabilizationDesiredAxis[t];
341 break;
345 RateDesiredSet(&rateDesired);
347 FlightStatusArmedOptions armed;
348 FlightStatusArmedGet(&armed);
349 float throttleDesired;
350 ManualControlCommandThrottleGet(&throttleDesired);
351 if (armed != FLIGHTSTATUS_ARMED_ARMED ||
352 ((stabSettings.settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE) && throttleDesired < 0)) {
353 // Force all axes to reinitialize when engaged
354 for (t = 0; t < AXES; t++) {
355 previous_mode[t] = 255;
360 // update cruisecontrol based on attitude
361 cruisecontrol_compute_factor(&attitudeState, rateDesired.Thrust);
362 stabSettings.monitor.rateupdates = 0;
366 static void AttitudeStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
368 #ifndef STABILIZATION_ATTITUDE_DOWNSAMPLED
369 // to reduce CPU utilization, outer loop is not executed on every state update
370 static uint8_t cpusaver = 0;
372 if ((cpusaver++ % OUTERLOOP_SKIPCOUNT) == 0) {
373 #endif
374 // this does not need mutex protection as both eventdispatcher and stabi run in same callback task!
375 AttitudeStateGet(&attitude);
376 PIOS_CALLBACKSCHEDULER_Dispatch(callbackHandle);
378 #ifndef STABILIZATION_ATTITUDE_DOWNSAMPLED
380 #endif
384 * @}
385 * @}