2 ******************************************************************************
3 * @addtogroup OpenPilotModules OpenPilot Modules
5 * @addtogroup CameraStab Camera Stabilization Module
6 * @brief Camera stabilization module
7 * Updates accessory outputs with values appropriate for camera stabilization
11 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
12 * @brief Stabilize camera against the roll pitch and yaw of aircraft
14 * @see The GNU Public License (GPL) Version 3
16 *****************************************************************************/
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 3 of the License, or
21 * (at your option) any later version.
23 * This program is distributed in the hope that it will be useful, but
24 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
25 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
28 * You should have received a copy of the GNU General Public License along
29 * with this program; if not, write to the Free Software Foundation, Inc.,
30 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 * Output object: Accessory
36 * This module will periodically calculate the output values for stabilizing the camera
38 * UAVObjects are automatically generated by the UAVObjectGenerator from
39 * the object definition XML file.
41 * Modules have no API, all communication to other modules is done through UAVObjects.
42 * However modules may use the API exposed by shared libraries.
43 * See the OpenPilot wiki for more details.
44 * http://www.openpilot.org/OpenPilot_Application_Architecture
48 #include "openpilot.h"
50 #include "accessorydesired.h"
51 #include "attitudestate.h"
52 #include "mixersettings.h"
53 #include "actuatorcommand.h"
54 #include "camerastabsettings.h"
55 #include "cameradesired.h"
56 #include "hwsettings.h"
61 #define SAMPLE_PERIOD_MS 10
66 static bool gimbalOutputEnabled
= false;
68 static struct CameraStab_data
{
69 portTickType lastSysTime
;
70 float inputs
[CAMERASTABSETTINGS_INPUT_NUMELEM
];
73 float attitudeFiltered
[CAMERASTABSETTINGS_INPUT_NUMELEM
];
77 float ffLastAttitude
[CAMERASTABSETTINGS_INPUT_NUMELEM
];
78 float ffLastAttitudeFiltered
[CAMERASTABSETTINGS_INPUT_NUMELEM
];
79 float ffFilterAccumulator
[CAMERASTABSETTINGS_INPUT_NUMELEM
];
84 static void attitudeUpdated(UAVObjEvent
*ev
);
87 static void applyFeedForward(uint8_t index
, float dT
, float *attitude
, CameraStabSettingsData
*cameraStab
);
90 // this structure is equivalent to the UAVObjects for one mixer.
94 } __attribute__((packed
)) Mixer_t
;
98 * Initialise the module, called on startup
99 * \returns 0 on success or -1 if initialisation failed
101 int32_t CameraStabInitialize(void)
103 bool cameraStabEnabled
;
105 #ifdef MODULE_CAMERASTAB_BUILTIN
106 cameraStabEnabled
= true;
108 HwSettingsOptionalModulesData optionalModules
;
110 HwSettingsOptionalModulesGet(&optionalModules
);
112 if (optionalModules
.CameraStab
== HWSETTINGS_OPTIONALMODULES_ENABLED
) {
113 cameraStabEnabled
= true;
115 cameraStabEnabled
= false;
119 if (cameraStabEnabled
) {
120 // allocate and initialize the static data storage only if module is enabled
121 csd
= (struct CameraStab_data
*)pios_malloc(sizeof(struct CameraStab_data
));
126 // initialize camera state variables
127 memset(csd
, 0, sizeof(struct CameraStab_data
));
128 csd
->lastSysTime
= xTaskGetTickCount();
130 AttitudeStateInitialize();
131 CameraDesiredInitialize();
134 .obj
= AttitudeStateHandle(),
137 .lowPriority
= false,
139 EventPeriodicCallbackCreate(&ev
, attitudeUpdated
, SAMPLE_PERIOD_MS
/ portTICK_RATE_MS
);
147 /* stub: module has no module thread */
148 int32_t CameraStabStart(void)
153 MODULE_INITCALL(CameraStabInitialize
, CameraStabStart
);
155 static void attitudeUpdated(UAVObjEvent
*ev
)
157 if (ev
->obj
!= AttitudeStateHandle()) {
161 if (!gimbalOutputEnabled
) {
162 MixerSettingsData mixerSettings
;
163 MixerSettingsGet(&mixerSettings
);
164 Mixer_t
*mixers
= (Mixer_t
*)&mixerSettings
.Mixer1Type
;
165 for (int ct
= 0; ct
< ACTUATORCOMMAND_CHANNEL_NUMELEM
; ct
++) {
166 uint8_t mixer_type
= mixers
[ct
].type
;
167 if ((mixer_type
>= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1
) &&
168 (mixer_type
<= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW
)) {
169 gimbalOutputEnabled
= true;
175 AccessoryDesiredData accessory
;
177 CameraStabSettingsData cameraStab
;
178 CameraStabSettingsGet(&cameraStab
);
180 // check how long since last update, time delta between calls in ms
181 portTickType thisSysTime
= xTaskGetTickCount();
182 float dT_millis
= (thisSysTime
> csd
->lastSysTime
) ?
183 (float)((thisSysTime
- csd
->lastSysTime
) * portTICK_RATE_MS
) :
184 (float)SAMPLE_PERIOD_MS
;
185 csd
->lastSysTime
= thisSysTime
;
187 // storage for elevon roll component before the pitch component has been generated
188 // we are guaranteed that the iteration order of i is roll pitch yaw
189 // that guarnteees this won't be used uninited, but the compiler doesn't know that
190 // so we init it or turn the warning/error off for each compiler
191 float elevon_roll
= 0.0f
;
194 for (uint8_t i
= 0; i
< CAMERASTABSETTINGS_INPUT_NUMELEM
; i
++) {
195 // read and process control input
196 if (CameraStabSettingsInputToArray(cameraStab
.Input
)[i
] != CAMERASTABSETTINGS_INPUT_NONE
) {
197 if (AccessoryDesiredInstGet(CameraStabSettingsInputToArray(cameraStab
.Input
)[i
] -
198 CAMERASTABSETTINGS_INPUT_ACCESSORY0
, &accessory
) == 0) {
200 switch (CameraStabSettingsStabilizationModeToArray(cameraStab
.StabilizationMode
)[i
]) {
201 case CAMERASTABSETTINGS_STABILIZATIONMODE_ATTITUDE
:
202 csd
->inputs
[i
] = accessory
.AccessoryVal
*
203 CameraStabSettingsInputRangeToArray(cameraStab
.InputRange
)[i
];
205 case CAMERASTABSETTINGS_STABILIZATIONMODE_AXISLOCK
:
206 input_rate
= accessory
.AccessoryVal
*
207 CameraStabSettingsInputRateToArray(cameraStab
.InputRate
)[i
];
208 if (fabsf(input_rate
) > cameraStab
.MaxAxisLockRate
) {
209 csd
->inputs
[i
] = boundf(csd
->inputs
[i
] + input_rate
* 0.001f
* dT_millis
,
210 -CameraStabSettingsInputRangeToArray(cameraStab
.InputRange
)[i
],
211 CameraStabSettingsInputRangeToArray(cameraStab
.InputRange
)[i
]);
220 // calculate servo output
224 case CAMERASTABSETTINGS_INPUT_ROLL
:
225 AttitudeStateRollGet(&attitude
);
227 case CAMERASTABSETTINGS_INPUT_PITCH
:
228 AttitudeStatePitchGet(&attitude
);
230 case CAMERASTABSETTINGS_INPUT_YAW
:
231 AttitudeStateYawGet(&attitude
);
237 #ifdef USE_GIMBAL_LPF
238 if (CameraStabSettingsResponseTimeToArray(cameraStab
.ResponseTime
)[i
]) {
239 float rt
= (float)CameraStabSettingsResponseTimeToArray(cameraStab
.ResponseTime
)[i
];
240 attitude
= csd
->attitudeFiltered
[i
] = ((rt
* csd
->attitudeFiltered
[i
]) + (dT_millis
* attitude
)) / (rt
+ dT_millis
);
245 if (CameraStabSettingsFeedForwardToArray(cameraStab
.FeedForward
)[i
]) {
246 applyFeedForward(i
, dT_millis
, &attitude
, &cameraStab
);
250 // bounding for elevon mixing occurs on the unmixed output
251 // to limit the range of the mixed output you must limit the range
252 // of both the unmixed pitch and unmixed roll
253 float output
= boundf((attitude
+ csd
->inputs
[i
]) / CameraStabSettingsOutputRangeToArray(cameraStab
.OutputRange
)[i
], -1.0f
, 1.0f
);
255 // set output channels
257 case CAMERASTABSETTINGS_INPUT_ROLL
:
258 // we are guaranteed that the iteration order of i is roll pitch yaw
259 // for elevon mixing we simply grab the value for later use
260 if (cameraStab
.GimbalType
== CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED
) {
261 elevon_roll
= output
;
263 CameraDesiredRollOrServo1Set(&output
);
266 case CAMERASTABSETTINGS_INPUT_PITCH
:
267 // we are guaranteed that the iteration order of i is roll pitch yaw
268 // for elevon mixing we use the value we previously grabbed and set both s1 and s2
269 if (cameraStab
.GimbalType
== CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED
) {
270 float elevon_pitch
= output
;
271 // elevon reversing works like this:
272 // first use the normal reversing facilities to get servo 1 roll working in the correct direction
273 // then use the normal reversing facilities to get servo 2 roll working in the correct direction
274 // then use these new reversing switches to reverse servo 1 and/or 2 pitch as needed
275 // if servo 1 pitch is reversed
276 if (cameraStab
.Servo1PitchReverse
== CAMERASTABSETTINGS_SERVO1PITCHREVERSE_TRUE
) {
277 // use (reversed pitch) + roll
278 output
= ((1.0f
- elevon_pitch
) + elevon_roll
) / 2.0f
;
281 output
= (elevon_pitch
+ elevon_roll
) / 2.0f
;
283 CameraDesiredRollOrServo1Set(&output
);
284 // if servo 2 pitch is reversed
285 if (cameraStab
.Servo2PitchReverse
== CAMERASTABSETTINGS_SERVO2PITCHREVERSE_TRUE
) {
286 // use (reversed pitch) - roll
287 output
= ((1.0f
- elevon_pitch
) - elevon_roll
) / 2.0f
;
290 output
= (elevon_pitch
- elevon_roll
) / 2.0f
;
292 CameraDesiredPitchOrServo2Set(&output
);
294 CameraDesiredPitchOrServo2Set(&output
);
297 case CAMERASTABSETTINGS_INPUT_YAW
:
298 CameraDesiredYawSet(&output
);
307 void applyFeedForward(uint8_t index
, float dT_millis
, float *attitude
, CameraStabSettingsData
*cameraStab
)
309 // compensate high feed forward values depending on gimbal type
310 float gimbalTypeCorrection
= 1.0f
;
312 switch (cameraStab
->GimbalType
) {
313 case CAMERASTABSETTINGS_GIMBALTYPE_GENERIC
:
314 case CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED
:
317 case CAMERASTABSETTINGS_GIMBALTYPE_YAWROLLPITCH
:
318 if (index
== CAMERASTABSETTINGS_INPUT_ROLL
) {
320 AttitudeStatePitchGet(&pitch
);
321 gimbalTypeCorrection
= (cameraStab
->OutputRange
.Pitch
- fabsf(pitch
))
322 / cameraStab
->OutputRange
.Pitch
;
325 case CAMERASTABSETTINGS_GIMBALTYPE_YAWPITCHROLL
:
326 if (index
== CAMERASTABSETTINGS_INPUT_PITCH
) {
328 AttitudeStateRollGet(&roll
);
329 gimbalTypeCorrection
= (cameraStab
->OutputRange
.Roll
- fabsf(roll
))
330 / cameraStab
->OutputRange
.Roll
;
337 // apply feed forward
338 float accumulator
= csd
->ffFilterAccumulator
[index
];
339 accumulator
+= (*attitude
- csd
->ffLastAttitude
[index
]) *
340 (float)CameraStabSettingsFeedForwardToArray(cameraStab
->FeedForward
)[index
] * gimbalTypeCorrection
;
341 csd
->ffLastAttitude
[index
] = *attitude
;
342 *attitude
+= accumulator
;
344 float filter
= (float)((accumulator
> 0.0f
) ? CameraStabSettingsAccelTimeToArray(cameraStab
->AccelTime
)[index
] :
345 CameraStabSettingsDecelTimeToArray(cameraStab
->DecelTime
)[index
]) / dT_millis
;
349 accumulator
-= accumulator
/ filter
;
350 csd
->ffFilterAccumulator
[index
] = accumulator
;
351 *attitude
+= accumulator
;
353 // apply acceleration limit
354 float delta
= *attitude
- csd
->ffLastAttitudeFiltered
[index
];
355 float maxDelta
= (float)cameraStab
->MaxAccel
* 0.001f
* dT_millis
;
357 if (fabsf(delta
) > maxDelta
) {
358 // we are accelerating too hard
359 *attitude
= csd
->ffLastAttitudeFiltered
[index
] + ((delta
> 0.0f
) ? maxDelta
: -maxDelta
);
361 csd
->ffLastAttitudeFiltered
[index
] = *attitude
;
363 #endif // USE_GIMBAL_FF