Merged in f5soh/librepilot/update_credits (pull request #529)
[librepilot.git] / ground / gcs / src / libs / eigen / lapack / dlarfg.f
blob458ad2e053f3b34ba38306557987280c8acf1796
1 *> \brief \b DLARFG
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
8 *> \htmlonly
9 *> Download DLARFG + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfg.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfg.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfg.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
18 * Definition:
19 * ===========
21 * SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
23 * .. Scalar Arguments ..
24 * INTEGER INCX, N
25 * DOUBLE PRECISION ALPHA, TAU
26 * ..
27 * .. Array Arguments ..
28 * DOUBLE PRECISION X( * )
29 * ..
32 *> \par Purpose:
33 * =============
35 *> \verbatim
37 *> DLARFG generates a real elementary reflector H of order n, such
38 *> that
40 *> H * ( alpha ) = ( beta ), H**T * H = I.
41 *> ( x ) ( 0 )
43 *> where alpha and beta are scalars, and x is an (n-1)-element real
44 *> vector. H is represented in the form
46 *> H = I - tau * ( 1 ) * ( 1 v**T ) ,
47 *> ( v )
49 *> where tau is a real scalar and v is a real (n-1)-element
50 *> vector.
52 *> If the elements of x are all zero, then tau = 0 and H is taken to be
53 *> the unit matrix.
55 *> Otherwise 1 <= tau <= 2.
56 *> \endverbatim
58 * Arguments:
59 * ==========
61 *> \param[in] N
62 *> \verbatim
63 *> N is INTEGER
64 *> The order of the elementary reflector.
65 *> \endverbatim
67 *> \param[in,out] ALPHA
68 *> \verbatim
69 *> ALPHA is DOUBLE PRECISION
70 *> On entry, the value alpha.
71 *> On exit, it is overwritten with the value beta.
72 *> \endverbatim
74 *> \param[in,out] X
75 *> \verbatim
76 *> X is DOUBLE PRECISION array, dimension
77 *> (1+(N-2)*abs(INCX))
78 *> On entry, the vector x.
79 *> On exit, it is overwritten with the vector v.
80 *> \endverbatim
82 *> \param[in] INCX
83 *> \verbatim
84 *> INCX is INTEGER
85 *> The increment between elements of X. INCX > 0.
86 *> \endverbatim
88 *> \param[out] TAU
89 *> \verbatim
90 *> TAU is DOUBLE PRECISION
91 *> The value tau.
92 *> \endverbatim
94 * Authors:
95 * ========
97 *> \author Univ. of Tennessee
98 *> \author Univ. of California Berkeley
99 *> \author Univ. of Colorado Denver
100 *> \author NAG Ltd.
102 *> \date November 2011
104 *> \ingroup doubleOTHERauxiliary
106 * =====================================================================
107 SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
109 * -- LAPACK auxiliary routine (version 3.4.0) --
110 * -- LAPACK is a software package provided by Univ. of Tennessee, --
111 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112 * November 2011
114 * .. Scalar Arguments ..
115 INTEGER INCX, N
116 DOUBLE PRECISION ALPHA, TAU
117 * ..
118 * .. Array Arguments ..
119 DOUBLE PRECISION X( * )
120 * ..
122 * =====================================================================
124 * .. Parameters ..
125 DOUBLE PRECISION ONE, ZERO
126 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
127 * ..
128 * .. Local Scalars ..
129 INTEGER J, KNT
130 DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM
131 * ..
132 * .. External Functions ..
133 DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
134 EXTERNAL DLAMCH, DLAPY2, DNRM2
135 * ..
136 * .. Intrinsic Functions ..
137 INTRINSIC ABS, SIGN
138 * ..
139 * .. External Subroutines ..
140 EXTERNAL DSCAL
141 * ..
142 * .. Executable Statements ..
144 IF( N.LE.1 ) THEN
145 TAU = ZERO
146 RETURN
147 END IF
149 XNORM = DNRM2( N-1, X, INCX )
151 IF( XNORM.EQ.ZERO ) THEN
153 * H = I
155 TAU = ZERO
156 ELSE
158 * general case
160 BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
161 SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )
162 KNT = 0
163 IF( ABS( BETA ).LT.SAFMIN ) THEN
165 * XNORM, BETA may be inaccurate; scale X and recompute them
167 RSAFMN = ONE / SAFMIN
168 10 CONTINUE
169 KNT = KNT + 1
170 CALL DSCAL( N-1, RSAFMN, X, INCX )
171 BETA = BETA*RSAFMN
172 ALPHA = ALPHA*RSAFMN
173 IF( ABS( BETA ).LT.SAFMIN )
174 $ GO TO 10
176 * New BETA is at most 1, at least SAFMIN
178 XNORM = DNRM2( N-1, X, INCX )
179 BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
180 END IF
181 TAU = ( BETA-ALPHA ) / BETA
182 CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
184 * If ALPHA is subnormal, it may lose relative accuracy
186 DO 20 J = 1, KNT
187 BETA = BETA*SAFMIN
188 20 CONTINUE
189 ALPHA = BETA
190 END IF
192 RETURN
194 * End of DLARFG