1 // This file is part of Eigen, a lightweight C++ template library
4 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 #define TEST_ENABLE_TEMPORARY_TRACKING
15 template<typename MatrixType
> void matrixRedux(const MatrixType
& m
)
17 typedef typename
MatrixType::Index Index
;
18 typedef typename
MatrixType::Scalar Scalar
;
19 typedef typename
MatrixType::RealScalar RealScalar
;
21 Index rows
= m
.rows();
22 Index cols
= m
.cols();
24 MatrixType m1
= MatrixType::Random(rows
, cols
);
26 // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
27 // failures if we underflow into denormals. Thus, we scale so that entries are close to 1.
28 MatrixType m1_for_prod
= MatrixType::Ones(rows
, cols
) + RealScalar(0.2) * m1
;
30 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows
, cols
).sum(), Scalar(1));
31 VERIFY_IS_APPROX(MatrixType::Ones(rows
, cols
).sum(), Scalar(float(rows
*cols
))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
32 Scalar
s(0), p(1), minc(numext::real(m1
.coeff(0))), maxc(numext::real(m1
.coeff(0)));
33 for(int j
= 0; j
< cols
; j
++)
34 for(int i
= 0; i
< rows
; i
++)
37 p
*= m1_for_prod(i
,j
);
38 minc
= (std::min
)(numext::real(minc
), numext::real(m1(i
,j
)));
39 maxc
= (std::max
)(numext::real(maxc
), numext::real(m1(i
,j
)));
41 const Scalar mean
= s
/Scalar(RealScalar(rows
*cols
));
43 VERIFY_IS_APPROX(m1
.sum(), s
);
44 VERIFY_IS_APPROX(m1
.mean(), mean
);
45 VERIFY_IS_APPROX(m1_for_prod
.prod(), p
);
46 VERIFY_IS_APPROX(m1
.real().minCoeff(), numext::real(minc
));
47 VERIFY_IS_APPROX(m1
.real().maxCoeff(), numext::real(maxc
));
49 // test slice vectorization assuming assign is ok
50 Index r0
= internal::random
<Index
>(0,rows
-1);
51 Index c0
= internal::random
<Index
>(0,cols
-1);
52 Index r1
= internal::random
<Index
>(r0
+1,rows
)-r0
;
53 Index c1
= internal::random
<Index
>(c0
+1,cols
)-c0
;
54 VERIFY_IS_APPROX(m1
.block(r0
,c0
,r1
,c1
).sum(), m1
.block(r0
,c0
,r1
,c1
).eval().sum());
55 VERIFY_IS_APPROX(m1
.block(r0
,c0
,r1
,c1
).mean(), m1
.block(r0
,c0
,r1
,c1
).eval().mean());
56 VERIFY_IS_APPROX(m1_for_prod
.block(r0
,c0
,r1
,c1
).prod(), m1_for_prod
.block(r0
,c0
,r1
,c1
).eval().prod());
57 VERIFY_IS_APPROX(m1
.block(r0
,c0
,r1
,c1
).real().minCoeff(), m1
.block(r0
,c0
,r1
,c1
).real().eval().minCoeff());
58 VERIFY_IS_APPROX(m1
.block(r0
,c0
,r1
,c1
).real().maxCoeff(), m1
.block(r0
,c0
,r1
,c1
).real().eval().maxCoeff());
60 // regression for bug 1090
61 const int R1
= MatrixType::RowsAtCompileTime
>=2 ? MatrixType::RowsAtCompileTime
/2 : 6;
62 const int C1
= MatrixType::ColsAtCompileTime
>=2 ? MatrixType::ColsAtCompileTime
/2 : 6;
63 if(R1
<=rows
-r0
&& C1
<=cols
-c0
)
65 VERIFY_IS_APPROX( (m1
.template block
<R1
,C1
>(r0
,c0
).sum()), m1
.block(r0
,c0
,R1
,C1
).sum() );
69 VERIFY_IS_APPROX(m1
.block(r0
,c0
,0,0).sum(), Scalar(0));
70 VERIFY_IS_APPROX(m1
.block(r0
,c0
,0,0).prod(), Scalar(1));
72 // test nesting complex expression
73 VERIFY_EVALUATION_COUNT( (m1
.matrix()*m1
.matrix().transpose()).sum(), (MatrixType::IsVectorAtCompileTime
&& MatrixType::SizeAtCompileTime
!=1 ? 0 : 1) );
74 Matrix
<Scalar
, MatrixType::RowsAtCompileTime
, MatrixType::RowsAtCompileTime
> m2(rows
,rows
);
76 VERIFY_EVALUATION_COUNT( ((m1
.matrix()*m1
.matrix().transpose())+m2
).sum(),(MatrixType::IsVectorAtCompileTime
&& MatrixType::SizeAtCompileTime
!=1 ? 0 : 1));
79 template<typename VectorType
> void vectorRedux(const VectorType
& w
)
82 typedef typename
VectorType::Index Index
;
83 typedef typename
VectorType::Scalar Scalar
;
84 typedef typename NumTraits
<Scalar
>::Real RealScalar
;
85 Index size
= w
.size();
87 VectorType v
= VectorType::Random(size
);
88 VectorType v_for_prod
= VectorType::Ones(size
) + Scalar(0.2) * v
; // see comment above declaration of m1_for_prod
90 for(int i
= 1; i
< size
; i
++)
93 RealScalar
minc(numext::real(v
.coeff(0))), maxc(numext::real(v
.coeff(0)));
94 for(int j
= 0; j
< i
; j
++)
98 minc
= (std::min
)(minc
, numext::real(v
[j
]));
99 maxc
= (std::max
)(maxc
, numext::real(v
[j
]));
101 VERIFY_IS_MUCH_SMALLER_THAN(abs(s
- v
.head(i
).sum()), Scalar(1));
102 VERIFY_IS_APPROX(p
, v_for_prod
.head(i
).prod());
103 VERIFY_IS_APPROX(minc
, v
.real().head(i
).minCoeff());
104 VERIFY_IS_APPROX(maxc
, v
.real().head(i
).maxCoeff());
107 for(int i
= 0; i
< size
-1; i
++)
110 RealScalar
minc(numext::real(v
.coeff(i
))), maxc(numext::real(v
.coeff(i
)));
111 for(int j
= i
; j
< size
; j
++)
115 minc
= (std::min
)(minc
, numext::real(v
[j
]));
116 maxc
= (std::max
)(maxc
, numext::real(v
[j
]));
118 VERIFY_IS_MUCH_SMALLER_THAN(abs(s
- v
.tail(size
-i
).sum()), Scalar(1));
119 VERIFY_IS_APPROX(p
, v_for_prod
.tail(size
-i
).prod());
120 VERIFY_IS_APPROX(minc
, v
.real().tail(size
-i
).minCoeff());
121 VERIFY_IS_APPROX(maxc
, v
.real().tail(size
-i
).maxCoeff());
124 for(int i
= 0; i
< size
/2; i
++)
127 RealScalar
minc(numext::real(v
.coeff(i
))), maxc(numext::real(v
.coeff(i
)));
128 for(int j
= i
; j
< size
-i
; j
++)
132 minc
= (std::min
)(minc
, numext::real(v
[j
]));
133 maxc
= (std::max
)(maxc
, numext::real(v
[j
]));
135 VERIFY_IS_MUCH_SMALLER_THAN(abs(s
- v
.segment(i
, size
-2*i
).sum()), Scalar(1));
136 VERIFY_IS_APPROX(p
, v_for_prod
.segment(i
, size
-2*i
).prod());
137 VERIFY_IS_APPROX(minc
, v
.real().segment(i
, size
-2*i
).minCoeff());
138 VERIFY_IS_APPROX(maxc
, v
.real().segment(i
, size
-2*i
).maxCoeff());
141 // test empty objects
142 VERIFY_IS_APPROX(v
.head(0).sum(), Scalar(0));
143 VERIFY_IS_APPROX(v
.tail(0).prod(), Scalar(1));
144 VERIFY_RAISES_ASSERT(v
.head(0).mean());
145 VERIFY_RAISES_ASSERT(v
.head(0).minCoeff());
146 VERIFY_RAISES_ASSERT(v
.head(0).maxCoeff());
151 // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
152 int maxsize
= (std::min
)(100,EIGEN_TEST_MAX_SIZE
);
153 TEST_SET_BUT_UNUSED_VARIABLE(maxsize
);
154 for(int i
= 0; i
< g_repeat
; i
++) {
155 CALL_SUBTEST_1( matrixRedux(Matrix
<float, 1, 1>()) );
156 CALL_SUBTEST_1( matrixRedux(Array
<float, 1, 1>()) );
157 CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
158 CALL_SUBTEST_2( matrixRedux(Array2f()) );
159 CALL_SUBTEST_2( matrixRedux(Array22f()) );
160 CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
161 CALL_SUBTEST_3( matrixRedux(Array4d()) );
162 CALL_SUBTEST_3( matrixRedux(Array44d()) );
163 CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random
<int>(1,maxsize
), internal::random
<int>(1,maxsize
))) );
164 CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random
<int>(1,maxsize
), internal::random
<int>(1,maxsize
))) );
165 CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random
<int>(1,maxsize
), internal::random
<int>(1,maxsize
))) );
166 CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random
<int>(1,maxsize
), internal::random
<int>(1,maxsize
))) );
167 CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random
<int>(1,maxsize
), internal::random
<int>(1,maxsize
))) );
168 CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random
<int>(1,maxsize
), internal::random
<int>(1,maxsize
))) );
170 for(int i
= 0; i
< g_repeat
; i
++) {
171 CALL_SUBTEST_7( vectorRedux(Vector4f()) );
172 CALL_SUBTEST_7( vectorRedux(Array4f()) );
173 CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random
<int>(1,maxsize
))) );
174 CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random
<int>(1,maxsize
))) );
175 CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random
<int>(1,maxsize
))) );
176 CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random
<int>(1,maxsize
))) );