Merged in f5soh/librepilot/update_credits (pull request #529)
[librepilot.git] / ground / gcs / src / libs / eigen / test / array_for_matrix.cpp
blobc1501947b91d06fe5d6732f20b1c20b3cec74ea2
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 #include "main.h"
12 template<typename MatrixType> void array_for_matrix(const MatrixType& m)
14 typedef typename MatrixType::Index Index;
15 typedef typename MatrixType::Scalar Scalar;
16 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
17 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
19 Index rows = m.rows();
20 Index cols = m.cols();
22 MatrixType m1 = MatrixType::Random(rows, cols),
23 m2 = MatrixType::Random(rows, cols),
24 m3(rows, cols);
26 ColVectorType cv1 = ColVectorType::Random(rows);
27 RowVectorType rv1 = RowVectorType::Random(cols);
29 Scalar s1 = internal::random<Scalar>(),
30 s2 = internal::random<Scalar>();
32 // scalar addition
33 VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
34 VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
35 VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
36 m3 = m1;
37 m3.array() += s2;
38 VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
39 m3 = m1;
40 m3.array() -= s1;
41 VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
43 // reductions
44 VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm());
45 VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm());
46 VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm());
47 VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm());
48 VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>()));
50 // vector-wise ops
51 m3 = m1;
52 VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
53 m3 = m1;
54 VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
55 m3 = m1;
56 VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
57 m3 = m1;
58 VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
60 // empty objects
61 VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols));
62 VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
64 // verify the const accessors exist
65 const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
66 const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
67 const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
68 const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
69 VERIFY(&ref_a1 == &ref_m1);
70 VERIFY(&ref_a2 == &ref_m2);
72 // Check write accessors:
73 m1.array().coeffRef(0,0) = 1;
74 VERIFY_IS_APPROX(m1(0,0),Scalar(1));
75 m1.array()(0,0) = 2;
76 VERIFY_IS_APPROX(m1(0,0),Scalar(2));
77 m1.array().matrix().coeffRef(0,0) = 3;
78 VERIFY_IS_APPROX(m1(0,0),Scalar(3));
79 m1.array().matrix()(0,0) = 4;
80 VERIFY_IS_APPROX(m1(0,0),Scalar(4));
83 template<typename MatrixType> void comparisons(const MatrixType& m)
85 using std::abs;
86 typedef typename MatrixType::Index Index;
87 typedef typename MatrixType::Scalar Scalar;
88 typedef typename NumTraits<Scalar>::Real RealScalar;
90 Index rows = m.rows();
91 Index cols = m.cols();
93 Index r = internal::random<Index>(0, rows-1),
94 c = internal::random<Index>(0, cols-1);
96 MatrixType m1 = MatrixType::Random(rows, cols),
97 m2 = MatrixType::Random(rows, cols),
98 m3(rows, cols);
100 VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
101 VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
102 if (rows*cols>1)
104 m3 = m1;
105 m3(r,c) += 1;
106 VERIFY(! (m1.array() < m3.array()).all() );
107 VERIFY(! (m1.array() > m3.array()).all() );
110 // comparisons to scalar
111 VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
112 VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
113 VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
114 VERIFY( (m1.array() == m1(r,c) ).any() );
115 VERIFY( m1.cwiseEqual(m1(r,c)).any() );
117 // test Select
118 VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
119 VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
120 Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
121 for (int j=0; j<cols; ++j)
122 for (int i=0; i<rows; ++i)
123 m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
124 VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
125 .select(MatrixType::Zero(rows,cols),m1), m3);
126 // shorter versions:
127 VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
128 .select(0,m1), m3);
129 VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
130 .select(m1,0), m3);
131 // even shorter version:
132 VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
134 // count
135 VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
137 // and/or
138 VERIFY( ((m1.array()<RealScalar(0)).matrix() && (m1.array()>RealScalar(0)).matrix()).count() == 0);
139 VERIFY( ((m1.array()<RealScalar(0)).matrix() || (m1.array()>=RealScalar(0)).matrix()).count() == rows*cols);
140 RealScalar a = m1.cwiseAbs().mean();
141 VERIFY( ((m1.array()<-a).matrix() || (m1.array()>a).matrix()).count() == (m1.cwiseAbs().array()>a).count());
143 typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices;
145 // TODO allows colwise/rowwise for array
146 VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
147 VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
150 template<typename VectorType> void lpNorm(const VectorType& v)
152 using std::sqrt;
153 typedef typename VectorType::RealScalar RealScalar;
154 VectorType u = VectorType::Random(v.size());
156 if(v.size()==0)
158 VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), RealScalar(0));
159 VERIFY_IS_APPROX(u.template lpNorm<1>(), RealScalar(0));
160 VERIFY_IS_APPROX(u.template lpNorm<2>(), RealScalar(0));
161 VERIFY_IS_APPROX(u.template lpNorm<5>(), RealScalar(0));
163 else
165 VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
168 VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
169 VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum()));
170 VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
173 template<typename MatrixType> void cwise_min_max(const MatrixType& m)
175 typedef typename MatrixType::Index Index;
176 typedef typename MatrixType::Scalar Scalar;
178 Index rows = m.rows();
179 Index cols = m.cols();
181 MatrixType m1 = MatrixType::Random(rows, cols);
183 // min/max with array
184 Scalar maxM1 = m1.maxCoeff();
185 Scalar minM1 = m1.minCoeff();
187 VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
188 VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
190 VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
191 VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
193 // min/max with scalar input
194 VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
195 VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1));
196 VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1));
197 VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1));
199 VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
200 VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1));
201 VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1));
202 VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1));
204 VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1));
205 VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1));
207 VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1));
208 VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1));
212 template<typename MatrixTraits> void resize(const MatrixTraits& t)
214 typedef typename MatrixTraits::Index Index;
215 typedef typename MatrixTraits::Scalar Scalar;
216 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
217 typedef Array<Scalar,Dynamic,Dynamic> Array2DType;
218 typedef Matrix<Scalar,Dynamic,1> VectorType;
219 typedef Array<Scalar,Dynamic,1> Array1DType;
221 Index rows = t.rows(), cols = t.cols();
223 MatrixType m(rows,cols);
224 VectorType v(rows);
225 Array2DType a2(rows,cols);
226 Array1DType a1(rows);
228 m.array().resize(rows+1,cols+1);
229 VERIFY(m.rows()==rows+1 && m.cols()==cols+1);
230 a2.matrix().resize(rows+1,cols+1);
231 VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1);
232 v.array().resize(cols);
233 VERIFY(v.size()==cols);
234 a1.matrix().resize(cols);
235 VERIFY(a1.size()==cols);
238 void regression_bug_654()
240 ArrayXf a = RowVectorXf(3);
241 VectorXf v = Array<float,1,Dynamic>(3);
244 void test_array_for_matrix()
246 for(int i = 0; i < g_repeat; i++) {
247 CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
248 CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
249 CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
250 CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
251 CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
252 CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
254 for(int i = 0; i < g_repeat; i++) {
255 CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
256 CALL_SUBTEST_2( comparisons(Matrix2f()) );
257 CALL_SUBTEST_3( comparisons(Matrix4d()) );
258 CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
259 CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
261 for(int i = 0; i < g_repeat; i++) {
262 CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
263 CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
264 CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
265 CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
266 CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
268 for(int i = 0; i < g_repeat; i++) {
269 CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
270 CALL_SUBTEST_2( lpNorm(Vector2f()) );
271 CALL_SUBTEST_7( lpNorm(Vector3d()) );
272 CALL_SUBTEST_8( lpNorm(Vector4f()) );
273 CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
274 CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
276 CALL_SUBTEST_5( lpNorm(VectorXf(0)) );
277 CALL_SUBTEST_4( lpNorm(VectorXcf(0)) );
278 for(int i = 0; i < g_repeat; i++) {
279 CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
280 CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
281 CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
283 CALL_SUBTEST_6( regression_bug_654() );