Merged in f5soh/librepilot/update_credits (pull request #529)
[librepilot.git] / ground / gcs / src / libs / eigen / blas / level1_cplx_impl.h
blob719f5bac9135c8eace7ff3aae8771e6ae1dd8bd5
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 #include "common.h"
12 struct scalar_norm1_op {
13 typedef RealScalar result_type;
14 EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
15 inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
17 namespace Eigen {
18 namespace internal {
19 template<> struct functor_traits<scalar_norm1_op >
21 enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
26 // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
27 // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
28 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
30 // std::cerr << "__asum " << *n << " " << *incx << "\n";
31 Complex* x = reinterpret_cast<Complex*>(px);
33 if(*n<=0) return 0;
35 if(*incx==1) return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
36 else return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
39 // computes a dot product of a conjugated vector with another vector.
40 int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
42 // std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
43 Scalar* res = reinterpret_cast<Scalar*>(pres);
45 if(*n<=0)
47 *res = Scalar(0);
48 return 0;
51 Scalar* x = reinterpret_cast<Scalar*>(px);
52 Scalar* y = reinterpret_cast<Scalar*>(py);
54 if(*incx==1 && *incy==1) *res = (make_vector(x,*n).dot(make_vector(y,*n)));
55 else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy)));
56 else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy)));
57 else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse()));
58 else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse()));
59 return 0;
62 // computes a vector-vector dot product without complex conjugation.
63 int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
65 Scalar* res = reinterpret_cast<Scalar*>(pres);
67 if(*n<=0)
69 *res = Scalar(0);
70 return 0;
73 Scalar* x = reinterpret_cast<Scalar*>(px);
74 Scalar* y = reinterpret_cast<Scalar*>(py);
76 if(*incx==1 && *incy==1) *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
77 else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
78 else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
79 else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
80 else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
81 return 0;
84 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
86 // std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
87 if(*n<=0) return 0;
89 Scalar* x = reinterpret_cast<Scalar*>(px);
91 if(*incx==1)
92 return make_vector(x,*n).stableNorm();
94 return make_vector(x,*n,*incx).stableNorm();
97 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
99 if(*n<=0) return 0;
101 Scalar* x = reinterpret_cast<Scalar*>(px);
102 Scalar* y = reinterpret_cast<Scalar*>(py);
103 RealScalar c = *pc;
104 RealScalar s = *ps;
106 StridedVectorType vx(make_vector(x,*n,std::abs(*incx)));
107 StridedVectorType vy(make_vector(y,*n,std::abs(*incy)));
109 Reverse<StridedVectorType> rvx(vx);
110 Reverse<StridedVectorType> rvy(vy);
112 // TODO implement mixed real-scalar rotations
113 if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
114 else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
115 else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
117 return 0;
120 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
122 if(*n<=0) return 0;
124 Scalar* x = reinterpret_cast<Scalar*>(px);
125 RealScalar alpha = *palpha;
127 // std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
129 if(*incx==1) make_vector(x,*n) *= alpha;
130 else make_vector(x,*n,std::abs(*incx)) *= alpha;
132 return 0;