Merged in f5soh/librepilot/update_credits (pull request #529)
[librepilot.git] / ground / gcs / src / libs / eigen / test / block.cpp
blob39565af8311fb6b3f218e42b5ab8ce8db751870d
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 #define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
11 #include "main.h"
13 template<typename MatrixType, typename Index, typename Scalar>
14 typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
15 block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
16 // check cwise-Functions:
17 VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
18 VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
20 VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
21 VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
23 return Scalar(0);
26 template<typename MatrixType, typename Index, typename Scalar>
27 typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
28 block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
29 return Scalar(0);
33 template<typename MatrixType> void block(const MatrixType& m)
35 typedef typename MatrixType::Index Index;
36 typedef typename MatrixType::Scalar Scalar;
37 typedef typename MatrixType::RealScalar RealScalar;
38 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
39 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
40 typedef Matrix<Scalar, Dynamic, Dynamic> DynamicMatrixType;
41 typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
43 Index rows = m.rows();
44 Index cols = m.cols();
46 MatrixType m1 = MatrixType::Random(rows, cols),
47 m1_copy = m1,
48 m2 = MatrixType::Random(rows, cols),
49 m3(rows, cols),
50 ones = MatrixType::Ones(rows, cols);
51 VectorType v1 = VectorType::Random(rows);
53 Scalar s1 = internal::random<Scalar>();
55 Index r1 = internal::random<Index>(0,rows-1);
56 Index r2 = internal::random<Index>(r1,rows-1);
57 Index c1 = internal::random<Index>(0,cols-1);
58 Index c2 = internal::random<Index>(c1,cols-1);
60 block_real_only(m1, r1, r2, c1, c1, s1);
62 //check row() and col()
63 VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
64 //check operator(), both constant and non-constant, on row() and col()
65 m1 = m1_copy;
66 m1.row(r1) += s1 * m1_copy.row(r2);
67 VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2));
68 // check nested block xpr on lhs
69 m1.row(r1).row(0) += s1 * m1_copy.row(r2);
70 VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2));
71 m1 = m1_copy;
72 m1.col(c1) += s1 * m1_copy.col(c2);
73 VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
74 m1.col(c1).col(0) += s1 * m1_copy.col(c2);
75 VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
78 //check block()
79 Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
81 RowVectorType br1(m1.block(r1,0,1,cols));
82 VectorType bc1(m1.block(0,c1,rows,1));
83 VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1));
84 VERIFY_IS_EQUAL(m1.row(r1), br1);
85 VERIFY_IS_EQUAL(m1.col(c1), bc1);
86 //check operator(), both constant and non-constant, on block()
87 m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
88 m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
90 enum {
91 BlockRows = 2,
92 BlockCols = 5
94 if (rows>=5 && cols>=8)
96 // test fixed block() as lvalue
97 m1.template block<BlockRows,BlockCols>(1,1) *= s1;
98 // test operator() on fixed block() both as constant and non-constant
99 m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
100 // check that fixed block() and block() agree
101 Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
102 VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols));
104 // same tests with mixed fixed/dynamic size
105 m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols) *= s1;
106 m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols)(0,3) = m1.template block<2,5>(1,1)(1,2);
107 Matrix<Scalar,Dynamic,Dynamic> b2 = m1.template block<Dynamic,BlockCols>(3,3,2,5);
108 VERIFY_IS_EQUAL(b2, m1.block(3,3,BlockRows,BlockCols));
111 if (rows>2)
113 // test sub vectors
114 VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1));
115 VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
116 VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2));
117 VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
118 Index i = rows-2;
119 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1));
120 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
121 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2));
122 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
123 i = internal::random<Index>(0,rows-2);
124 VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i));
127 // stress some basic stuffs with block matrices
128 VERIFY(numext::real(ones.col(c1).sum()) == RealScalar(rows));
129 VERIFY(numext::real(ones.row(r1).sum()) == RealScalar(cols));
131 VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
132 VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
134 // chekc that linear acccessors works on blocks
135 m1 = m1_copy;
136 if((MatrixType::Flags&RowMajorBit)==0)
137 VERIFY_IS_EQUAL(m1.leftCols(c1).coeff(r1+c1*rows), m1(r1,c1));
138 else
139 VERIFY_IS_EQUAL(m1.topRows(r1).coeff(c1+r1*cols), m1(r1,c1));
142 // now test some block-inside-of-block.
144 // expressions with direct access
145 VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) );
146 VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
147 VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) );
148 VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
149 VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
151 // expressions without direct access
152 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) );
153 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
154 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) );
155 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
156 VERIFY_IS_APPROX( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
158 // evaluation into plain matrices from expressions with direct access (stress MapBase)
159 DynamicMatrixType dm;
160 DynamicVectorType dv;
161 dm.setZero();
162 dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2);
163 VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2)));
164 dm.setZero();
165 dv.setZero();
166 dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose();
167 dv = m1.row(r1).segment(c1,c2-c1+1);
168 VERIFY_IS_EQUAL(dv, dm);
169 dm.setZero();
170 dv.setZero();
171 dm = m1.col(c1).segment(r1,r2-r1+1);
172 dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0);
173 VERIFY_IS_EQUAL(dv, dm);
174 dm.setZero();
175 dv.setZero();
176 dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0);
177 dv = m1.row(r1).segment(c1,c2-c1+1);
178 VERIFY_IS_EQUAL(dv, dm);
179 dm.setZero();
180 dv.setZero();
181 dm = m1.row(r1).segment(c1,c2-c1+1).transpose();
182 dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0);
183 VERIFY_IS_EQUAL(dv, dm);
185 VERIFY_IS_EQUAL( (m1.template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
186 VERIFY_IS_EQUAL( (m1.template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
187 VERIFY_IS_EQUAL( ((m1*1).template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
188 VERIFY_IS_EQUAL( ((m1*1).template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
190 if (rows>=2 && cols>=2)
192 VERIFY_RAISES_ASSERT( m1 += m1.col(0) );
193 VERIFY_RAISES_ASSERT( m1 -= m1.col(0) );
194 VERIFY_RAISES_ASSERT( m1.array() *= m1.col(0).array() );
195 VERIFY_RAISES_ASSERT( m1.array() /= m1.col(0).array() );
200 template<typename MatrixType>
201 void compare_using_data_and_stride(const MatrixType& m)
203 typedef typename MatrixType::Index Index;
204 Index rows = m.rows();
205 Index cols = m.cols();
206 Index size = m.size();
207 Index innerStride = m.innerStride();
208 Index outerStride = m.outerStride();
209 Index rowStride = m.rowStride();
210 Index colStride = m.colStride();
211 const typename MatrixType::Scalar* data = m.data();
213 for(int j=0;j<cols;++j)
214 for(int i=0;i<rows;++i)
215 VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]);
217 if(!MatrixType::IsVectorAtCompileTime)
219 for(int j=0;j<cols;++j)
220 for(int i=0;i<rows;++i)
221 VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit)
222 ? i*outerStride + j*innerStride
223 : j*outerStride + i*innerStride]);
226 if(MatrixType::IsVectorAtCompileTime)
228 VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0))));
229 for (int i=0;i<size;++i)
230 VERIFY(m.coeff(i) == data[i*innerStride]);
234 template<typename MatrixType>
235 void data_and_stride(const MatrixType& m)
237 typedef typename MatrixType::Index Index;
238 Index rows = m.rows();
239 Index cols = m.cols();
241 Index r1 = internal::random<Index>(0,rows-1);
242 Index r2 = internal::random<Index>(r1,rows-1);
243 Index c1 = internal::random<Index>(0,cols-1);
244 Index c2 = internal::random<Index>(c1,cols-1);
246 MatrixType m1 = MatrixType::Random(rows, cols);
247 compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1));
248 compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1));
249 compare_using_data_and_stride(m1.row(r1));
250 compare_using_data_and_stride(m1.col(c1));
251 compare_using_data_and_stride(m1.row(r1).transpose());
252 compare_using_data_and_stride(m1.col(c1).transpose());
255 void test_block()
257 for(int i = 0; i < g_repeat; i++) {
258 CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) );
259 CALL_SUBTEST_2( block(Matrix4d()) );
260 CALL_SUBTEST_3( block(MatrixXcf(3, 3)) );
261 CALL_SUBTEST_4( block(MatrixXi(8, 12)) );
262 CALL_SUBTEST_5( block(MatrixXcd(20, 20)) );
263 CALL_SUBTEST_6( block(MatrixXf(20, 20)) );
265 CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) );
267 #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
268 CALL_SUBTEST_6( data_and_stride(MatrixXf(internal::random(5,50), internal::random(5,50))) );
269 CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(5,50), internal::random(5,50))) );
270 #endif