Merged in f5soh/librepilot/update_credits (pull request #529)
[librepilot.git] / ground / gcs / src / libs / eigen / test / geo_transformations.cpp
blob278e527c252c8a29db494021e3f0dc2d0fd1e4ca
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 #include "main.h"
11 #include <Eigen/Geometry>
12 #include <Eigen/LU>
13 #include <Eigen/SVD>
15 template<typename T>
16 Matrix<T,2,1> angleToVec(T a)
18 return Matrix<T,2,1>(std::cos(a), std::sin(a));
21 // This permits to workaround a bug in clang/llvm code generation.
22 template<typename T>
23 EIGEN_DONT_INLINE
24 void dont_over_optimize(T& x) { volatile typename T::Scalar tmp = x(0); x(0) = tmp; }
26 template<typename Scalar, int Mode, int Options> void non_projective_only()
28 /* this test covers the following files:
29 Cross.h Quaternion.h, Transform.cpp
31 typedef Matrix<Scalar,3,1> Vector3;
32 typedef Quaternion<Scalar> Quaternionx;
33 typedef AngleAxis<Scalar> AngleAxisx;
34 typedef Transform<Scalar,3,Mode,Options> Transform3;
35 typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
36 typedef Translation<Scalar,3> Translation3;
38 Vector3 v0 = Vector3::Random(),
39 v1 = Vector3::Random();
41 Transform3 t0, t1, t2;
43 Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
45 Quaternionx q1, q2;
47 q1 = AngleAxisx(a, v0.normalized());
49 t0 = Transform3::Identity();
50 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
52 t0.linear() = q1.toRotationMatrix();
54 v0 << 50, 2, 1;
55 t0.scale(v0);
57 VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
59 t0.setIdentity();
60 t1.setIdentity();
61 v1 << 1, 2, 3;
62 t0.linear() = q1.toRotationMatrix();
63 t0.pretranslate(v0);
64 t0.scale(v1);
65 t1.linear() = q1.conjugate().toRotationMatrix();
66 t1.prescale(v1.cwiseInverse());
67 t1.translate(-v0);
69 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
71 t1.fromPositionOrientationScale(v0, q1, v1);
72 VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
73 VERIFY_IS_APPROX(t1*v1, t0*v1);
75 // translation * vector
76 t0.setIdentity();
77 t0.translate(v0);
78 VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
80 // AlignedScaling * vector
81 t0.setIdentity();
82 t0.scale(v0);
83 VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
86 template<typename Scalar, int Mode, int Options> void transformations()
88 /* this test covers the following files:
89 Cross.h Quaternion.h, Transform.cpp
91 using std::cos;
92 using std::abs;
93 typedef Matrix<Scalar,3,3> Matrix3;
94 typedef Matrix<Scalar,4,4> Matrix4;
95 typedef Matrix<Scalar,2,1> Vector2;
96 typedef Matrix<Scalar,3,1> Vector3;
97 typedef Matrix<Scalar,4,1> Vector4;
98 typedef Quaternion<Scalar> Quaternionx;
99 typedef AngleAxis<Scalar> AngleAxisx;
100 typedef Transform<Scalar,2,Mode,Options> Transform2;
101 typedef Transform<Scalar,3,Mode,Options> Transform3;
102 typedef typename Transform3::MatrixType MatrixType;
103 typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
104 typedef Translation<Scalar,2> Translation2;
105 typedef Translation<Scalar,3> Translation3;
107 Vector3 v0 = Vector3::Random(),
108 v1 = Vector3::Random();
109 Matrix3 matrot1, m;
111 Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
112 Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>();
114 while(v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random();
115 while(v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random();
117 VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
118 VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0);
119 if(abs(cos(a)) > test_precision<Scalar>())
121 VERIFY_IS_APPROX(cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
123 m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
124 VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
125 VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
127 Quaternionx q1, q2;
128 q1 = AngleAxisx(a, v0.normalized());
129 q2 = AngleAxisx(a, v1.normalized());
131 // rotation matrix conversion
132 matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
133 * AngleAxisx(Scalar(0.2), Vector3::UnitY())
134 * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
135 VERIFY_IS_APPROX(matrot1 * v1,
136 AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
137 * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
138 * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
140 // angle-axis conversion
141 AngleAxisx aa = AngleAxisx(q1);
142 VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
144 // The following test is stable only if 2*angle != angle and v1 is not colinear with axis
145 if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) )
147 VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
150 aa.fromRotationMatrix(aa.toRotationMatrix());
151 VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
152 // The following test is stable only if 2*angle != angle and v1 is not colinear with axis
153 if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) )
155 VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
158 // AngleAxis
159 VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
160 Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
162 AngleAxisx aa1;
163 m = q1.toRotationMatrix();
164 aa1 = m;
165 VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
166 Quaternionx(m).toRotationMatrix());
168 // Transform
169 // TODO complete the tests !
170 a = 0;
171 while (abs(a)<Scalar(0.1))
172 a = internal::random<Scalar>(-Scalar(0.4)*Scalar(EIGEN_PI), Scalar(0.4)*Scalar(EIGEN_PI));
173 q1 = AngleAxisx(a, v0.normalized());
174 Transform3 t0, t1, t2;
176 // first test setIdentity() and Identity()
177 t0.setIdentity();
178 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
179 t0.matrix().setZero();
180 t0 = Transform3::Identity();
181 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
183 t0.setIdentity();
184 t1.setIdentity();
185 v1 << 1, 2, 3;
186 t0.linear() = q1.toRotationMatrix();
187 t0.pretranslate(v0);
188 t0.scale(v1);
189 t1.linear() = q1.conjugate().toRotationMatrix();
190 t1.prescale(v1.cwiseInverse());
191 t1.translate(-v0);
193 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
195 t1.fromPositionOrientationScale(v0, q1, v1);
196 VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
198 t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
199 t1.setIdentity(); t1.scale(v0).rotate(q1);
200 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
202 t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
203 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
205 VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
206 VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
208 // More transform constructors, operator=, operator*=
210 Matrix3 mat3 = Matrix3::Random();
211 Matrix4 mat4;
212 mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
213 Transform3 tmat3(mat3), tmat4(mat4);
214 if(Mode!=int(AffineCompact))
215 tmat4.matrix()(3,3) = Scalar(1);
216 VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
218 Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
219 Vector3 v3 = Vector3::Random().normalized();
220 AngleAxisx aa3(a3, v3);
221 Transform3 t3(aa3);
222 Transform3 t4;
223 t4 = aa3;
224 VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
225 t4.rotate(AngleAxisx(-a3,v3));
226 VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
227 t4 *= aa3;
228 VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
230 do {
231 v3 = Vector3::Random();
232 dont_over_optimize(v3);
233 } while (v3.cwiseAbs().minCoeff()<NumTraits<Scalar>::epsilon());
234 Translation3 tv3(v3);
235 Transform3 t5(tv3);
236 t4 = tv3;
237 VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
238 t4.translate((-v3).eval());
239 VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
240 t4 *= tv3;
241 VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
243 AlignedScaling3 sv3(v3);
244 Transform3 t6(sv3);
245 t4 = sv3;
246 VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
247 t4.scale(v3.cwiseInverse());
248 VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
249 t4 *= sv3;
250 VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
252 // matrix * transform
253 VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix());
255 // chained Transform product
256 VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
258 // check that Transform product doesn't have aliasing problems
259 t5 = t4;
260 t5 = t5*t5;
261 VERIFY_IS_APPROX(t5, t4*t4);
263 // 2D transformation
264 Transform2 t20, t21;
265 Vector2 v20 = Vector2::Random();
266 Vector2 v21 = Vector2::Random();
267 for (int k=0; k<2; ++k)
268 if (abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
269 t21.setIdentity();
270 t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
271 VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
272 t21.pretranslate(v20).scale(v21).matrix());
274 t21.setIdentity();
275 t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
276 VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
277 * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
279 // Transform - new API
280 // 3D
281 t0.setIdentity();
282 t0.rotate(q1).scale(v0).translate(v0);
283 // mat * aligned scaling and mat * translation
284 t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
285 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
286 t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0);
287 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
288 t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0);
289 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
290 // mat * transformation and aligned scaling * translation
291 t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
292 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
295 t0.setIdentity();
296 t0.scale(s0).translate(v0);
297 t1 = Eigen::Scaling(s0) * Translation3(v0);
298 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
299 t0.prescale(s0);
300 t1 = Eigen::Scaling(s0) * t1;
301 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
303 t0 = t3;
304 t0.scale(s0);
305 t1 = t3 * Eigen::Scaling(s0,s0,s0);
306 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
307 t0.prescale(s0);
308 t1 = Eigen::Scaling(s0,s0,s0) * t1;
309 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
311 t0 = t3;
312 t0.scale(s0);
313 t1 = t3 * Eigen::Scaling(s0);
314 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
315 t0.prescale(s0);
316 t1 = Eigen::Scaling(s0) * t1;
317 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
319 t0.setIdentity();
320 t0.prerotate(q1).prescale(v0).pretranslate(v0);
321 // translation * aligned scaling and transformation * mat
322 t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
323 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
324 // scaling * mat and translation * mat
325 t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
326 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
328 t0.setIdentity();
329 t0.scale(v0).translate(v0).rotate(q1);
330 // translation * mat and aligned scaling * transformation
331 t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
332 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
333 // transformation * aligned scaling
334 t0.scale(v0);
335 t1 *= AlignedScaling3(v0);
336 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
337 t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
338 t1 = t1 * v0.asDiagonal();
339 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
340 // transformation * translation
341 t0.translate(v0);
342 t1 = t1 * Translation3(v0);
343 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
344 // translation * transformation
345 t0.pretranslate(v0);
346 t1 = Translation3(v0) * t1;
347 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
349 // transform * quaternion
350 t0.rotate(q1);
351 t1 = t1 * q1;
352 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
354 // translation * quaternion
355 t0.translate(v1).rotate(q1);
356 t1 = t1 * (Translation3(v1) * q1);
357 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
359 // aligned scaling * quaternion
360 t0.scale(v1).rotate(q1);
361 t1 = t1 * (AlignedScaling3(v1) * q1);
362 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
364 // quaternion * transform
365 t0.prerotate(q1);
366 t1 = q1 * t1;
367 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
369 // quaternion * translation
370 t0.rotate(q1).translate(v1);
371 t1 = t1 * (q1 * Translation3(v1));
372 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
374 // quaternion * aligned scaling
375 t0.rotate(q1).scale(v1);
376 t1 = t1 * (q1 * AlignedScaling3(v1));
377 VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
379 // test transform inversion
380 t0.setIdentity();
381 t0.translate(v0);
382 do {
383 t0.linear().setRandom();
384 } while(t0.linear().jacobiSvd().singularValues()(2)<test_precision<Scalar>());
385 Matrix4 t044 = Matrix4::Zero();
386 t044(3,3) = 1;
387 t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
388 VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
389 t0.setIdentity();
390 t0.translate(v0).rotate(q1);
391 t044 = Matrix4::Zero();
392 t044(3,3) = 1;
393 t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
394 VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
396 Matrix3 mat_rotation, mat_scaling;
397 t0.setIdentity();
398 t0.translate(v0).rotate(q1).scale(v1);
399 t0.computeRotationScaling(&mat_rotation, &mat_scaling);
400 VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
401 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
402 VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
403 t0.computeScalingRotation(&mat_scaling, &mat_rotation);
404 VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
405 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
406 VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
408 // test casting
409 Transform<float,3,Mode> t1f = t1.template cast<float>();
410 VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
411 Transform<double,3,Mode> t1d = t1.template cast<double>();
412 VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
414 Translation3 tr1(v0);
415 Translation<float,3> tr1f = tr1.template cast<float>();
416 VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
417 Translation<double,3> tr1d = tr1.template cast<double>();
418 VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
420 AngleAxis<float> aa1f = aa1.template cast<float>();
421 VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
422 AngleAxis<double> aa1d = aa1.template cast<double>();
423 VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
425 Rotation2D<Scalar> r2d1(internal::random<Scalar>());
426 Rotation2D<float> r2d1f = r2d1.template cast<float>();
427 VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
428 Rotation2D<double> r2d1d = r2d1.template cast<double>();
429 VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
431 for(int k=0; k<100; ++k)
433 Scalar angle = internal::random<Scalar>(-100,100);
434 Rotation2D<Scalar> rot2(angle);
435 VERIFY( rot2.smallestPositiveAngle() >= 0 );
436 VERIFY( rot2.smallestPositiveAngle() <= Scalar(2)*Scalar(EIGEN_PI) );
437 VERIFY_IS_APPROX( angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle()) );
439 VERIFY( rot2.smallestAngle() >= -Scalar(EIGEN_PI) );
440 VERIFY( rot2.smallestAngle() <= Scalar(EIGEN_PI) );
441 VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle()) );
443 Matrix<Scalar,2,2> rot2_as_mat(rot2);
444 Rotation2D<Scalar> rot3(rot2_as_mat);
445 VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot3.angle()) );
448 s0 = internal::random<Scalar>(-100,100);
449 s1 = internal::random<Scalar>(-100,100);
450 Rotation2D<Scalar> R0(s0), R1(s1);
452 t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0));
453 t21 = Translation2(v20) * R0 * Eigen::Scaling(s0);
454 VERIFY_IS_APPROX(t20,t21);
456 t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0));
457 t21 = Translation2(v20) * Eigen::Scaling(s0);
458 VERIFY_IS_APPROX(t20,t21);
460 VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle());
461 VERIFY_IS_APPROX( angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle()) );
462 VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle());
464 if(std::cos(s0)>0)
465 VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1));
466 else
467 VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle());
469 // Check path length
470 Scalar l = 0;
471 int path_steps = 100;
472 for(int k=0; k<path_steps; ++k)
474 Scalar a1 = R0.slerp(Scalar(k)/Scalar(path_steps), R1).angle();
475 Scalar a2 = R0.slerp(Scalar(k+1)/Scalar(path_steps), R1).angle();
476 l += std::abs(a2-a1);
478 VERIFY(l<=Scalar(EIGEN_PI)*(Scalar(1)+NumTraits<Scalar>::epsilon()*Scalar(path_steps/2)));
480 // check basic features
482 Rotation2D<Scalar> r1; // default ctor
483 r1 = Rotation2D<Scalar>(s0); // copy assignment
484 VERIFY_IS_APPROX(r1.angle(),s0);
485 Rotation2D<Scalar> r2(r1); // copy ctor
486 VERIFY_IS_APPROX(r2.angle(),s0);
490 Transform3 t32(Matrix4::Random()), t33, t34;
491 t34 = t33 = t32;
492 t32.scale(v0);
493 t33*=AlignedScaling3(v0);
494 VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
495 t33 = t34 * AlignedScaling3(v0);
496 VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
501 template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
502 void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
504 VERIFY_IS_APPROX( q*(a1*v), (q*a1)*v );
505 VERIFY_IS_APPROX( q*(a2*v), (q*a2)*v );
506 VERIFY_IS_APPROX( q*(p*h).hnormalized(), ((q*p)*h).hnormalized() );
509 template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
510 void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
512 VERIFY_IS_APPROX( a1*(q*v), (a1*q)*v );
513 VERIFY_IS_APPROX( a2*(q*v), (a2*q)*v );
514 VERIFY_IS_APPROX( p *(q*v).homogeneous(), (p *q)*v.homogeneous() );
516 transform_associativity_left(a1, a2,p, q, v, h);
519 template<typename Scalar, int Dim, int Options,typename RotationType>
520 void transform_associativity(const RotationType& R)
522 typedef Matrix<Scalar,Dim,1> VectorType;
523 typedef Matrix<Scalar,Dim+1,1> HVectorType;
524 typedef Matrix<Scalar,Dim,Dim> LinearType;
525 typedef Matrix<Scalar,Dim+1,Dim+1> MatrixType;
526 typedef Transform<Scalar,Dim,AffineCompact,Options> AffineCompactType;
527 typedef Transform<Scalar,Dim,Affine,Options> AffineType;
528 typedef Transform<Scalar,Dim,Projective,Options> ProjectiveType;
529 typedef DiagonalMatrix<Scalar,Dim> ScalingType;
530 typedef Translation<Scalar,Dim> TranslationType;
532 AffineCompactType A1c; A1c.matrix().setRandom();
533 AffineCompactType A2c; A2c.matrix().setRandom();
534 AffineType A1(A1c);
535 AffineType A2(A2c);
536 ProjectiveType P1; P1.matrix().setRandom();
537 VectorType v1 = VectorType::Random();
538 VectorType v2 = VectorType::Random();
539 HVectorType h1 = HVectorType::Random();
540 Scalar s1 = internal::random<Scalar>();
541 LinearType L = LinearType::Random();
542 MatrixType M = MatrixType::Random();
544 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2, v2, h1) );
545 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2c, v2, h1) );
546 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1) );
547 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1) );
548 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1) );
549 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1) );
550 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1) );
551 CALL_SUBTEST( transform_associativity_left(A1c, A1, P1, L, v2, h1) );
552 CALL_SUBTEST( transform_associativity2(A1c, A1, P1, R, v2, h1) );
554 VERIFY_IS_APPROX( A1*(M*h1), (A1*M)*h1 );
555 VERIFY_IS_APPROX( A1c*(M*h1), (A1c*M)*h1 );
556 VERIFY_IS_APPROX( P1*(M*h1), (P1*M)*h1 );
558 VERIFY_IS_APPROX( M*(A1*h1), (M*A1)*h1 );
559 VERIFY_IS_APPROX( M*(A1c*h1), (M*A1c)*h1 );
560 VERIFY_IS_APPROX( M*(P1*h1), ((M*P1)*h1) );
563 template<typename Scalar> void transform_alignment()
565 typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a;
566 typedef Transform<Scalar,3,Projective,DontAlign> Projective3u;
568 EIGEN_ALIGN_MAX Scalar array1[16];
569 EIGEN_ALIGN_MAX Scalar array2[16];
570 EIGEN_ALIGN_MAX Scalar array3[16+1];
571 Scalar* array3u = array3+1;
573 Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a;
574 Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u;
575 Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u;
577 p1->matrix().setRandom();
578 *p2 = *p1;
579 *p3 = *p1;
581 VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
582 VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
584 VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
586 #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
587 if(internal::packet_traits<Scalar>::Vectorizable)
588 VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
589 #endif
592 template<typename Scalar, int Dim, int Options> void transform_products()
594 typedef Matrix<Scalar,Dim+1,Dim+1> Mat;
595 typedef Transform<Scalar,Dim,Projective,Options> Proj;
596 typedef Transform<Scalar,Dim,Affine,Options> Aff;
597 typedef Transform<Scalar,Dim,AffineCompact,Options> AffC;
599 Proj p; p.matrix().setRandom();
600 Aff a; a.linear().setRandom(); a.translation().setRandom();
601 AffC ac = a;
603 Mat p_m(p.matrix()), a_m(a.matrix());
605 VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m);
606 VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m);
607 VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m);
608 VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m);
609 VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m);
610 VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m);
611 VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m);
612 VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m);
615 void test_geo_transformations()
617 for(int i = 0; i < g_repeat; i++) {
618 CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() ));
619 CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() ));
621 CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() ));
622 CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() ));
623 CALL_SUBTEST_2(( transform_alignment<float>() ));
625 CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
626 CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
627 CALL_SUBTEST_3(( transform_alignment<double>() ));
629 CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() ));
630 CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() ));
632 CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() ));
633 CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() ));
635 CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() ));
636 CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() ));
639 CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() ));
640 CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() ));
642 CALL_SUBTEST_8(( transform_associativity<double,2,ColMajor>(Rotation2D<double>(internal::random<double>()*double(EIGEN_PI))) ));
643 CALL_SUBTEST_8(( transform_associativity<double,3,ColMajor>(Quaterniond::UnitRandom()) ));