Merged in f5soh/librepilot/update_credits (pull request #529)
[librepilot.git] / ground / gcs / src / libs / eigen / test / sparse_permutations.cpp
blobb82cceff808f95c8ccde6a8033c240c96d9aa7cd
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 static long int nb_transposed_copies;
12 #define EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN {nb_transposed_copies++;}
13 #define VERIFY_TRANSPOSITION_COUNT(XPR,N) {\
14 nb_transposed_copies = 0; \
15 XPR; \
16 if(nb_transposed_copies!=N) std::cerr << "nb_transposed_copies == " << nb_transposed_copies << "\n"; \
17 VERIFY( (#XPR) && nb_transposed_copies==N ); \
20 #include "sparse.h"
22 template<typename T>
23 bool is_sorted(const T& mat) {
24 for(Index k = 0; k<mat.outerSize(); ++k)
26 Index prev = -1;
27 for(typename T::InnerIterator it(mat,k); it; ++it)
29 if(prev>=it.index())
30 return false;
31 prev = it.index();
34 return true;
37 template<typename T>
38 typename internal::nested_eval<T,1>::type eval(const T &xpr)
40 VERIFY( int(internal::nested_eval<T,1>::type::Flags&RowMajorBit) == int(internal::evaluator<T>::Flags&RowMajorBit) );
41 return xpr;
44 template<int OtherStorage, typename SparseMatrixType> void sparse_permutations(const SparseMatrixType& ref)
46 const Index rows = ref.rows();
47 const Index cols = ref.cols();
48 typedef typename SparseMatrixType::Scalar Scalar;
49 typedef typename SparseMatrixType::StorageIndex StorageIndex;
50 typedef SparseMatrix<Scalar, OtherStorage, StorageIndex> OtherSparseMatrixType;
51 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
52 typedef Matrix<StorageIndex,Dynamic,1> VectorI;
53 // bool IsRowMajor1 = SparseMatrixType::IsRowMajor;
54 // bool IsRowMajor2 = OtherSparseMatrixType::IsRowMajor;
56 double density = (std::max)(8./(rows*cols), 0.01);
58 SparseMatrixType mat(rows, cols), up(rows,cols), lo(rows,cols);
59 OtherSparseMatrixType res;
60 DenseMatrix mat_d = DenseMatrix::Zero(rows, cols), up_sym_d, lo_sym_d, res_d;
62 initSparse<Scalar>(density, mat_d, mat, 0);
64 up = mat.template triangularView<Upper>();
65 lo = mat.template triangularView<Lower>();
67 up_sym_d = mat_d.template selfadjointView<Upper>();
68 lo_sym_d = mat_d.template selfadjointView<Lower>();
70 VERIFY_IS_APPROX(mat, mat_d);
71 VERIFY_IS_APPROX(up, DenseMatrix(mat_d.template triangularView<Upper>()));
72 VERIFY_IS_APPROX(lo, DenseMatrix(mat_d.template triangularView<Lower>()));
74 PermutationMatrix<Dynamic> p, p_null;
75 VectorI pi;
76 randomPermutationVector(pi, cols);
77 p.indices() = pi;
79 VERIFY( is_sorted( ::eval(mat*p) ));
80 VERIFY( is_sorted( res = mat*p ));
81 VERIFY_TRANSPOSITION_COUNT( ::eval(mat*p), 0);
82 //VERIFY_TRANSPOSITION_COUNT( res = mat*p, IsRowMajor ? 1 : 0 );
83 res_d = mat_d*p;
84 VERIFY(res.isApprox(res_d) && "mat*p");
86 VERIFY( is_sorted( ::eval(p*mat) ));
87 VERIFY( is_sorted( res = p*mat ));
88 VERIFY_TRANSPOSITION_COUNT( ::eval(p*mat), 0);
89 res_d = p*mat_d;
90 VERIFY(res.isApprox(res_d) && "p*mat");
92 VERIFY( is_sorted( (mat*p).eval() ));
93 VERIFY( is_sorted( res = mat*p.inverse() ));
94 VERIFY_TRANSPOSITION_COUNT( ::eval(mat*p.inverse()), 0);
95 res_d = mat*p.inverse();
96 VERIFY(res.isApprox(res_d) && "mat*inv(p)");
98 VERIFY( is_sorted( (p*mat+p*mat).eval() ));
99 VERIFY( is_sorted( res = p.inverse()*mat ));
100 VERIFY_TRANSPOSITION_COUNT( ::eval(p.inverse()*mat), 0);
101 res_d = p.inverse()*mat_d;
102 VERIFY(res.isApprox(res_d) && "inv(p)*mat");
104 VERIFY( is_sorted( (p * mat * p.inverse()).eval() ));
105 VERIFY( is_sorted( res = mat.twistedBy(p) ));
106 VERIFY_TRANSPOSITION_COUNT( ::eval(p * mat * p.inverse()), 0);
107 res_d = (p * mat_d) * p.inverse();
108 VERIFY(res.isApprox(res_d) && "p*mat*inv(p)");
111 VERIFY( is_sorted( res = mat.template selfadjointView<Upper>().twistedBy(p_null) ));
112 res_d = up_sym_d;
113 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
115 VERIFY( is_sorted( res = mat.template selfadjointView<Lower>().twistedBy(p_null) ));
116 res_d = lo_sym_d;
117 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
120 VERIFY( is_sorted( res = up.template selfadjointView<Upper>().twistedBy(p_null) ));
121 res_d = up_sym_d;
122 VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
124 VERIFY( is_sorted( res = lo.template selfadjointView<Lower>().twistedBy(p_null) ));
125 res_d = lo_sym_d;
126 VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
129 VERIFY( is_sorted( res = mat.template selfadjointView<Upper>() ));
130 res_d = up_sym_d;
131 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
133 VERIFY( is_sorted( res = mat.template selfadjointView<Lower>() ));
134 res_d = lo_sym_d;
135 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
137 VERIFY( is_sorted( res = up.template selfadjointView<Upper>() ));
138 res_d = up_sym_d;
139 VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
141 VERIFY( is_sorted( res = lo.template selfadjointView<Lower>() ));
142 res_d = lo_sym_d;
143 VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
146 res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>();
147 res_d = up_sym_d.template triangularView<Upper>();
148 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to upper");
150 res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>();
151 res_d = up_sym_d.template triangularView<Lower>();
152 VERIFY(res.isApprox(res_d) && "full selfadjoint upper to lower");
154 res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>();
155 res_d = lo_sym_d.template triangularView<Upper>();
156 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to upper");
158 res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>();
159 res_d = lo_sym_d.template triangularView<Lower>();
160 VERIFY(res.isApprox(res_d) && "full selfadjoint lower to lower");
164 res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>().twistedBy(p);
165 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
166 VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to upper");
168 res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>().twistedBy(p);
169 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
170 VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to upper");
172 res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>().twistedBy(p);
173 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
174 VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to lower");
176 res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>().twistedBy(p);
177 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
178 VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to lower");
181 res.template selfadjointView<Upper>() = up.template selfadjointView<Upper>().twistedBy(p);
182 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
183 VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to upper");
185 res.template selfadjointView<Upper>() = lo.template selfadjointView<Lower>().twistedBy(p);
186 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
187 VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to upper");
189 res.template selfadjointView<Lower>() = lo.template selfadjointView<Lower>().twistedBy(p);
190 res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
191 VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to lower");
193 res.template selfadjointView<Lower>() = up.template selfadjointView<Upper>().twistedBy(p);
194 res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
195 VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to lower");
198 VERIFY( is_sorted( res = mat.template selfadjointView<Upper>().twistedBy(p) ));
199 res_d = (p * up_sym_d) * p.inverse();
200 VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to full");
202 VERIFY( is_sorted( res = mat.template selfadjointView<Lower>().twistedBy(p) ));
203 res_d = (p * lo_sym_d) * p.inverse();
204 VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to full");
206 VERIFY( is_sorted( res = up.template selfadjointView<Upper>().twistedBy(p) ));
207 res_d = (p * up_sym_d) * p.inverse();
208 VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to full");
210 VERIFY( is_sorted( res = lo.template selfadjointView<Lower>().twistedBy(p) ));
211 res_d = (p * lo_sym_d) * p.inverse();
212 VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to full");
215 template<typename Scalar> void sparse_permutations_all(int size)
217 CALL_SUBTEST(( sparse_permutations<ColMajor>(SparseMatrix<Scalar, ColMajor>(size,size)) ));
218 CALL_SUBTEST(( sparse_permutations<ColMajor>(SparseMatrix<Scalar, RowMajor>(size,size)) ));
219 CALL_SUBTEST(( sparse_permutations<RowMajor>(SparseMatrix<Scalar, ColMajor>(size,size)) ));
220 CALL_SUBTEST(( sparse_permutations<RowMajor>(SparseMatrix<Scalar, RowMajor>(size,size)) ));
223 void test_sparse_permutations()
225 for(int i = 0; i < g_repeat; i++) {
226 int s = Eigen::internal::random<int>(1,50);
227 CALL_SUBTEST_1(( sparse_permutations_all<double>(s) ));
228 CALL_SUBTEST_2(( sparse_permutations_all<std::complex<double> >(s) ));
231 VERIFY((internal::is_same<internal::permutation_matrix_product<SparseMatrix<double>,OnTheRight,false,SparseShape>::ReturnType,
232 internal::nested_eval<Product<SparseMatrix<double>,PermutationMatrix<Dynamic,Dynamic>,AliasFreeProduct>,1>::type>::value));
234 VERIFY((internal::is_same<internal::permutation_matrix_product<SparseMatrix<double>,OnTheLeft,false,SparseShape>::ReturnType,
235 internal::nested_eval<Product<PermutationMatrix<Dynamic,Dynamic>,SparseMatrix<double>,AliasFreeProduct>,1>::type>::value));