2 ******************************************************************************
3 * @addtogroup OpenPilotModules OpenPilot Modules
5 * @addtogroup State Estimation
6 * @brief Acquires sensor data and computes state estimate
10 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2013.
11 * @brief Extended Kalman Filter. Calculates complete system state except
12 * accelerometer drift.
14 * @see The GNU Public License (GPL) Version 3
16 ******************************************************************************/
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 3 of the License, or
21 * (at your option) any later version.
23 * This program is distributed in the hope that it will be useful, but
24 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
25 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
28 * You should have received a copy of the GNU General Public License along
29 * with this program; if not, write to the Free Software Foundation, Inc.,
30 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 #include "inc/stateestimation.h"
35 #include <ekfconfiguration.h>
36 #include <ekfstatevariance.h>
37 #include <attitudestate.h>
38 #include <systemalarms.h>
39 #include <homelocation.h>
42 #include <CoordinateConversions.h>
46 #define STACK_REQUIRED 2048
47 #define DT_ALPHA 1e-3f
50 #define DT_INIT (1.0f / PIOS_SENSOR_RATE) // initialize with board sensor rate
52 #define IMPORT_SENSOR_IF_UPDATED(shortname, num) \
53 if (IS_SET(state->updated, SENSORUPDATES_##shortname)) { \
55 for (t = 0; t < num; t++) { \
56 this->work.shortname[t] = state->shortname[t]; \
62 EKFConfigurationData ekfConfiguration
;
63 HomeLocationData homeLocation
;
73 PiOSDeltatimeConfig dtconfig
;
77 static bool initialized
= 0;
82 static int32_t init13i(stateFilter
*self
);
83 static int32_t init13(stateFilter
*self
);
84 static int32_t maininit(stateFilter
*self
);
85 static filterResult
filter(stateFilter
*self
, stateEstimation
*state
);
86 static inline bool invalid_var(float data
);
88 static void globalInit(void);
91 static void globalInit(void)
95 EKFConfigurationInitialize();
96 EKFStateVarianceInitialize();
97 HomeLocationInitialize();
101 int32_t filterEKF13iInitialize(stateFilter
*handle
)
104 handle
->init
= &init13i
;
105 handle
->filter
= &filter
;
106 handle
->localdata
= pios_malloc(sizeof(struct data
));
107 return STACK_REQUIRED
;
109 int32_t filterEKF13Initialize(stateFilter
*handle
)
112 handle
->init
= &init13
;
113 handle
->filter
= &filter
;
114 handle
->localdata
= pios_malloc(sizeof(struct data
));
115 return STACK_REQUIRED
;
118 // TODO: Until the 16 state EKF is implemented, run 13 state, so compilation runs through
120 int32_t filterEKF16iInitialize(stateFilter
*handle
)
123 handle
->init
= &init13i
;
124 handle
->filter
= &filter
;
125 handle
->localdata
= pios_malloc(sizeof(struct data
));
126 return STACK_REQUIRED
;
128 int32_t filterEKF16Initialize(stateFilter
*handle
)
131 handle
->init
= &init13
;
132 handle
->filter
= &filter
;
133 handle
->localdata
= pios_malloc(sizeof(struct data
));
134 return STACK_REQUIRED
;
138 static int32_t init13i(stateFilter
*self
)
140 struct data
*this = (struct data
*)self
->localdata
;
143 return maininit(self
);
146 static int32_t init13(stateFilter
*self
)
148 struct data
*this = (struct data
*)self
->localdata
;
151 return maininit(self
);
154 static int32_t maininit(stateFilter
*self
)
156 struct data
*this = (struct data
*)self
->localdata
;
158 this->inited
= false;
159 this->init_stage
= 0;
160 this->work
.updated
= 0;
161 PIOS_DELTATIME_Init(&this->dtconfig
, DT_INIT
, DT_MIN
, DT_MAX
, DT_ALPHA
);
163 EKFConfigurationGet(&this->ekfConfiguration
);
165 // plausibility check
166 for (t
= 0; t
< EKFCONFIGURATION_P_NUMELEM
; t
++) {
167 if (invalid_var(EKFConfigurationPToArray(this->ekfConfiguration
.P
)[t
])) {
171 for (t
= 0; t
< EKFCONFIGURATION_Q_NUMELEM
; t
++) {
172 if (invalid_var(EKFConfigurationQToArray(this->ekfConfiguration
.Q
)[t
])) {
176 for (t
= 0; t
< EKFCONFIGURATION_R_NUMELEM
; t
++) {
177 if (invalid_var(EKFConfigurationRToArray(this->ekfConfiguration
.R
)[t
])) {
181 HomeLocationGet(&this->homeLocation
);
182 // Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily
183 // switching between indoor and outdoor mode with Set = false)
184 if ((this->homeLocation
.Be
[0] * this->homeLocation
.Be
[0] + this->homeLocation
.Be
[1] * this->homeLocation
.Be
[1] + this->homeLocation
.Be
[2] * this->homeLocation
.Be
[2] < 1e-5f
)) {
193 * Collect all required state variables, then run complementary filter
195 static filterResult
filter(stateFilter
*self
, stateEstimation
*state
)
197 struct data
*this = (struct data
*)self
->localdata
;
199 const float zeros
[3] = { 0.0f
, 0.0f
, 0.0f
};
201 // Perform the update
203 uint16_t sensors
= 0;
205 this->work
.updated
|= state
->updated
;
207 // check magnetometer alarm, discard any magnetometer readings if not OK
208 // during initialization phase (but let them through afterwards)
209 SystemAlarmsAlarmData alarms
;
210 SystemAlarmsAlarmGet(&alarms
);
211 if (alarms
.Magnetometer
!= SYSTEMALARMS_ALARM_OK
&& !this->inited
) {
212 UNSET_MASK(state
->updated
, SENSORUPDATES_mag
);
213 UNSET_MASK(this->work
.updated
, SENSORUPDATES_mag
);
216 // Get most recent data
217 IMPORT_SENSOR_IF_UPDATED(gyro
, 3);
218 IMPORT_SENSOR_IF_UPDATED(accel
, 3);
219 IMPORT_SENSOR_IF_UPDATED(mag
, 3);
220 IMPORT_SENSOR_IF_UPDATED(baro
, 1);
221 IMPORT_SENSOR_IF_UPDATED(pos
, 3);
222 IMPORT_SENSOR_IF_UPDATED(vel
, 3);
223 IMPORT_SENSOR_IF_UPDATED(airspeed
, 2);
225 // check whether mandatory updates are present accels must have been supplied already,
226 // and gyros must be supplied just now for a prediction step to take place
227 // ("gyros last" rule for multi object synchronization)
228 if (!(IS_SET(this->work
.updated
, SENSORUPDATES_accel
) && IS_SET(state
->updated
, SENSORUPDATES_gyro
))) {
229 UNSET_MASK(state
->updated
, SENSORUPDATES_pos
);
230 UNSET_MASK(state
->updated
, SENSORUPDATES_vel
);
231 UNSET_MASK(state
->updated
, SENSORUPDATES_attitude
);
232 UNSET_MASK(state
->updated
, SENSORUPDATES_gyro
);
233 return FILTERRESULT_OK
;
236 dT
= PIOS_DELTATIME_GetAverageSeconds(&this->dtconfig
);
238 if (!this->inited
&& IS_SET(this->work
.updated
, SENSORUPDATES_mag
) && IS_SET(this->work
.updated
, SENSORUPDATES_baro
) && IS_SET(this->work
.updated
, SENSORUPDATES_pos
)) {
239 // Don't initialize until all sensors are read
240 if (this->init_stage
== 0) {
241 // Reset the INS algorithm
243 // variance is measured in mGaus, but internally the EKF works with a normalized vector. Scale down by Be^2
244 float Be2
= this->homeLocation
.Be
[0] * this->homeLocation
.Be
[0] + this->homeLocation
.Be
[1] * this->homeLocation
.Be
[1] + this->homeLocation
.Be
[2] * this->homeLocation
.Be
[2];
245 INSSetMagVar((float[3]) { this->ekfConfiguration
.R
.MagX
/ Be2
,
246 this->ekfConfiguration
.R
.MagY
/ Be2
,
247 this->ekfConfiguration
.R
.MagZ
/ Be2
}
249 INSSetAccelVar((float[3]) { this->ekfConfiguration
.Q
.AccelX
,
250 this->ekfConfiguration
.Q
.AccelY
,
251 this->ekfConfiguration
.Q
.AccelZ
}
253 INSSetGyroVar((float[3]) { this->ekfConfiguration
.Q
.GyroX
,
254 this->ekfConfiguration
.Q
.GyroY
,
255 this->ekfConfiguration
.Q
.GyroZ
}
257 INSSetGyroBiasVar((float[3]) { this->ekfConfiguration
.Q
.GyroDriftX
,
258 this->ekfConfiguration
.Q
.GyroDriftY
,
259 this->ekfConfiguration
.Q
.GyroDriftZ
}
261 INSSetBaroVar(this->ekfConfiguration
.R
.BaroZ
);
263 // Initialize the gyro bias
264 float gyro_bias
[3] = { 0.0f
, 0.0f
, 0.0f
};
265 INSSetGyroBias(gyro_bias
);
267 AttitudeStateData attitudeState
;
268 AttitudeStateGet(&attitudeState
);
270 // Set initial attitude. Use accels to determine roll and pitch, rotate magnetic measurement accordingly,
271 // so pseudo "north" vector can be estimated even if the board is not level
272 attitudeState
.Roll
= atan2f(-this->work
.accel
[1], -this->work
.accel
[2]);
273 float zn
= cosf(attitudeState
.Roll
) * this->work
.mag
[2] + sinf(attitudeState
.Roll
) * this->work
.mag
[1];
274 float yn
= cosf(attitudeState
.Roll
) * this->work
.mag
[1] - sinf(attitudeState
.Roll
) * this->work
.mag
[2];
276 // rotate accels z vector according to roll
277 float azn
= cosf(attitudeState
.Roll
) * this->work
.accel
[2] + sinf(attitudeState
.Roll
) * this->work
.accel
[1];
278 attitudeState
.Pitch
= atan2f(this->work
.accel
[0], -azn
);
280 float xn
= cosf(attitudeState
.Pitch
) * this->work
.mag
[0] + sinf(attitudeState
.Pitch
) * zn
;
282 attitudeState
.Yaw
= atan2f(-yn
, xn
);
283 // TODO: This is still a hack
284 // Put this in a proper generic function in CoordinateConversion.c
285 // should take 4 vectors: g (0,0,-9.81), accels, Be (or 1,0,0 if no home loc) and magnetometers (or 1,0,0 if no mags)
286 // should calculate the rotation in 3d space using proper cross product math
287 // SUBTODO: formulate the math required
289 attitudeState
.Roll
= RAD2DEG(attitudeState
.Roll
);
290 attitudeState
.Pitch
= RAD2DEG(attitudeState
.Pitch
);
291 attitudeState
.Yaw
= RAD2DEG(attitudeState
.Yaw
);
293 RPY2Quaternion(&attitudeState
.Roll
, this->work
.attitude
);
295 INSSetState(this->work
.pos
, (float *)zeros
, this->work
.attitude
, (float *)zeros
, (float *)zeros
);
297 INSResetP(EKFConfigurationPToArray(this->ekfConfiguration
.P
));
299 // Run prediction a bit before any corrections
301 float gyros
[3] = { DEG2RAD(this->work
.gyro
[0]), DEG2RAD(this->work
.gyro
[1]), DEG2RAD(this->work
.gyro
[2]) };
302 INSStatePrediction(gyros
, this->work
.accel
, dT
);
304 // Copy the attitude into the state
305 // NOTE: updating gyr correctly is valid, because this code is reached only when SENSORUPDATES_gyro is already true
306 state
->attitude
[0] = Nav
.q
[0];
307 state
->attitude
[1] = Nav
.q
[1];
308 state
->attitude
[2] = Nav
.q
[2];
309 state
->attitude
[3] = Nav
.q
[3];
310 state
->gyro
[0] -= RAD2DEG(Nav
.gyro_bias
[0]);
311 state
->gyro
[1] -= RAD2DEG(Nav
.gyro_bias
[1]);
312 state
->gyro
[2] -= RAD2DEG(Nav
.gyro_bias
[2]);
313 state
->pos
[0] = Nav
.Pos
[0];
314 state
->pos
[1] = Nav
.Pos
[1];
315 state
->pos
[2] = Nav
.Pos
[2];
316 state
->vel
[0] = Nav
.Vel
[0];
317 state
->vel
[1] = Nav
.Vel
[1];
318 state
->vel
[2] = Nav
.Vel
[2];
319 state
->updated
|= SENSORUPDATES_attitude
| SENSORUPDATES_pos
| SENSORUPDATES_vel
;
323 if (this->init_stage
> 10) {
327 return FILTERRESULT_OK
;
331 return FILTERRESULT_CRITICAL
;
334 float gyros
[3] = { DEG2RAD(this->work
.gyro
[0]), DEG2RAD(this->work
.gyro
[1]), DEG2RAD(this->work
.gyro
[2]) };
336 // Advance the state estimate
337 INSStatePrediction(gyros
, this->work
.accel
, dT
);
339 // Copy the attitude into the state
340 // NOTE: updating gyr correctly is valid, because this code is reached only when SENSORUPDATES_gyro is already true
341 state
->attitude
[0] = Nav
.q
[0];
342 state
->attitude
[1] = Nav
.q
[1];
343 state
->attitude
[2] = Nav
.q
[2];
344 state
->attitude
[3] = Nav
.q
[3];
345 state
->gyro
[0] -= RAD2DEG(Nav
.gyro_bias
[0]);
346 state
->gyro
[1] -= RAD2DEG(Nav
.gyro_bias
[1]);
347 state
->gyro
[2] -= RAD2DEG(Nav
.gyro_bias
[2]);
348 state
->pos
[0] = Nav
.Pos
[0];
349 state
->pos
[1] = Nav
.Pos
[1];
350 state
->pos
[2] = Nav
.Pos
[2];
351 state
->vel
[0] = Nav
.Vel
[0];
352 state
->vel
[1] = Nav
.Vel
[1];
353 state
->vel
[2] = Nav
.Vel
[2];
354 state
->updated
|= SENSORUPDATES_attitude
| SENSORUPDATES_pos
| SENSORUPDATES_vel
;
356 // Advance the covariance estimate
357 INSCovariancePrediction(dT
);
359 if (IS_SET(this->work
.updated
, SENSORUPDATES_mag
)) {
360 sensors
|= MAG_SENSORS
;
363 if (IS_SET(this->work
.updated
, SENSORUPDATES_baro
)) {
364 sensors
|= BARO_SENSOR
;
367 INSSetMagNorth(this->homeLocation
.Be
);
370 // position and velocity variance used in indoor mode
371 INSSetPosVelVar((float[3]) { this->ekfConfiguration
.FakeR
.FakeGPSPosIndoor
,
372 this->ekfConfiguration
.FakeR
.FakeGPSPosIndoor
,
373 this->ekfConfiguration
.FakeR
.FakeGPSPosIndoor
},
374 (float[3]) { this->ekfConfiguration
.FakeR
.FakeGPSVelIndoor
,
375 this->ekfConfiguration
.FakeR
.FakeGPSVelIndoor
,
376 this->ekfConfiguration
.FakeR
.FakeGPSVelIndoor
}
379 // position and velocity variance used in outdoor mode
380 INSSetPosVelVar((float[3]) { this->ekfConfiguration
.R
.GPSPosNorth
,
381 this->ekfConfiguration
.R
.GPSPosEast
,
382 this->ekfConfiguration
.R
.GPSPosDown
},
383 (float[3]) { this->ekfConfiguration
.R
.GPSVelNorth
,
384 this->ekfConfiguration
.R
.GPSVelEast
,
385 this->ekfConfiguration
.R
.GPSVelDown
}
389 if (IS_SET(this->work
.updated
, SENSORUPDATES_pos
)) {
390 sensors
|= POS_SENSORS
;
393 if (IS_SET(this->work
.updated
, SENSORUPDATES_vel
)) {
394 sensors
|= HORIZ_SENSORS
| VERT_SENSORS
;
397 if (IS_SET(this->work
.updated
, SENSORUPDATES_airspeed
) && ((!IS_SET(this->work
.updated
, SENSORUPDATES_vel
) && !IS_SET(this->work
.updated
, SENSORUPDATES_pos
)) | !this->usePos
)) {
398 // HACK: feed airspeed into EKF as velocity, treat wind as 1e2 variance
399 sensors
|= HORIZ_SENSORS
| VERT_SENSORS
;
400 INSSetPosVelVar((float[3]) { this->ekfConfiguration
.FakeR
.FakeGPSPosIndoor
,
401 this->ekfConfiguration
.FakeR
.FakeGPSPosIndoor
,
402 this->ekfConfiguration
.FakeR
.FakeGPSPosIndoor
},
403 (float[3]) { this->ekfConfiguration
.FakeR
.FakeGPSVelAirspeed
,
404 this->ekfConfiguration
.FakeR
.FakeGPSVelAirspeed
,
405 this->ekfConfiguration
.FakeR
.FakeGPSVelAirspeed
}
407 // rotate airspeed vector into NED frame - airspeed is measured in X axis only
409 Quaternion2R(Nav
.q
, R
);
410 float vtas
[3] = { this->work
.airspeed
[1], 0.0f
, 0.0f
};
411 rot_mult(R
, vtas
, this->work
.vel
);
415 * TODO: Need to add a general sanity check for all the inputs to make sure their kosher
416 * although probably should occur within INS itself
419 INSCorrection(this->work
.mag
, this->work
.pos
, this->work
.vel
, this->work
.baro
[0], sensors
);
422 EKFStateVarianceData vardata
;
423 EKFStateVarianceGet(&vardata
);
424 INSGetP(EKFStateVariancePToArray(vardata
.P
));
425 EKFStateVarianceSet(&vardata
);
427 for (t
= 0; t
< EKFSTATEVARIANCE_P_NUMELEM
; t
++) {
428 if (!IS_REAL(EKFStateVariancePToArray(vardata
.P
)[t
]) || EKFStateVariancePToArray(vardata
.P
)[t
] <= 0.0f
) {
429 INSResetP(EKFConfigurationPToArray(this->ekfConfiguration
.P
));
430 this->init_stage
= -1;
435 // all sensor data has been used, reset!
436 this->work
.updated
= 0;
438 if (this->init_stage
< 0) {
439 return FILTERRESULT_WARNING
;
441 return FILTERRESULT_OK
;
445 // check for invalid variance values
446 static inline bool invalid_var(float data
)
448 if (isnan(data
) || isinf(data
)) {
451 if (data
< 1e-15f
) { // var should not be close to zero. And not negative either.