LP-500 HoTT Bridge Module ported from TauLabs
[librepilot.git] / flight / modules / Battery / battery.c
blobec17815c5850fa6780cdc2fa48d3dac88bfc0a0d
1 /**
2 ******************************************************************************
3 * @addtogroup OpenPilotModules OpenPilot Modules
4 * @{
5 * @addtogroup BatteryModule Battery Module
6 * @brief Measures battery voltage and current
7 * Updates the FlightBatteryState object
8 * @{
10 * @file battery.c
11 * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2016.
12 * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
13 * @brief Module to read the battery Voltage and Current periodically and set alarms appropriately.
15 * @see The GNU Public License (GPL) Version 3
17 *****************************************************************************/
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 3 of the License, or
22 * (at your option) any later version.
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
26 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 /**
35 * Output object: FlightBatteryState
37 * This module will periodically generate information on the battery state.
39 * UAVObjects are automatically generated by the UAVObjectGenerator from
40 * the object definition XML file.
42 * Modules have no API, all communication to other modules is done through UAVObjects.
43 * However modules may use the API exposed by shared libraries.
44 * See the OpenPilot wiki for more details.
45 * http://www.openpilot.org/OpenPilot_Application_Architecture
49 #include "openpilot.h"
51 #include "flightstatus.h"
52 #include "flightbatterystate.h"
53 #include "flightbatterysettings.h"
54 #include "hwsettings.h"
55 #include "systemstats.h"
58 // Configuration
60 #define SAMPLE_PERIOD_MS 500
62 // Time since power on the cells detection is active
63 #define DETECTION_TIMEFRAME 60000
64 // Private types
66 // Private variables
67 static bool batteryEnabled = false;
69 // THESE COULD BE BETTER AS SOME KIND OF UNION OR STRUCT, BY WHICH 4 BITS ARE USED FOR EACH
70 // PIN VARIABLE, ONE OF WHICH INDICATES SIGN, AND THE OTHER 3 BITS INDICATE POSITION. THIS WILL
71 // WORK FOR QUITE SOMETIME, UNTIL MORE THAN 8 ADC ARE AVAILABLE. EVEN AT THIS POINT, THE STRUCTURE
72 // CAN SIMPLY BE MODIFIED TO SUPPORT 15 ADC PINS, BY USING ALL AVAILABLE BITS.
73 static int8_t voltageADCPin = -1; // ADC pin for voltage
74 static int8_t currentADCPin = -1; // ADC pin for current
76 // Private functions
77 static void onTimer(UAVObjEvent *ev);
78 static void GetNbCells(const FlightBatterySettingsData *batterySettings, FlightBatteryStateData *flightBatteryData);
80 /**
81 * Initialise the module, called on startup
82 * \returns 0 on success or -1 if initialisation failed
84 int32_t BatteryInitialize(void)
86 #ifdef MODULE_BATTERY_BUILTIN
87 batteryEnabled = true;
88 #else
89 HwSettingsInitialize();
90 uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
92 HwSettingsOptionalModulesGet(optionalModules);
94 if ((optionalModules[HWSETTINGS_OPTIONALMODULES_BATTERY] == HWSETTINGS_OPTIONALMODULES_ENABLED)) {
95 batteryEnabled = true;
96 } else {
97 batteryEnabled = false;
99 #endif
101 uint8_t adcRouting[HWSETTINGS_ADCROUTING_NUMELEM];
102 HwSettingsADCRoutingArrayGet(adcRouting);
104 // Determine if the battery sensors are routed to ADC pins
105 for (int i = 0; i < HWSETTINGS_ADCROUTING_NUMELEM; i++) {
106 if (adcRouting[i] == HWSETTINGS_ADCROUTING_BATTERYVOLTAGE) {
107 voltageADCPin = i;
109 if (adcRouting[i] == HWSETTINGS_ADCROUTING_BATTERYCURRENT) {
110 currentADCPin = i;
114 // Don't enable module if no ADC pins are routed to the sensors
115 if (voltageADCPin < 0 && currentADCPin < 0) {
116 batteryEnabled = false;
119 // Start module
120 if (batteryEnabled) {
121 FlightBatteryStateInitialize();
122 FlightBatterySettingsInitialize();
123 SystemStatsInitialize();
125 static UAVObjEvent ev;
127 memset(&ev, 0, sizeof(UAVObjEvent));
128 EventPeriodicCallbackCreate(&ev, onTimer, SAMPLE_PERIOD_MS / portTICK_RATE_MS);
131 return 0;
134 MODULE_INITCALL(BatteryInitialize, 0);
135 static void onTimer(__attribute__((unused)) UAVObjEvent *ev)
137 static FlightBatterySettingsData batterySettings;
138 static FlightBatteryStateData flightBatteryData;
140 FlightBatterySettingsGet(&batterySettings);
141 FlightBatteryStateGet(&flightBatteryData);
143 const float dT = SAMPLE_PERIOD_MS / 1000.0f;
144 float energyRemaining;
146 // Reset ConsumedEnergy counter
147 if (batterySettings.ResetConsumedEnergy) {
148 flightBatteryData.ConsumedEnergy = 0;
149 batterySettings.ResetConsumedEnergy = false;
150 FlightBatterySettingsSet(&batterySettings);
153 // calculate the battery parameters
154 if (voltageADCPin >= 0) {
155 flightBatteryData.Voltage = (PIOS_ADC_PinGetVolt(voltageADCPin) - batterySettings.SensorCalibrations.VoltageZero) * batterySettings.SensorCalibrations.VoltageFactor; // in Volts
156 } else {
157 flightBatteryData.Voltage = 0; // Dummy placeholder value. This is in case we get another source of battery current which is not from the ADC
160 // voltage available: get the number of cells if possible, desired and not armed
161 GetNbCells(&batterySettings, &flightBatteryData);
163 // ad a plausibility check: zero voltage => zero current
164 if (currentADCPin >= 0 && flightBatteryData.Voltage > 0.f) {
165 flightBatteryData.Current = (PIOS_ADC_PinGetVolt(currentADCPin) - batterySettings.SensorCalibrations.CurrentZero) * batterySettings.SensorCalibrations.CurrentFactor; // in Amps
166 if (flightBatteryData.Current > flightBatteryData.PeakCurrent) {
167 flightBatteryData.PeakCurrent = flightBatteryData.Current; // in Amps
169 } else { // If there's no current measurement, we still need to assign one. Make it negative, so it can never trigger an alarm
170 flightBatteryData.Current = -0; // Dummy placeholder value. This is in case we get another source of battery current which is not from the ADC
173 // For safety reasons consider only positive currents in energy comsumption, i.e. no charging up.
174 // necesary when sensor are not perfectly calibrated
175 if (flightBatteryData.Current > 0) {
176 flightBatteryData.ConsumedEnergy += (flightBatteryData.Current * dT * 1000.0f / 3600.0f); // in mAh
179 // Apply a 2 second rise time low-pass filter to average the current
180 float alpha = 1.0f - dT / (dT + 2.0f);
181 flightBatteryData.AvgCurrent = alpha * flightBatteryData.AvgCurrent + (1 - alpha) * flightBatteryData.Current; // in Amps
183 /*The motor could regenerate power. Or we could have solar cells.
184 In short, is there any likelihood of measuring negative current? If it's a bad current reading we want to check, then
185 it makes sense to saturate at max and min values, because a misreading could as easily be very large, as negative. The simple
186 sign check doesn't catch this.*/
187 energyRemaining = batterySettings.Capacity - flightBatteryData.ConsumedEnergy; // in mAh
188 if (batterySettings.Capacity > 0 && flightBatteryData.AvgCurrent > 0) {
189 flightBatteryData.EstimatedFlightTime = (energyRemaining / (flightBatteryData.AvgCurrent * 1000.0f)) * 3600.0f; // in Sec
190 } else {
191 flightBatteryData.EstimatedFlightTime = 0;
194 // generate alarms where needed...
195 if ((flightBatteryData.Voltage <= 0) && (flightBatteryData.Current <= 0)) {
196 // FIXME: There's no guarantee that a floating ADC will give 0. So this
197 // check might fail, even when there's nothing attached.
198 AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_ERROR);
199 AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_ERROR);
200 } else {
201 // FIXME: should make the timer alarms user configurable
202 if (batterySettings.Capacity > 0 && flightBatteryData.EstimatedFlightTime < 30) {
203 AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_CRITICAL);
204 } else if (batterySettings.Capacity > 0 && flightBatteryData.EstimatedFlightTime < 120) {
205 AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_WARNING);
206 } else {
207 AlarmsClear(SYSTEMALARMS_ALARM_FLIGHTTIME);
210 // FIXME: should make the battery voltage detection dependent on battery type.
211 /*Not so sure. Some users will want to run their batteries harder than others, so it should be the user's choice. [KDS]*/
212 if (flightBatteryData.Voltage < batterySettings.CellVoltageThresholds.Critical * flightBatteryData.NbCells) {
213 AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_CRITICAL);
214 } else if (flightBatteryData.Voltage < batterySettings.CellVoltageThresholds.Warning * flightBatteryData.NbCells) {
215 AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_WARNING);
216 } else {
217 AlarmsClear(SYSTEMALARMS_ALARM_BATTERY);
221 FlightBatteryStateSet(&flightBatteryData);
225 static void GetNbCells(const FlightBatterySettingsData *batterySettings, FlightBatteryStateData *flightBatteryData)
227 // get flight status to check for armed
228 uint8_t armed = 0;
229 static bool detected = false;
231 // prevent the cell number to change once the board is armed at least once
232 if (detected) {
233 return;
236 FlightStatusArmedGet(&armed);
238 // check only if not armed
239 if (armed == FLIGHTSTATUS_ARMED_ARMED) {
240 detected = true;
241 return;
244 // prescribed number of cells?
245 if (batterySettings->NbCells != 0) {
246 flightBatteryData->NbCells = batterySettings->NbCells;
247 flightBatteryData->NbCellsAutodetected = 0;
248 return;
251 // plausibility check
252 if (flightBatteryData->Voltage <= 0.5f) {
253 // cannot detect number of cells
254 flightBatteryData->NbCellsAutodetected = 0;
255 return;
258 float voltageMin = 0.f, voltageMax = 0.f;
260 // Cell type specific values
261 // TODO: could be implemented as constant arrays indexed by cellType
262 // or could be part of the UAVObject definition
263 switch (batterySettings->Type) {
264 case FLIGHTBATTERYSETTINGS_TYPE_LIPO:
265 case FLIGHTBATTERYSETTINGS_TYPE_LICO:
266 voltageMin = 3.6f;
267 voltageMax = 4.2f;
268 break;
269 case FLIGHTBATTERYSETTINGS_TYPE_LIHV:
270 voltageMin = 3.6f;
271 voltageMax = 4.35f;
272 break;
273 case FLIGHTBATTERYSETTINGS_TYPE_A123:
274 voltageMin = 2.01f;
275 voltageMax = 3.59f;
276 break;
277 case FLIGHTBATTERYSETTINGS_TYPE_LIFESO4:
278 default:
279 flightBatteryData->NbCellsAutodetected = 0;
280 return;
283 // uniquely measurable under any condition iff n * voltageMax < (n+1) * voltageMin
284 // or n < voltageMin / (voltageMax-voltageMin)
285 // weaken condition by setting n <= voltageMin / (voltageMax-voltageMin) and
286 // checking for v <= voltageMin * voltageMax / (voltageMax-voltageMin)
287 if (flightBatteryData->Voltage > voltageMin * voltageMax / (voltageMax - voltageMin)) {
288 flightBatteryData->NbCellsAutodetected = 0;
289 return;
292 // Prevent the battery discharging on the ground to change the detected number of cells:
293 // Detection is enabled in the first 60 seconds from powerup
294 uint32_t flightTime;
295 SystemStatsFlightTimeGet(&flightTime);
296 if (flightTime > DETECTION_TIMEFRAME) {
297 detected = true;
300 flightBatteryData->NbCells = (int8_t)(flightBatteryData->Voltage / voltageMin);
301 flightBatteryData->NbCellsAutodetected = 1;
305 * @}
309 * @}