OP-1900 added deceleration check to autotakeoff failsafe
[librepilot.git] / flight / modules / PathFollower / fixedwingflycontroller.cpp
blob432b97c4efc71750e0e332ccf7cbca4be9f9c016
1 /*
2 ******************************************************************************
4 * @file FixedWingFlyController.cpp
5 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
6 * @brief Fixed wing fly controller implementation
7 * @see The GNU Public License (GPL) Version 3
9 *****************************************************************************/
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 3 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 extern "C" {
27 #include <openpilot.h>
29 #include <pid.h>
30 #include <sin_lookup.h>
31 #include <pathdesired.h>
32 #include <paths.h>
33 #include <fixedwingpathfollowersettings.h>
34 #include <fixedwingpathfollowerstatus.h>
35 #include <flightstatus.h>
36 #include <pathstatus.h>
37 #include <positionstate.h>
38 #include <velocitystate.h>
39 #include <velocitydesired.h>
40 #include <stabilizationdesired.h>
41 #include <airspeedstate.h>
42 #include <attitudestate.h>
43 #include <systemsettings.h>
46 // C++ includes
47 #include "fixedwingflycontroller.h"
49 // Private constants
51 // pointer to a singleton instance
52 FixedWingFlyController *FixedWingFlyController::p_inst = 0;
54 FixedWingFlyController::FixedWingFlyController()
55 : fixedWingSettings(NULL), mActive(false), mMode(0), indicatedAirspeedStateBias(0.0f)
58 // Called when mode first engaged
59 void FixedWingFlyController::Activate(void)
61 if (!mActive) {
62 mActive = true;
63 SettingsUpdated();
64 resetGlobals();
65 mMode = pathDesired->Mode;
66 lastAirspeedUpdate = 0;
70 uint8_t FixedWingFlyController::IsActive(void)
72 return mActive;
75 uint8_t FixedWingFlyController::Mode(void)
77 return mMode;
80 // Objective updated in pathdesired
81 void FixedWingFlyController::ObjectiveUpdated(void)
84 void FixedWingFlyController::Deactivate(void)
86 if (mActive) {
87 mActive = false;
88 resetGlobals();
93 void FixedWingFlyController::SettingsUpdated(void)
95 // fixed wing PID only
96 pid_configure(&PIDposH[0], fixedWingSettings->HorizontalPosP, 0.0f, 0.0f, 0.0f);
97 pid_configure(&PIDposH[1], fixedWingSettings->HorizontalPosP, 0.0f, 0.0f, 0.0f);
98 pid_configure(&PIDposV, fixedWingSettings->VerticalPosP, 0.0f, 0.0f, 0.0f);
100 pid_configure(&PIDcourse, fixedWingSettings->CoursePI.Kp, fixedWingSettings->CoursePI.Ki, 0.0f, fixedWingSettings->CoursePI.ILimit);
101 pid_configure(&PIDspeed, fixedWingSettings->SpeedPI.Kp, fixedWingSettings->SpeedPI.Ki, 0.0f, fixedWingSettings->SpeedPI.ILimit);
102 pid_configure(&PIDpower, fixedWingSettings->PowerPI.Kp, fixedWingSettings->PowerPI.Ki, 0.0f, fixedWingSettings->PowerPI.ILimit);
106 * Initialise the module, called on startup
107 * \returns 0 on success or -1 if initialisation failed
109 int32_t FixedWingFlyController::Initialize(FixedWingPathFollowerSettingsData *ptr_fixedWingSettings)
111 PIOS_Assert(ptr_fixedWingSettings);
113 fixedWingSettings = ptr_fixedWingSettings;
115 resetGlobals();
117 return 0;
121 * reset integrals
123 void FixedWingFlyController::resetGlobals()
125 pid_zero(&PIDposH[0]);
126 pid_zero(&PIDposH[1]);
127 pid_zero(&PIDposV);
128 pid_zero(&PIDcourse);
129 pid_zero(&PIDspeed);
130 pid_zero(&PIDpower);
131 pathStatus->path_time = 0.0f;
134 void FixedWingFlyController::UpdateAutoPilot()
136 uint8_t result = updateAutoPilotFixedWing();
138 if (result) {
139 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
140 } else {
141 pathStatus->Status = PATHSTATUS_STATUS_CRITICAL;
142 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
145 PathStatusSet(pathStatus);
149 * fixed wing autopilot:
150 * straight forward:
151 * 1. update path velocity for limited motion crafts
152 * 2. update attitude according to default fixed wing pathfollower algorithm
154 uint8_t FixedWingFlyController::updateAutoPilotFixedWing()
156 updatePathVelocity(fixedWingSettings->CourseFeedForward, true);
157 return updateFixedDesiredAttitude();
161 * Compute desired velocity from the current position and path
163 void FixedWingFlyController::updatePathVelocity(float kFF, bool limited)
165 PositionStateData positionState;
167 PositionStateGet(&positionState);
168 VelocityStateData velocityState;
169 VelocityStateGet(&velocityState);
170 VelocityDesiredData velocityDesired;
172 const float dT = fixedWingSettings->UpdatePeriod / 1000.0f;
174 // look ahead kFF seconds
175 float cur[3] = { positionState.North + (velocityState.North * kFF),
176 positionState.East + (velocityState.East * kFF),
177 positionState.Down + (velocityState.Down * kFF) };
178 struct path_status progress;
179 path_progress(pathDesired, cur, &progress, true);
181 // calculate velocity - can be zero if waypoints are too close
182 velocityDesired.North = progress.path_vector[0];
183 velocityDesired.East = progress.path_vector[1];
184 velocityDesired.Down = progress.path_vector[2];
186 if (limited &&
187 // if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
188 // it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
189 // once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
190 // leading to an S-shape snake course the wrong way
191 // this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
192 // turn steep unless there is enough space complete the turn before crossing the flightpath
193 // in this case the plane effectively needs to be turned around
194 // indicators:
195 // difference between correction_direction and velocitystate >90 degrees and
196 // difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
197 // fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
198 // calculating angles < 90 degrees through dot products
199 (vector_lengthf(progress.path_vector, 2) > 1e-6f) &&
200 ((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) &&
201 ((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) {
203 } else {
204 // calculate correction
205 velocityDesired.North += pid_apply(&PIDposH[0], progress.correction_vector[0], dT);
206 velocityDesired.East += pid_apply(&PIDposH[1], progress.correction_vector[1], dT);
208 velocityDesired.Down += pid_apply(&PIDposV, progress.correction_vector[2], dT);
210 // update pathstatus
211 pathStatus->error = progress.error;
212 pathStatus->fractional_progress = progress.fractional_progress;
213 pathStatus->path_direction_north = progress.path_vector[0];
214 pathStatus->path_direction_east = progress.path_vector[1];
215 pathStatus->path_direction_down = progress.path_vector[2];
217 pathStatus->correction_direction_north = progress.correction_vector[0];
218 pathStatus->correction_direction_east = progress.correction_vector[1];
219 pathStatus->correction_direction_down = progress.correction_vector[2];
222 VelocityDesiredSet(&velocityDesired);
227 * Compute desired attitude from the desired velocity for fixed wing craft
229 uint8_t FixedWingFlyController::updateFixedDesiredAttitude()
231 uint8_t result = 1;
232 bool cutThrust = false;
233 bool hasAirspeed = true;
235 const float dT = fixedWingSettings->UpdatePeriod / 1000.0f;
237 VelocityDesiredData velocityDesired;
238 VelocityStateData velocityState;
239 StabilizationDesiredData stabDesired;
240 AttitudeStateData attitudeState;
241 FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
242 AirspeedStateData airspeedState;
243 SystemSettingsData systemSettings;
245 float groundspeedProjection;
246 float indicatedAirspeedState;
247 float indicatedAirspeedDesired;
248 float airspeedError = 0.0f;
250 float pitchCommand;
252 float descentspeedDesired;
253 float descentspeedError;
254 float powerCommand;
256 float airspeedVector[2];
257 float fluidMovement[2];
258 float courseComponent[2];
259 float courseError;
260 float courseCommand;
262 FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
264 VelocityStateGet(&velocityState);
265 StabilizationDesiredGet(&stabDesired);
266 VelocityDesiredGet(&velocityDesired);
267 AttitudeStateGet(&attitudeState);
268 AirspeedStateGet(&airspeedState);
269 SystemSettingsGet(&systemSettings);
273 * Compute speed error and course
276 // check for airspeed sensor
277 fixedWingPathFollowerStatus.Errors.AirspeedSensor = 0;
278 if (fixedWingSettings->UseAirspeedSensor == FIXEDWINGPATHFOLLOWERSETTINGS_USEAIRSPEEDSENSOR_FALSE) {
279 // fallback algo triggered voluntarily
280 hasAirspeed = false;
281 fixedWingPathFollowerStatus.Errors.AirspeedSensor = 1;
282 } else if (PIOS_DELAY_GetuSSince(lastAirspeedUpdate) > 1000000) {
283 // no airspeed update in one second, assume airspeed sensor failure
284 hasAirspeed = false;
285 result = 0;
286 fixedWingPathFollowerStatus.Errors.AirspeedSensor = 1;
290 if (hasAirspeed) {
291 // missing sensors for airspeed-direction we have to assume within
292 // reasonable error that measured airspeed is actually the airspeed
293 // component in forward pointing direction
294 // airspeedVector is normalized
295 airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
296 airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
298 // current ground speed projected in forward direction
299 groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
301 // note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
302 // but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
303 // than airspeed and gps sensors alone
304 indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
306 // fluidMovement is a vector describing the aproximate movement vector of
307 // the surrounding fluid in 2d space (aka wind vector)
308 fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
309 fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
311 // calculate the movement vector we need to fly to reach velocityDesired -
312 // taking fluidMovement into account
313 courseComponent[0] = velocityDesired.North - fluidMovement[0];
314 courseComponent[1] = velocityDesired.East - fluidMovement[1];
316 indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
317 fixedWingSettings->HorizontalVelMin,
318 fixedWingSettings->HorizontalVelMax);
320 // if we could fly at arbitrary speeds, we'd just have to move towards the
321 // courseComponent vector as previously calculated and we'd be fine
322 // unfortunately however we are bound by min and max air speed limits, so
323 // we need to recalculate the correct course to meet at least the
324 // velocityDesired vector direction at our current speed
325 // this overwrites courseComponent
326 bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
328 // Error condition: wind speed too high, we can't go where we want anymore
329 fixedWingPathFollowerStatus.Errors.Wind = 0;
330 if ((!valid) &&
331 fixedWingSettings->Safetymargins.Wind > 0.5f) { // alarm switched on
332 fixedWingPathFollowerStatus.Errors.Wind = 1;
333 result = 0;
336 // Airspeed error
337 airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
339 // Error condition: plane too slow or too fast
340 fixedWingPathFollowerStatus.Errors.Highspeed = 0;
341 fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
342 if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingSettings->Safetymargins.Overspeed) {
343 fixedWingPathFollowerStatus.Errors.Overspeed = 1;
344 result = 0;
346 if (indicatedAirspeedState > fixedWingSettings->HorizontalVelMax * fixedWingSettings->Safetymargins.Highspeed) {
347 fixedWingPathFollowerStatus.Errors.Highspeed = 1;
348 result = 0;
349 cutThrust = true;
351 if (indicatedAirspeedState < fixedWingSettings->HorizontalVelMin * fixedWingSettings->Safetymargins.Lowspeed) {
352 fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
353 result = 0;
355 if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingSettings->Safetymargins.Stallspeed) {
356 fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
357 result = 0;
359 if (indicatedAirspeedState < fixedWingSettings->HorizontalVelMin * fixedWingSettings->Safetymargins.Lowspeed - fixedWingSettings->SafetyCutoffLimits.MaxDecelerationDeltaMPS) {
360 cutThrust = true;
361 result = 0;
365 // Vertical speed error
366 descentspeedDesired = boundf(
367 velocityDesired.Down,
368 -fixedWingSettings->VerticalVelMax,
369 fixedWingSettings->VerticalVelMax);
370 descentspeedError = descentspeedDesired - velocityState.Down;
373 * Compute desired thrust command
376 // Compute the cross feed from vertical speed to pitch, with saturation
377 float speedErrorToPowerCommandComponent = 0.0f;
378 if (hasAirspeed) {
379 speedErrorToPowerCommandComponent = boundf(
380 (airspeedError / fixedWingSettings->HorizontalVelMin) * fixedWingSettings->AirspeedToPowerCrossFeed.Kp,
381 -fixedWingSettings->AirspeedToPowerCrossFeed.Max,
382 fixedWingSettings->AirspeedToPowerCrossFeed.Max
386 // Compute final thrust response
387 powerCommand = pid_apply(&PIDpower, -descentspeedError, dT) +
388 speedErrorToPowerCommandComponent;
390 // Output internal state to telemetry
391 fixedWingPathFollowerStatus.Error.Power = descentspeedError;
392 fixedWingPathFollowerStatus.ErrorInt.Power = PIDpower.iAccumulator;
393 fixedWingPathFollowerStatus.Command.Power = powerCommand;
395 // set thrust
396 stabDesired.Thrust = boundf(fixedWingSettings->ThrustLimit.Neutral + powerCommand,
397 fixedWingSettings->ThrustLimit.Min,
398 fixedWingSettings->ThrustLimit.Max);
400 // Error condition: plane cannot hold altitude at current speed.
401 fixedWingPathFollowerStatus.Errors.Lowpower = 0;
402 if (fixedWingSettings->ThrustLimit.Neutral + powerCommand >= fixedWingSettings->ThrustLimit.Max && // thrust at maximum
403 velocityState.Down > 0.0f && // we ARE going down
404 descentspeedDesired < 0.0f && // we WANT to go up
405 airspeedError > 0.0f) { // we are too slow already
406 fixedWingPathFollowerStatus.Errors.Lowpower = 1;
408 if (fixedWingSettings->Safetymargins.Lowpower > 0.5f) { // alarm switched on
409 result = 0;
412 // Error condition: plane keeps climbing despite minimum thrust (opposite of above)
413 fixedWingPathFollowerStatus.Errors.Highpower = 0;
414 if (fixedWingSettings->ThrustLimit.Neutral + powerCommand <= fixedWingSettings->ThrustLimit.Min && // thrust at minimum
415 velocityState.Down < 0.0f && // we ARE going up
416 descentspeedDesired > 0.0f && // we WANT to go down
417 airspeedError < 0.0f) { // we are too fast already
418 // this alarm is often switched off because of false positives, however we still want to cut throttle if it happens
419 cutThrust = true;
420 fixedWingPathFollowerStatus.Errors.Highpower = 1;
422 if (fixedWingSettings->Safetymargins.Highpower > 0.5f) { // alarm switched on
423 result = 0;
428 * Compute desired pitch command
430 if (hasAirspeed) {
431 // Compute the cross feed from vertical speed to pitch, with saturation
432 float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingSettings->VerticalToPitchCrossFeed.Kp,
433 -fixedWingSettings->VerticalToPitchCrossFeed.Max,
434 fixedWingSettings->VerticalToPitchCrossFeed.Max
437 // Compute the pitch command as err*Kp + errInt*Ki + X_feed.
438 pitchCommand = -pid_apply(&PIDspeed, airspeedError, dT) + verticalSpeedToPitchCommandComponent;
440 fixedWingPathFollowerStatus.Error.Speed = airspeedError;
441 fixedWingPathFollowerStatus.ErrorInt.Speed = PIDspeed.iAccumulator;
442 fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
444 stabDesired.Pitch = boundf(fixedWingSettings->PitchLimit.Neutral + pitchCommand,
445 fixedWingSettings->PitchLimit.Min,
446 fixedWingSettings->PitchLimit.Max);
448 // Error condition: high speed dive
449 fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
450 if (fixedWingSettings->PitchLimit.Neutral + pitchCommand >= fixedWingSettings->PitchLimit.Max && // pitch demand is full up
451 velocityState.Down > 0.0f && // we ARE going down
452 descentspeedDesired < 0.0f && // we WANT to go up
453 airspeedError < 0.0f && // we are too fast already
454 fixedWingSettings->Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
455 fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
456 result = 0;
457 cutThrust = true;
459 } else {
460 // no airspeed sensor means we fly with constant pitch, like for landing pathfollower
461 stabDesired.Pitch = fixedWingSettings->LandingPitch;
464 // Error condition: pitch way out of wack
465 if (fixedWingSettings->Safetymargins.Pitchcontrol > 0.5f &&
466 (attitudeState.Pitch < fixedWingSettings->PitchLimit.Min - fixedWingSettings->SafetyCutoffLimits.PitchDeg ||
467 attitudeState.Pitch > fixedWingSettings->PitchLimit.Max + fixedWingSettings->SafetyCutoffLimits.PitchDeg)) {
468 fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
469 result = 0;
470 cutThrust = true;
475 * Compute desired roll command
477 if (hasAirspeed) {
478 courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
479 } else {
480 // fallback based on effective movement direction when in fallback mode, hope that airspeed > wind velocity, or we will never get home
481 courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North)) - RAD2DEG(atan2f(velocityState.East, velocityState.North));
484 if (courseError < -180.0f) {
485 courseError += 360.0f;
487 if (courseError > 180.0f) {
488 courseError -= 360.0f;
491 // overlap calculation. Theres a dead zone behind the craft where the
492 // counter-yawing of some craft while rolling could render a desired right
493 // turn into a desired left turn. Making the turn direction based on
494 // current roll angle keeps the plane committed to a direction once chosen
495 if (courseError < -180.0f + (fixedWingSettings->ReverseCourseOverlap * 0.5f)
496 && attitudeState.Roll > 0.0f) {
497 courseError += 360.0f;
499 if (courseError > 180.0f - (fixedWingSettings->ReverseCourseOverlap * 0.5f)
500 && attitudeState.Roll < 0.0f) {
501 courseError -= 360.0f;
504 courseCommand = pid_apply(&PIDcourse, courseError, dT);
506 fixedWingPathFollowerStatus.Error.Course = courseError;
507 fixedWingPathFollowerStatus.ErrorInt.Course = PIDcourse.iAccumulator;
508 fixedWingPathFollowerStatus.Command.Course = courseCommand;
510 stabDesired.Roll = boundf(fixedWingSettings->RollLimit.Neutral +
511 courseCommand,
512 fixedWingSettings->RollLimit.Min,
513 fixedWingSettings->RollLimit.Max);
515 // Error condition: roll way out of wack
516 fixedWingPathFollowerStatus.Errors.Rollcontrol = 0;
517 if (fixedWingSettings->Safetymargins.Rollcontrol > 0.5f &&
518 (attitudeState.Roll < fixedWingSettings->RollLimit.Min - fixedWingSettings->SafetyCutoffLimits.RollDeg ||
519 attitudeState.Roll > fixedWingSettings->RollLimit.Max + fixedWingSettings->SafetyCutoffLimits.RollDeg)) {
520 fixedWingPathFollowerStatus.Errors.Rollcontrol = 1;
521 result = 0;
522 cutThrust = true;
527 * Compute desired yaw command
529 // TODO implement raw control mode for yaw and base on Accels.Y
530 stabDesired.Yaw = 0.0f;
532 // safety cutoff condition
533 if (cutThrust) {
534 stabDesired.Thrust = 0.0f;
537 stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
538 stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
539 stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
540 stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
542 StabilizationDesiredSet(&stabDesired);
544 FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
546 return result;
551 * Function to calculate course vector C based on airspeed s, fluid movement F
552 * and desired movement vector V
553 * parameters in: V,F,s
554 * parameters out: C
555 * returns true if a valid solution could be found for V,F,s, false if not
556 * C will be set to a best effort attempt either way
558 bool FixedWingFlyController::correctCourse(float *C, float *V, float *F, float s)
560 // Approach:
561 // Let Sc be a circle around origin marking possible movement vectors
562 // of the craft with airspeed s (all possible options for C)
563 // Let Vl be a line through the origin along movement vector V where fr any
564 // point v on line Vl v = k * (V / |V|) = k' * V
565 // Let Wl be a line parallel to Vl where for any point v on line Vl exists
566 // a point w on WL with w = v - F
567 // Then any intersection between circle Sc and line Wl represents course
568 // vector which would result in a movement vector
569 // V' = k * ( V / |V|) = k' * V
570 // If there is no intersection point, S is insufficient to compensate
571 // for F and we can only try to fly in direction of V (thus having wind drift
572 // but at least making progress orthogonal to wind)
574 s = fabsf(s);
575 float f = vector_lengthf(F, 2);
577 // normalize Cn=V/|V|, |V| must be >0
578 float v = vector_lengthf(V, 2);
579 if (v < 1e-6f) {
580 // if |V|=0, we aren't supposed to move, turn into the wind
581 // (this allows hovering)
582 C[0] = -F[0];
583 C[1] = -F[1];
584 // if desired airspeed matches fluidmovement a hover is actually
585 // intended so return true
586 return fabsf(f - s) < 1e-3f;
588 float Vn[2] = { V[0] / v, V[1] / v };
590 // project F on V
591 float fp = F[0] * Vn[0] + F[1] * Vn[1];
593 // find component Fo of F that is orthogonal to V
594 // (which is exactly the distance between Vl and Wl)
595 float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
596 float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
598 // find k where k * Vn = C - Fo
599 // |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
600 // so k^2 + fo^2 = s^2 (since |Vn|=1)
601 float k2 = s * s - fo2;
602 if (k2 <= -1e-3f) {
603 // there is no solution, we will be drifted off either way
604 // fallback: fly stupidly in direction of V and hope for the best
605 C[0] = V[0];
606 C[1] = V[1];
607 return false;
608 } else if (k2 <= 1e-3f) {
609 // there is exactly one solution: -Fo
610 C[0] = -Fo[0];
611 C[1] = -Fo[1];
612 return true;
614 // we have two possible solutions k positive and k negative as there are
615 // two intersection points between Wl and Sc
616 // which one is better? two criteria:
617 // 1. we MUST move in the right direction, if any k leads to -v its invalid
618 // 2. we should minimize the speed error
619 float k = sqrt(k2);
620 float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
621 float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
622 // project C+F on Vn to find signed resulting movement vector length
623 float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
624 float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
625 if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
626 // in this case the angle between course and resulting movement vector
627 // is greater than 90 degrees - so we actually fly backwards
628 C[0] = C1[0];
629 C[1] = C1[1];
630 return true;
632 C[0] = C2[0];
633 C[1] = C2[1];
634 if (vp2 >= 0.0f) {
635 // in this case the angle between course and movement vector is less than
636 // 90 degrees, but we do move in the right direction
637 return true;
638 } else {
639 // in this case we actually get driven in the opposite direction of V
640 // with both solutions for C
641 // this might be reached in headwind stronger than maximum allowed
642 // airspeed.
643 return false;
648 void FixedWingFlyController::AirspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
650 AirspeedStateData airspeedState;
651 VelocityStateData velocityState;
653 AirspeedStateGet(&airspeedState);
654 VelocityStateGet(&velocityState);
655 float airspeedVector[2];
656 float yaw;
657 AttitudeStateYawGet(&yaw);
658 airspeedVector[0] = cos_lookup_deg(yaw);
659 airspeedVector[1] = sin_lookup_deg(yaw);
660 // vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
661 float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
663 indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
664 // note - we do fly by Indicated Airspeed (== calibrated airspeed) however
665 // since airspeed is updated less often than groundspeed, we use sudden
666 // changes to groundspeed to offset the airspeed by the same measurement.
667 // This has a side effect that in the absence of any airspeed updates, the
668 // pathfollower will fly using groundspeed.
670 lastAirspeedUpdate = PIOS_DELAY_GetuS();