LP-500 HoTT Bridge Module ported from TauLabs
[librepilot.git] / flight / libraries / paths.c
blobc5d473d06bde40b24f11402fb12ced71d75e4b57
1 /**
2 ******************************************************************************
4 * @file paths.c
5 * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2016.
6 * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
8 * @brief Library path manipulation
10 * @see The GNU Public License (GPL) Version 3
12 * @addtogroup LibrePilotLibraries LibrePilot Libraries Navigation
13 *****************************************************************************/
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 3 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
22 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
23 * for more details.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #include <pios.h>
31 #include <pios_math.h>
32 #include <mathmisc.h>
34 #include "uavobjectmanager.h" // <--.
35 #include "pathdesired.h" // <-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx,
36 #include "paths.h"
37 // no direct UAVObject usage allowed in this file
39 // private functions
40 static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
41 static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
42 static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise);
44 /**
45 * @brief Compute progress along path and deviation from it
46 * @param[in] path PathDesired structure
47 * @param[in] cur_point Current location
48 * @param[out] status Structure containing progress along path and deviation
50 void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
52 switch (path->Mode) {
53 case PATHDESIRED_MODE_BRAKE:
54 case PATHDESIRED_MODE_FOLLOWVECTOR:
55 return path_vector(path, cur_point, status, mode3D);
57 break;
58 case PATHDESIRED_MODE_CIRCLERIGHT:
59 return path_circle(path, cur_point, status, true);
61 break;
62 case PATHDESIRED_MODE_CIRCLELEFT:
63 return path_circle(path, cur_point, status, false);
65 break;
66 case PATHDESIRED_MODE_GOTOENDPOINT:
67 case PATHDESIRED_MODE_AUTOTAKEOFF: // needed for pos hold at end of takeoff
68 return path_endpoint(path, cur_point, status, mode3D);
70 break;
71 case PATHDESIRED_MODE_LAND:
72 default:
73 // use the endpoint as default failsafe if called in unknown modes
74 return path_endpoint(path, cur_point, status, false);
76 break;
80 /**
81 * @brief Compute progress towards endpoint. Deviation equals distance
82 * @param[in] path PathDesired
83 * @param[in] cur_point Current location
84 * @param[out] status Structure containing progress along path and deviation
85 * @param[in] mode3D set true to include altitude in distance and progress calculation
87 static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
89 float diff[3];
90 float dist_path, dist_diff;
92 // Distance to go
93 status->path_vector[0] = path->End.North - path->Start.North;
94 status->path_vector[1] = path->End.East - path->Start.East;
95 status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
97 // Current progress location relative to end
98 diff[0] = path->End.North - cur_point[0];
99 diff[1] = path->End.East - cur_point[1];
100 diff[2] = mode3D ? path->End.Down - cur_point[2] : 0.0f;
102 dist_diff = vector_lengthf(diff, 3);
103 dist_path = vector_lengthf(status->path_vector, 3);
105 if (dist_diff < 1e-6f) {
106 status->fractional_progress = 1;
107 status->error = 0.0f;
108 status->correction_vector[0] = status->correction_vector[1] = status->correction_vector[2] = 0.0f;
109 // we have no base movement direction in this mode
110 status->path_vector[0] = status->path_vector[1] = status->path_vector[2] = 0.0f;
112 return;
115 if (fmaxf(dist_path, 1.0f) > dist_diff) {
116 status->fractional_progress = 1 - dist_diff / fmaxf(dist_path, 1.0f);
117 } else {
118 status->fractional_progress = 0; // we don't want fractional_progress to become negative
120 status->error = dist_diff;
122 // Compute correction vector
123 status->correction_vector[0] = diff[0];
124 status->correction_vector[1] = diff[1];
125 status->correction_vector[2] = diff[2];
127 // base movement direction in this mode is a constant velocity offset on top of correction in the same direction
128 status->path_vector[0] = path->EndingVelocity * status->correction_vector[0] / dist_diff;
129 status->path_vector[1] = path->EndingVelocity * status->correction_vector[1] / dist_diff;
130 status->path_vector[2] = path->EndingVelocity * status->correction_vector[2] / dist_diff;
134 * @brief Compute progress along path and deviation from it
135 * @param[in] path PathDesired
136 * @param[in] cur_point Current location
137 * @param[out] status Structure containing progress along path and deviation
138 * @param[in] mode3D set true to include altitude in distance and progress calculation
140 static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
142 float diff[3];
143 float dist_path;
144 float dot;
145 float velocity;
146 float track_point[3];
148 // Distance to go
149 status->path_vector[0] = path->End.North - path->Start.North;
150 status->path_vector[1] = path->End.East - path->Start.East;
151 status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
153 // Current progress location relative to start
154 diff[0] = cur_point[0] - path->Start.North;
155 diff[1] = cur_point[1] - path->Start.East;
156 diff[2] = mode3D ? cur_point[2] - path->Start.Down : 0.0f;
158 dot = status->path_vector[0] * diff[0] + status->path_vector[1] * diff[1] + status->path_vector[2] * diff[2];
159 dist_path = vector_lengthf(status->path_vector, 3);
161 if (dist_path > 1e-6f) {
162 // Compute direction to travel & progress
163 status->fractional_progress = dot / (dist_path * dist_path);
164 } else {
165 // Fly towards the endpoint to prevent flying away,
166 // but assume progress=1 either way.
167 path_endpoint(path, cur_point, status, mode3D);
168 status->fractional_progress = 1;
169 return;
171 // Compute point on track that is closest to our current position.
172 track_point[0] = status->fractional_progress * status->path_vector[0] + path->Start.North;
173 track_point[1] = status->fractional_progress * status->path_vector[1] + path->Start.East;
174 track_point[2] = status->fractional_progress * status->path_vector[2] + path->Start.Down;
176 status->correction_vector[0] = track_point[0] - cur_point[0];
177 status->correction_vector[1] = track_point[1] - cur_point[1];
178 status->correction_vector[2] = track_point[2] - cur_point[2];
180 status->error = vector_lengthf(status->correction_vector, 3);
182 // correct movement vector to current velocity
183 velocity = path->StartingVelocity + boundf(status->fractional_progress, 0.0f, 1.0f) * (path->EndingVelocity - path->StartingVelocity);
184 status->path_vector[0] = velocity * status->path_vector[0] / dist_path;
185 status->path_vector[1] = velocity * status->path_vector[1] / dist_path;
186 status->path_vector[2] = velocity * status->path_vector[2] / dist_path;
190 * @brief Compute progress along circular path and deviation from it
191 * @param[in] path PathDesired
192 * @param[in] cur_point Current location
193 * @param[out] status Structure containing progress along path and deviation
195 static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise)
197 float radius_north, radius_east, diff_north, diff_east, diff_down;
198 float radius, cradius;
199 float normal[2];
200 float progress;
201 float a_diff, a_radius;
203 // Radius
204 radius_north = path->End.North - path->Start.North;
205 radius_east = path->End.East - path->Start.East;
207 // Current location relative to center
208 diff_north = cur_point[0] - path->End.North;
209 diff_east = cur_point[1] - path->End.East;
210 diff_down = cur_point[2] - path->End.Down;
212 radius = sqrtf(squaref(radius_north) + squaref(radius_east));
213 cradius = sqrtf(squaref(diff_north) + squaref(diff_east));
215 // circles are always horizontal (for now - TODO: allow 3d circles - problem: clockwise/counterclockwise does no longer apply)
216 status->path_vector[2] = 0.0f;
218 // error is current radius minus wanted radius - positive if too close
219 status->error = radius - cradius;
221 if (cradius < 1e-6f) {
222 // cradius is zero, just fly somewhere
223 status->fractional_progress = 1;
224 status->correction_vector[0] = 0;
225 status->correction_vector[1] = 0;
226 status->path_vector[0] = path->EndingVelocity;
227 status->path_vector[1] = 0;
228 } else {
229 if (clockwise) {
230 // Compute the normal to the radius clockwise
231 normal[0] = -diff_east / cradius;
232 normal[1] = diff_north / cradius;
233 } else {
234 // Compute the normal to the radius counter clockwise
235 normal[0] = diff_east / cradius;
236 normal[1] = -diff_north / cradius;
239 // normalize progress to 0..1
240 a_diff = atan2f(diff_north, diff_east);
241 a_radius = atan2f(radius_north, radius_east);
243 if (a_diff < 0) {
244 a_diff += 2.0f * M_PI_F;
246 if (a_radius < 0) {
247 a_radius += 2.0f * M_PI_F;
250 progress = (a_diff - a_radius + M_PI_F) / (2.0f * M_PI_F);
252 if (progress < 0.0f) {
253 progress += 1.0f;
254 } else if (progress >= 1.0f) {
255 progress -= 1.0f;
258 if (clockwise) {
259 progress = 1.0f - progress;
262 status->fractional_progress = progress;
264 // Compute direction to travel
265 status->path_vector[0] = normal[0] * path->EndingVelocity;
266 status->path_vector[1] = normal[1] * path->EndingVelocity;
268 // Compute direction to correct error
269 status->correction_vector[0] = status->error * diff_north / cradius;
270 status->correction_vector[1] = status->error * diff_east / cradius;
273 status->correction_vector[2] = -diff_down;
275 status->error = fabs(status->error);