LP-500 HoTT Telemetry added device definitions
[librepilot.git] / flight / modules / StateEstimation / filterekf.c
blob88943a2f42cae644180a022fc357455809b2a011
1 /**
2 ******************************************************************************
3 * @addtogroup OpenPilotModules OpenPilot Modules
4 * @{
5 * @addtogroup State Estimation
6 * @brief Acquires sensor data and computes state estimate
7 * @{
9 * @file filterekf.c
10 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2013.
11 * @brief Extended Kalman Filter. Calculates complete system state except
12 * accelerometer drift.
14 * @see The GNU Public License (GPL) Version 3
16 ******************************************************************************/
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 3 of the License, or
21 * (at your option) any later version.
23 * This program is distributed in the hope that it will be useful, but
24 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
25 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
26 * for more details.
28 * You should have received a copy of the GNU General Public License along
29 * with this program; if not, write to the Free Software Foundation, Inc.,
30 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 #include "inc/stateestimation.h"
35 #include <ekfconfiguration.h>
36 #include <ekfstatevariance.h>
37 #include <attitudestate.h>
38 #include <systemalarms.h>
39 #include <homelocation.h>
41 #include <insgps.h>
42 #include <CoordinateConversions.h>
44 // Private constants
46 #define STACK_REQUIRED 2048
47 #define DT_ALPHA 1e-3f
48 #define DT_MIN 1e-6f
49 #define DT_MAX 1.0f
50 #define DT_INIT (1.0f / PIOS_SENSOR_RATE) // initialize with board sensor rate
52 #define IMPORT_SENSOR_IF_UPDATED(shortname, num) \
53 if (IS_SET(state->updated, SENSORUPDATES_##shortname)) { \
54 uint8_t t; \
55 for (t = 0; t < num; t++) { \
56 this->work.shortname[t] = state->shortname[t]; \
57 } \
60 // Private types
61 struct data {
62 EKFConfigurationData ekfConfiguration;
63 HomeLocationData homeLocation;
65 bool usePos;
67 int32_t init_stage;
69 stateEstimation work;
71 bool inited;
73 PiOSDeltatimeConfig dtconfig;
74 bool navOnly;
75 float magLockAlpha;
79 // Private functions
81 static int32_t init(stateFilter *self);
82 static filterResult filter(stateFilter *self, stateEstimation *state);
83 static inline bool invalid_var(float data);
85 static int32_t globalInit(stateFilter *handle, bool usePos, bool navOnly);
88 static int32_t globalInit(stateFilter *handle, bool usePos, bool navOnly)
90 handle->init = &init;
91 handle->filter = &filter;
92 handle->localdata = pios_malloc(sizeof(struct data));
93 struct data *this = (struct data *)handle->localdata;
94 this->usePos = usePos;
95 this->navOnly = navOnly;
96 EKFConfigurationInitialize();
97 EKFStateVarianceInitialize();
98 HomeLocationInitialize();
99 return STACK_REQUIRED;
102 int32_t filterEKF13iInitialize(stateFilter *handle)
104 return globalInit(handle, false, false);
107 int32_t filterEKF13Initialize(stateFilter *handle)
109 return globalInit(handle, true, false);
112 int32_t filterEKF13iNavOnlyInitialize(stateFilter *handle)
114 return globalInit(handle, false, true);
117 int32_t filterEKF13NavOnlyInitialize(stateFilter *handle)
119 return globalInit(handle, true, true);
122 #ifdef FALSE
123 // XXX
124 // TODO: Until the 16 state EKF is implemented, run 13 state, so compilation runs through
125 // XXX
126 int32_t filterEKF16iInitialize(stateFilter *handle)
128 return filterEKFi13Initialize(handle);
130 int32_t filterEKF16Initialize(stateFilter *handle)
132 return filterEKF13Initialize(handle);
134 #endif
136 static int32_t init(stateFilter *self)
138 struct data *this = (struct data *)self->localdata;
140 this->inited = false;
141 this->init_stage = 0;
142 this->work.updated = 0;
143 PIOS_DELTATIME_Init(&this->dtconfig, DT_INIT, DT_MIN, DT_MAX, DT_ALPHA);
145 EKFConfigurationGet(&this->ekfConfiguration);
146 int t;
147 // plausibility check
148 for (t = 0; t < EKFCONFIGURATION_P_NUMELEM; t++) {
149 if (invalid_var(EKFConfigurationPToArray(this->ekfConfiguration.P)[t])) {
150 return 2;
153 for (t = 0; t < EKFCONFIGURATION_Q_NUMELEM; t++) {
154 if (invalid_var(EKFConfigurationQToArray(this->ekfConfiguration.Q)[t])) {
155 return 2;
158 for (t = 0; t < EKFCONFIGURATION_R_NUMELEM; t++) {
159 if (invalid_var(EKFConfigurationRToArray(this->ekfConfiguration.R)[t])) {
160 return 2;
163 HomeLocationGet(&this->homeLocation);
164 // Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily
165 // switching between indoor and outdoor mode with Set = false)
166 if ((this->homeLocation.Be[0] * this->homeLocation.Be[0] + this->homeLocation.Be[1] * this->homeLocation.Be[1] + this->homeLocation.Be[2] * this->homeLocation.Be[2] < 1e-5f)) {
167 return 2;
170 // calculate Angle between Down vector and homeLocation.Be
171 float cross[3];
172 float magnorm[3] = { this->homeLocation.Be[0], this->homeLocation.Be[1], this->homeLocation.Be[2] };
173 vector_normalizef(magnorm, 3);
174 const float down[3] = { 0, 0, 1 };
175 CrossProduct(down, magnorm, cross);
176 // VectorMagnitude(cross) = sin(Alpha)
177 // [0,0,1] dot magnorm = magnorm[2] = cos(Alpha)
178 this->magLockAlpha = atan2f(VectorMagnitude(cross), magnorm[2]);
180 return 0;
184 * Collect all required state variables, then run complementary filter
186 static filterResult filter(stateFilter *self, stateEstimation *state)
188 struct data *this = (struct data *)self->localdata;
190 const float zeros[3] = { 0.0f, 0.0f, 0.0f };
192 // Perform the update
193 float dT;
194 uint16_t sensors = 0;
196 INSSetArmed(state->armed);
197 INSSetMagNorth(this->homeLocation.Be);
198 state->navUsed = (this->usePos || this->navOnly);
199 this->work.updated |= state->updated;
200 // check magnetometer alarm, discard any magnetometer readings if not OK
201 // during initialization phase (but let them through afterwards)
202 SystemAlarmsAlarmData alarms;
203 SystemAlarmsAlarmGet(&alarms);
204 if (alarms.Magnetometer != SYSTEMALARMS_ALARM_OK && !this->inited) {
205 UNSET_MASK(state->updated, SENSORUPDATES_mag);
206 UNSET_MASK(this->work.updated, SENSORUPDATES_mag);
209 // Get most recent data
210 IMPORT_SENSOR_IF_UPDATED(gyro, 3);
211 IMPORT_SENSOR_IF_UPDATED(accel, 3);
212 IMPORT_SENSOR_IF_UPDATED(mag, 3);
213 IMPORT_SENSOR_IF_UPDATED(baro, 1);
214 IMPORT_SENSOR_IF_UPDATED(pos, 3);
215 IMPORT_SENSOR_IF_UPDATED(vel, 3);
216 IMPORT_SENSOR_IF_UPDATED(airspeed, 2);
218 // check whether mandatory updates are present accels must have been supplied already,
219 // and gyros must be supplied just now for a prediction step to take place
220 // ("gyros last" rule for multi object synchronization)
221 if (!(IS_SET(this->work.updated, SENSORUPDATES_accel) && IS_SET(state->updated, SENSORUPDATES_gyro))) {
222 UNSET_MASK(state->updated, SENSORUPDATES_pos);
223 UNSET_MASK(state->updated, SENSORUPDATES_vel);
224 UNSET_MASK(state->updated, SENSORUPDATES_attitude);
225 UNSET_MASK(state->updated, SENSORUPDATES_gyro);
226 UNSET_MASK(state->updated, SENSORUPDATES_mag);
227 return FILTERRESULT_OK;
230 dT = PIOS_DELTATIME_GetAverageSeconds(&this->dtconfig);
232 if (!this->inited && IS_SET(this->work.updated, SENSORUPDATES_mag) && IS_SET(this->work.updated, SENSORUPDATES_baro) && IS_SET(this->work.updated, SENSORUPDATES_pos)) {
233 // Don't initialize until all sensors are read
234 if (this->init_stage == 0) {
235 // Reset the INS algorithm
236 INSGPSInit();
237 // variance is measured in mGaus, but internally the EKF works with a normalized vector. Scale down by Be^2
238 INSSetMagVar((float[3]) { this->ekfConfiguration.R.MagX,
239 this->ekfConfiguration.R.MagY,
240 this->ekfConfiguration.R.MagZ }
242 INSSetAccelVar((float[3]) { this->ekfConfiguration.Q.AccelX,
243 this->ekfConfiguration.Q.AccelY,
244 this->ekfConfiguration.Q.AccelZ }
246 INSSetGyroVar((float[3]) { this->ekfConfiguration.Q.GyroX,
247 this->ekfConfiguration.Q.GyroY,
248 this->ekfConfiguration.Q.GyroZ }
250 INSSetGyroBiasVar((float[3]) { this->ekfConfiguration.Q.GyroDriftX,
251 this->ekfConfiguration.Q.GyroDriftY,
252 this->ekfConfiguration.Q.GyroDriftZ }
254 INSSetBaroVar(this->ekfConfiguration.R.BaroZ);
256 // Initialize the gyro bias
257 float gyro_bias[3] = { 0.0f, 0.0f, 0.0f };
258 INSSetGyroBias(gyro_bias);
260 AttitudeStateData attitudeState;
261 AttitudeStateGet(&attitudeState);
263 // Set initial attitude. Use accels to determine roll and pitch, rotate magnetic measurement accordingly,
264 // so pseudo "north" vector can be estimated even if the board is not level
265 attitudeState.Roll = atan2f(-this->work.accel[1], -this->work.accel[2]);
266 float zn = cosf(attitudeState.Roll) * this->work.mag[2] + sinf(attitudeState.Roll) * this->work.mag[1];
267 float yn = cosf(attitudeState.Roll) * this->work.mag[1] - sinf(attitudeState.Roll) * this->work.mag[2];
269 // rotate accels z vector according to roll
270 float azn = cosf(attitudeState.Roll) * this->work.accel[2] + sinf(attitudeState.Roll) * this->work.accel[1];
271 attitudeState.Pitch = atan2f(this->work.accel[0], -azn);
273 float xn = cosf(attitudeState.Pitch) * this->work.mag[0] + sinf(attitudeState.Pitch) * zn;
275 attitudeState.Yaw = atan2f(-yn, xn);
276 // TODO: This is still a hack
277 // Put this in a proper generic function in CoordinateConversion.c
278 // should take 4 vectors: g (0,0,-9.81), accels, Be (or 1,0,0 if no home loc) and magnetometers (or 1,0,0 if no mags)
279 // should calculate the rotation in 3d space using proper cross product math
280 // SUBTODO: formulate the math required
282 attitudeState.Roll = RAD2DEG(attitudeState.Roll);
283 attitudeState.Pitch = RAD2DEG(attitudeState.Pitch);
284 attitudeState.Yaw = RAD2DEG(attitudeState.Yaw);
286 RPY2Quaternion(&attitudeState.Roll, this->work.attitude);
288 INSSetState(this->work.pos, (float *)zeros, this->work.attitude, (float *)zeros, (float *)zeros);
290 INSResetP(EKFConfigurationPToArray(this->ekfConfiguration.P));
291 } else {
292 // Run prediction a bit before any corrections
294 float gyros[3] = { DEG2RAD(this->work.gyro[0]), DEG2RAD(this->work.gyro[1]), DEG2RAD(this->work.gyro[2]) };
295 INSStatePrediction(gyros, this->work.accel, dT);
297 // Copy the attitude into the state
298 // NOTE: updating gyr correctly is valid, because this code is reached only when SENSORUPDATES_gyro is already true
299 if (!this->navOnly) {
300 state->attitude[0] = Nav.q[0];
301 state->attitude[1] = Nav.q[1];
302 state->attitude[2] = Nav.q[2];
303 state->attitude[3] = Nav.q[3];
305 state->gyro[0] -= RAD2DEG(Nav.gyro_bias[0]);
306 state->gyro[1] -= RAD2DEG(Nav.gyro_bias[1]);
307 state->gyro[2] -= RAD2DEG(Nav.gyro_bias[2]);
309 state->pos[0] = Nav.Pos[0];
310 state->pos[1] = Nav.Pos[1];
311 state->pos[2] = Nav.Pos[2];
312 state->vel[0] = Nav.Vel[0];
313 state->vel[1] = Nav.Vel[1];
314 state->vel[2] = Nav.Vel[2];
315 state->updated |= SENSORUPDATES_attitude | SENSORUPDATES_pos | SENSORUPDATES_vel;
318 this->init_stage++;
319 if (this->init_stage > 10) {
320 state->navOk = true;
321 this->inited = true;
324 return FILTERRESULT_OK;
327 if (!this->inited) {
328 return this->navOnly ? FILTERRESULT_OK : FILTERRESULT_CRITICAL;
331 float gyros[3] = { DEG2RAD(this->work.gyro[0]), DEG2RAD(this->work.gyro[1]), DEG2RAD(this->work.gyro[2]) };
333 // Advance the state estimate
334 INSStatePrediction(gyros, this->work.accel, dT);
336 // Copy the attitude into the state
337 // NOTE: updating gyr correctly is valid, because this code is reached only when SENSORUPDATES_gyro is already true
338 if (!this->navOnly) {
339 state->attitude[0] = Nav.q[0];
340 state->attitude[1] = Nav.q[1];
341 state->attitude[2] = Nav.q[2];
342 state->attitude[3] = Nav.q[3];
343 state->gyro[0] -= RAD2DEG(Nav.gyro_bias[0]);
344 state->gyro[1] -= RAD2DEG(Nav.gyro_bias[1]);
345 state->gyro[2] -= RAD2DEG(Nav.gyro_bias[2]);
348 float tmp[3];
349 Quaternion2RPY(Nav.q, tmp);
350 state->debugNavYaw = tmp[2];
352 state->pos[0] = Nav.Pos[0];
353 state->pos[1] = Nav.Pos[1];
354 state->pos[2] = Nav.Pos[2];
355 state->vel[0] = Nav.Vel[0];
356 state->vel[1] = Nav.Vel[1];
357 state->vel[2] = Nav.Vel[2];
358 state->updated |= SENSORUPDATES_attitude | SENSORUPDATES_pos | SENSORUPDATES_vel;
360 // Advance the covariance estimate
361 INSCovariancePrediction(dT);
363 if (IS_SET(this->work.updated, SENSORUPDATES_mag)) {
364 sensors |= MAG_SENSORS;
365 if (this->ekfConfiguration.MapMagnetometerToHorizontalPlane == EKFCONFIGURATION_MAPMAGNETOMETERTOHORIZONTALPLANE_TRUE) {
366 // Map Magnetometer vector to correspond to the Roll+Pitch of the current Attitude State Estimate (no conflicting gravity)
367 // Idea: Alpha between Local Down and Mag is invariant of orientation, and identical to Alpha between [0,0,1] and HomeLocation.Be
368 // which is measured in init()
369 float R[3][3];
371 // 1. rotate down vector into body frame
372 Quaternion2R(Nav.q, R);
373 float local_down[3];
374 rot_mult(R, (float[3]) { 0, 0, 1 }, local_down);
375 // 2. create a rotation vector that is perpendicular to rotated down vector, magnetic field vector and of size magLockAlpha
376 float rotvec[3];
377 CrossProduct(local_down, this->work.mag, rotvec);
378 vector_normalizef(rotvec, 3);
379 rotvec[0] *= -this->magLockAlpha;
380 rotvec[1] *= -this->magLockAlpha;
381 rotvec[2] *= -this->magLockAlpha;
382 // 3. rotate artificial magnetometer reading from straight down to correct roll+pitch
383 Rv2Rot(rotvec, R);
384 float MagStrength = VectorMagnitude(this->homeLocation.Be);
385 local_down[0] *= MagStrength;
386 local_down[1] *= MagStrength;
387 local_down[2] *= MagStrength;
388 rot_mult(R, local_down, this->work.mag);
390 // debug rotated mags
391 state->mag[0] = this->work.mag[0];
392 state->mag[1] = this->work.mag[1];
393 state->mag[2] = this->work.mag[2];
394 state->updated |= SENSORUPDATES_mag;
395 } else {
396 // mag state is delayed until EKF processed it, allows overriding/debugging magnetometer estimate
397 UNSET_MASK(state->updated, SENSORUPDATES_mag);
400 if (IS_SET(this->work.updated, SENSORUPDATES_baro)) {
401 sensors |= BARO_SENSOR;
404 if (!this->usePos) {
405 // position and velocity variance used in indoor mode
406 INSSetPosVelVar((float[3]) { this->ekfConfiguration.FakeR.FakeGPSPosIndoor,
407 this->ekfConfiguration.FakeR.FakeGPSPosIndoor,
408 this->ekfConfiguration.FakeR.FakeGPSPosIndoor },
409 (float[3]) { this->ekfConfiguration.FakeR.FakeGPSVelIndoor,
410 this->ekfConfiguration.FakeR.FakeGPSVelIndoor,
411 this->ekfConfiguration.FakeR.FakeGPSVelIndoor }
413 } else {
414 // position and velocity variance used in outdoor mode
415 INSSetPosVelVar((float[3]) { this->ekfConfiguration.R.GPSPosNorth,
416 this->ekfConfiguration.R.GPSPosEast,
417 this->ekfConfiguration.R.GPSPosDown },
418 (float[3]) { this->ekfConfiguration.R.GPSVelNorth,
419 this->ekfConfiguration.R.GPSVelEast,
420 this->ekfConfiguration.R.GPSVelDown }
424 if (IS_SET(this->work.updated, SENSORUPDATES_pos)) {
425 sensors |= POS_SENSORS;
428 if (IS_SET(this->work.updated, SENSORUPDATES_vel)) {
429 sensors |= HORIZ_SENSORS | VERT_SENSORS;
432 if (IS_SET(this->work.updated, SENSORUPDATES_airspeed) && ((!IS_SET(this->work.updated, SENSORUPDATES_vel) && !IS_SET(this->work.updated, SENSORUPDATES_pos)) | !this->usePos)) {
433 // HACK: feed airspeed into EKF as velocity, treat wind as 1e2 variance
434 sensors |= HORIZ_SENSORS | VERT_SENSORS;
435 INSSetPosVelVar((float[3]) { this->ekfConfiguration.FakeR.FakeGPSPosIndoor,
436 this->ekfConfiguration.FakeR.FakeGPSPosIndoor,
437 this->ekfConfiguration.FakeR.FakeGPSPosIndoor },
438 (float[3]) { this->ekfConfiguration.FakeR.FakeGPSVelAirspeed,
439 this->ekfConfiguration.FakeR.FakeGPSVelAirspeed,
440 this->ekfConfiguration.FakeR.FakeGPSVelAirspeed }
442 // rotate airspeed vector into NED frame - airspeed is measured in X axis only
443 float R[3][3];
444 Quaternion2R(Nav.q, R);
445 float vtas[3] = { this->work.airspeed[1], 0.0f, 0.0f };
446 rot_mult(R, vtas, this->work.vel);
450 * TODO: Need to add a general sanity check for all the inputs to make sure their kosher
451 * although probably should occur within INS itself
453 if (sensors) {
454 INSCorrection(this->work.mag, this->work.pos, this->work.vel, this->work.baro[0], sensors);
457 EKFStateVarianceData vardata;
458 EKFStateVarianceGet(&vardata);
459 INSGetVariance(EKFStateVariancePToArray(vardata.P));
460 EKFStateVarianceSet(&vardata);
461 int t;
462 for (t = 0; t < EKFSTATEVARIANCE_P_NUMELEM; t++) {
463 if (!IS_REAL(EKFStateVariancePToArray(vardata.P)[t]) || EKFStateVariancePToArray(vardata.P)[t] <= 0.0f) {
464 INSResetP(EKFConfigurationPToArray(this->ekfConfiguration.P));
465 this->init_stage = -1;
466 break;
470 // all sensor data has been used, reset!
471 this->work.updated = 0;
473 if (this->init_stage < 0) {
474 return this->navOnly ? FILTERRESULT_OK : FILTERRESULT_WARNING;
475 } else {
476 return FILTERRESULT_OK;
480 // check for invalid variance values
481 static inline bool invalid_var(float data)
483 if (isnan(data) || isinf(data)) {
484 return true;
486 if (data < 1e-15f) { // var should not be close to zero. And not negative either.
487 return true;
489 return false;
493 * @}
494 * @}