2 ******************************************************************************
5 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
6 * @brief Library path manipulation
8 * @see The GNU Public License (GPL) Version 3
10 *****************************************************************************/
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 3 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 #include <pios_math.h>
31 #include "uavobjectmanager.h" // <--.
32 #include "pathdesired.h" // <-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx,
34 // no direct UAVObject usage allowed in this file
37 static void path_endpoint(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode
);
38 static void path_vector(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode
);
39 static void path_circle(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool clockwise
);
42 * @brief Compute progress along path and deviation from it
43 * @param[in] path PathDesired structure
44 * @param[in] cur_point Current location
45 * @param[out] status Structure containing progress along path and deviation
47 void path_progress(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode3D
)
50 case PATHDESIRED_MODE_BRAKE
:
51 case PATHDESIRED_MODE_FOLLOWVECTOR
:
52 return path_vector(path
, cur_point
, status
, mode3D
);
55 case PATHDESIRED_MODE_CIRCLERIGHT
:
56 return path_circle(path
, cur_point
, status
, true);
59 case PATHDESIRED_MODE_CIRCLELEFT
:
60 return path_circle(path
, cur_point
, status
, false);
63 case PATHDESIRED_MODE_GOTOENDPOINT
:
64 return path_endpoint(path
, cur_point
, status
, mode3D
);
67 case PATHDESIRED_MODE_LAND
:
69 // use the endpoint as default failsafe if called in unknown modes
70 return path_endpoint(path
, cur_point
, status
, false);
77 * @brief Compute progress towards endpoint. Deviation equals distance
78 * @param[in] path PathDesired
79 * @param[in] cur_point Current location
80 * @param[out] status Structure containing progress along path and deviation
81 * @param[in] mode3D set true to include altitude in distance and progress calculation
83 static void path_endpoint(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode3D
)
86 float dist_path
, dist_diff
;
89 status
->path_vector
[0] = path
->End
.North
- path
->Start
.North
;
90 status
->path_vector
[1] = path
->End
.East
- path
->Start
.East
;
91 status
->path_vector
[2] = mode3D
? path
->End
.Down
- path
->Start
.Down
: 0.0f
;
93 // Current progress location relative to end
94 diff
[0] = path
->End
.North
- cur_point
[0];
95 diff
[1] = path
->End
.East
- cur_point
[1];
96 diff
[2] = mode3D
? path
->End
.Down
- cur_point
[2] : 0.0f
;
98 dist_diff
= vector_lengthf(diff
, 3);
99 dist_path
= vector_lengthf(status
->path_vector
, 3);
101 if (dist_diff
< 1e-6f
) {
102 status
->fractional_progress
= 1;
103 status
->error
= 0.0f
;
104 status
->correction_vector
[0] = status
->correction_vector
[1] = status
->correction_vector
[2] = 0.0f
;
105 // we have no base movement direction in this mode
106 status
->path_vector
[0] = status
->path_vector
[1] = status
->path_vector
[2] = 0.0f
;
111 if (fmaxf(dist_path
, 1.0f
) > dist_diff
) {
112 status
->fractional_progress
= 1 - dist_diff
/ fmaxf(dist_path
, 1.0f
);
114 status
->fractional_progress
= 0; // we don't want fractional_progress to become negative
116 status
->error
= dist_diff
;
118 // Compute correction vector
119 status
->correction_vector
[0] = diff
[0];
120 status
->correction_vector
[1] = diff
[1];
121 status
->correction_vector
[2] = diff
[2];
123 // base movement direction in this mode is a constant velocity offset on top of correction in the same direction
124 status
->path_vector
[0] = path
->EndingVelocity
* status
->correction_vector
[0] / dist_diff
;
125 status
->path_vector
[1] = path
->EndingVelocity
* status
->correction_vector
[1] / dist_diff
;
126 status
->path_vector
[2] = path
->EndingVelocity
* status
->correction_vector
[2] / dist_diff
;
130 * @brief Compute progress along path and deviation from it
131 * @param[in] path PathDesired
132 * @param[in] cur_point Current location
133 * @param[out] status Structure containing progress along path and deviation
134 * @param[in] mode3D set true to include altitude in distance and progress calculation
136 static void path_vector(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode3D
)
142 float track_point
[3];
145 status
->path_vector
[0] = path
->End
.North
- path
->Start
.North
;
146 status
->path_vector
[1] = path
->End
.East
- path
->Start
.East
;
147 status
->path_vector
[2] = mode3D
? path
->End
.Down
- path
->Start
.Down
: 0.0f
;
149 // Current progress location relative to start
150 diff
[0] = cur_point
[0] - path
->Start
.North
;
151 diff
[1] = cur_point
[1] - path
->Start
.East
;
152 diff
[2] = mode3D
? cur_point
[2] - path
->Start
.Down
: 0.0f
;
154 dot
= status
->path_vector
[0] * diff
[0] + status
->path_vector
[1] * diff
[1] + status
->path_vector
[2] * diff
[2];
155 dist_path
= vector_lengthf(status
->path_vector
, 3);
157 if (dist_path
> 1e-6f
) {
158 // Compute direction to travel & progress
159 status
->fractional_progress
= dot
/ (dist_path
* dist_path
);
161 // Fly towards the endpoint to prevent flying away,
162 // but assume progress=1 either way.
163 path_endpoint(path
, cur_point
, status
, mode3D
);
164 status
->fractional_progress
= 1;
167 // Compute point on track that is closest to our current position.
168 track_point
[0] = status
->fractional_progress
* status
->path_vector
[0] + path
->Start
.North
;
169 track_point
[1] = status
->fractional_progress
* status
->path_vector
[1] + path
->Start
.East
;
170 track_point
[2] = status
->fractional_progress
* status
->path_vector
[2] + path
->Start
.Down
;
172 status
->correction_vector
[0] = track_point
[0] - cur_point
[0];
173 status
->correction_vector
[1] = track_point
[1] - cur_point
[1];
174 status
->correction_vector
[2] = track_point
[2] - cur_point
[2];
176 status
->error
= vector_lengthf(status
->correction_vector
, 3);
178 // correct movement vector to current velocity
179 velocity
= path
->StartingVelocity
+ boundf(status
->fractional_progress
, 0.0f
, 1.0f
) * (path
->EndingVelocity
- path
->StartingVelocity
);
180 status
->path_vector
[0] = velocity
* status
->path_vector
[0] / dist_path
;
181 status
->path_vector
[1] = velocity
* status
->path_vector
[1] / dist_path
;
182 status
->path_vector
[2] = velocity
* status
->path_vector
[2] / dist_path
;
186 * @brief Compute progress along circular path and deviation from it
187 * @param[in] path PathDesired
188 * @param[in] cur_point Current location
189 * @param[out] status Structure containing progress along path and deviation
191 static void path_circle(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool clockwise
)
193 float radius_north
, radius_east
, diff_north
, diff_east
, diff_down
;
194 float radius
, cradius
;
197 float a_diff
, a_radius
;
200 radius_north
= path
->End
.North
- path
->Start
.North
;
201 radius_east
= path
->End
.East
- path
->Start
.East
;
203 // Current location relative to center
204 diff_north
= cur_point
[0] - path
->End
.North
;
205 diff_east
= cur_point
[1] - path
->End
.East
;
206 diff_down
= cur_point
[2] - path
->End
.Down
;
208 radius
= sqrtf(squaref(radius_north
) + squaref(radius_east
));
209 cradius
= sqrtf(squaref(diff_north
) + squaref(diff_east
));
211 // circles are always horizontal (for now - TODO: allow 3d circles - problem: clockwise/counterclockwise does no longer apply)
212 status
->path_vector
[2] = 0.0f
;
214 // error is current radius minus wanted radius - positive if too close
215 status
->error
= radius
- cradius
;
217 if (cradius
< 1e-6f
) {
218 // cradius is zero, just fly somewhere
219 status
->fractional_progress
= 1;
220 status
->correction_vector
[0] = 0;
221 status
->correction_vector
[1] = 0;
222 status
->path_vector
[0] = path
->EndingVelocity
;
223 status
->path_vector
[1] = 0;
226 // Compute the normal to the radius clockwise
227 normal
[0] = -diff_east
/ cradius
;
228 normal
[1] = diff_north
/ cradius
;
230 // Compute the normal to the radius counter clockwise
231 normal
[0] = diff_east
/ cradius
;
232 normal
[1] = -diff_north
/ cradius
;
235 // normalize progress to 0..1
236 a_diff
= atan2f(diff_north
, diff_east
);
237 a_radius
= atan2f(radius_north
, radius_east
);
240 a_diff
+= 2.0f
* M_PI_F
;
243 a_radius
+= 2.0f
* M_PI_F
;
246 progress
= (a_diff
- a_radius
+ M_PI_F
) / (2.0f
* M_PI_F
);
248 if (progress
< 0.0f
) {
250 } else if (progress
>= 1.0f
) {
255 progress
= 1.0f
- progress
;
258 status
->fractional_progress
= progress
;
260 // Compute direction to travel
261 status
->path_vector
[0] = normal
[0] * path
->EndingVelocity
;
262 status
->path_vector
[1] = normal
[1] * path
->EndingVelocity
;
264 // Compute direction to correct error
265 status
->correction_vector
[0] = status
->error
* diff_north
/ cradius
;
266 status
->correction_vector
[1] = status
->error
* diff_east
/ cradius
;
269 status
->correction_vector
[2] = -diff_down
;
271 status
->error
= fabs(status
->error
);