2 ******************************************************************************
5 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
6 * @brief Library path manipulation
8 * @see The GNU Public License (GPL) Version 3
10 *****************************************************************************/
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 3 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 #include <pios_math.h>
31 #include "uavobjectmanager.h" // <--.
32 #include "pathdesired.h" // <-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx,
34 // no direct UAVObject usage allowed in this file
37 static void path_endpoint(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode
);
38 static void path_vector(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode
);
39 static void path_circle(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool clockwise
);
42 * @brief Compute progress along path and deviation from it
43 * @param[in] path PathDesired structure
44 * @param[in] cur_point Current location
45 * @param[out] status Structure containing progress along path and deviation
47 void path_progress(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
)
50 case PATHDESIRED_MODE_FLYVECTOR
:
51 return path_vector(path
, cur_point
, status
, true);
54 case PATHDESIRED_MODE_DRIVEVECTOR
:
55 return path_vector(path
, cur_point
, status
, false);
58 case PATHDESIRED_MODE_FLYCIRCLERIGHT
:
59 case PATHDESIRED_MODE_DRIVECIRCLERIGHT
:
60 return path_circle(path
, cur_point
, status
, 1);
63 case PATHDESIRED_MODE_FLYCIRCLELEFT
:
64 case PATHDESIRED_MODE_DRIVECIRCLELEFT
:
65 return path_circle(path
, cur_point
, status
, 0);
68 case PATHDESIRED_MODE_FLYENDPOINT
:
69 return path_endpoint(path
, cur_point
, status
, true);
72 case PATHDESIRED_MODE_DRIVEENDPOINT
:
74 // use the endpoint as default failsafe if called in unknown modes
75 return path_endpoint(path
, cur_point
, status
, false);
82 * @brief Compute progress towards endpoint. Deviation equals distance
83 * @param[in] path PathDesired
84 * @param[in] cur_point Current location
85 * @param[out] status Structure containing progress along path and deviation
86 * @param[in] mode3D set true to include altitude in distance and progress calculation
88 static void path_endpoint(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode3D
)
91 float dist_path
, dist_diff
;
94 status
->path_vector
[0] = path
->End
.North
- path
->Start
.North
;
95 status
->path_vector
[1] = path
->End
.East
- path
->Start
.East
;
96 status
->path_vector
[2] = mode3D
? path
->End
.Down
- path
->Start
.Down
: 0.0f
;
98 // Current progress location relative to end
99 diff
[0] = path
->End
.North
- cur_point
[0];
100 diff
[1] = path
->End
.East
- cur_point
[1];
101 diff
[2] = mode3D
? path
->End
.Down
- cur_point
[2] : 0.0f
;
103 dist_diff
= vector_lengthf(diff
, 3);
104 dist_path
= vector_lengthf(status
->path_vector
, 3);
106 if (dist_diff
< 1e-6f
) {
107 status
->fractional_progress
= 1;
108 status
->error
= 0.0f
;
109 status
->correction_vector
[0] = status
->correction_vector
[1] = status
->correction_vector
[2] = 0.0f
;
110 // we have no base movement direction in this mode
111 status
->path_vector
[0] = status
->path_vector
[1] = status
->path_vector
[2] = 0.0f
;
116 if (fmaxf(dist_path
, 1.0f
) > dist_diff
) {
117 status
->fractional_progress
= 1 - dist_diff
/ fmaxf(dist_path
, 1.0f
);
119 status
->fractional_progress
= 0; // we don't want fractional_progress to become negative
121 status
->error
= dist_diff
;
123 // Compute correction vector
124 status
->correction_vector
[0] = diff
[0];
125 status
->correction_vector
[1] = diff
[1];
126 status
->correction_vector
[2] = diff
[2];
128 // base movement direction in this mode is a constant velocity offset on top of correction in the same direction
129 status
->path_vector
[0] = path
->EndingVelocity
* status
->correction_vector
[0] / dist_diff
;
130 status
->path_vector
[1] = path
->EndingVelocity
* status
->correction_vector
[1] / dist_diff
;
131 status
->path_vector
[2] = path
->EndingVelocity
* status
->correction_vector
[2] / dist_diff
;
135 * @brief Compute progress along path and deviation from it
136 * @param[in] path PathDesired
137 * @param[in] cur_point Current location
138 * @param[out] status Structure containing progress along path and deviation
139 * @param[in] mode3D set true to include altitude in distance and progress calculation
141 static void path_vector(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool mode3D
)
147 float track_point
[3];
150 status
->path_vector
[0] = path
->End
.North
- path
->Start
.North
;
151 status
->path_vector
[1] = path
->End
.East
- path
->Start
.East
;
152 status
->path_vector
[2] = mode3D
? path
->End
.Down
- path
->Start
.Down
: 0.0f
;
154 // Current progress location relative to start
155 diff
[0] = cur_point
[0] - path
->Start
.North
;
156 diff
[1] = cur_point
[1] - path
->Start
.East
;
157 diff
[2] = mode3D
? cur_point
[2] - path
->Start
.Down
: 0.0f
;
159 dot
= status
->path_vector
[0] * diff
[0] + status
->path_vector
[1] * diff
[1] + status
->path_vector
[2] * diff
[2];
160 dist_path
= vector_lengthf(status
->path_vector
, 3);
162 if (dist_path
> 1e-6f
) {
163 // Compute direction to travel & progress
164 status
->fractional_progress
= dot
/ (dist_path
* dist_path
);
166 // Fly towards the endpoint to prevent flying away,
167 // but assume progress=1 either way.
168 path_endpoint(path
, cur_point
, status
, mode3D
);
169 status
->fractional_progress
= 1;
172 // Compute point on track that is closest to our current position.
173 track_point
[0] = status
->fractional_progress
* status
->path_vector
[0] + path
->Start
.North
;
174 track_point
[1] = status
->fractional_progress
* status
->path_vector
[1] + path
->Start
.East
;
175 track_point
[2] = status
->fractional_progress
* status
->path_vector
[2] + path
->Start
.Down
;
177 status
->correction_vector
[0] = track_point
[0] - cur_point
[0];
178 status
->correction_vector
[1] = track_point
[1] - cur_point
[1];
179 status
->correction_vector
[2] = track_point
[2] - cur_point
[2];
181 status
->error
= vector_lengthf(status
->correction_vector
, 3);
183 // correct movement vector to current velocity
184 velocity
= path
->StartingVelocity
+ boundf(status
->fractional_progress
, 0.0f
, 1.0f
) * (path
->EndingVelocity
- path
->StartingVelocity
);
185 status
->path_vector
[0] = velocity
* status
->path_vector
[0] / dist_path
;
186 status
->path_vector
[1] = velocity
* status
->path_vector
[1] / dist_path
;
187 status
->path_vector
[2] = velocity
* status
->path_vector
[2] / dist_path
;
191 * @brief Compute progress along circular path and deviation from it
192 * @param[in] path PathDesired
193 * @param[in] cur_point Current location
194 * @param[out] status Structure containing progress along path and deviation
196 static void path_circle(PathDesiredData
*path
, float *cur_point
, struct path_status
*status
, bool clockwise
)
198 float radius_north
, radius_east
, diff_north
, diff_east
, diff_down
;
199 float radius
, cradius
;
202 float a_diff
, a_radius
;
205 radius_north
= path
->End
.North
- path
->Start
.North
;
206 radius_east
= path
->End
.East
- path
->Start
.East
;
208 // Current location relative to center
209 diff_north
= cur_point
[0] - path
->End
.North
;
210 diff_east
= cur_point
[1] - path
->End
.East
;
211 diff_down
= cur_point
[2] - path
->End
.Down
;
213 radius
= sqrtf(squaref(radius_north
) + squaref(radius_east
));
214 cradius
= sqrtf(squaref(diff_north
) + squaref(diff_east
));
216 // circles are always horizontal (for now - TODO: allow 3d circles - problem: clockwise/counterclockwise does no longer apply)
217 status
->path_vector
[2] = 0.0f
;
219 // error is current radius minus wanted radius - positive if too close
220 status
->error
= radius
- cradius
;
222 if (cradius
< 1e-6f
) {
223 // cradius is zero, just fly somewhere
224 status
->fractional_progress
= 1;
225 status
->correction_vector
[0] = 0;
226 status
->correction_vector
[1] = 0;
227 status
->path_vector
[0] = path
->EndingVelocity
;
228 status
->path_vector
[1] = 0;
231 // Compute the normal to the radius clockwise
232 normal
[0] = -diff_east
/ cradius
;
233 normal
[1] = diff_north
/ cradius
;
235 // Compute the normal to the radius counter clockwise
236 normal
[0] = diff_east
/ cradius
;
237 normal
[1] = -diff_north
/ cradius
;
240 // normalize progress to 0..1
241 a_diff
= atan2f(diff_north
, diff_east
);
242 a_radius
= atan2f(radius_north
, radius_east
);
245 a_diff
+= 2.0f
* M_PI_F
;
248 a_radius
+= 2.0f
* M_PI_F
;
251 progress
= (a_diff
- a_radius
+ M_PI_F
) / (2.0f
* M_PI_F
);
253 if (progress
< 0.0f
) {
255 } else if (progress
>= 1.0f
) {
260 progress
= 1.0f
- progress
;
263 status
->fractional_progress
= progress
;
265 // Compute direction to travel
266 status
->path_vector
[0] = normal
[0] * path
->EndingVelocity
;
267 status
->path_vector
[1] = normal
[1] * path
->EndingVelocity
;
269 // Compute direction to correct error
270 status
->correction_vector
[0] = status
->error
* diff_north
/ cradius
;
271 status
->correction_vector
[1] = status
->error
* diff_east
/ cradius
;
274 status
->correction_vector
[2] = -diff_down
;
276 status
->error
= fabs(status
->error
);